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Identification of coronary 
calcifications in optical coherence 
tomography imaging using deep 
learning
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Coronary calcifications are an obstacle for successful percutaneous treatment of coronary artery 
disease patients. The optimal method for delineating calcifications extent is coronary optical 
coherence tomography (OCT). To identify calcification on OCT and subsequently tailor the appropriate 
treatment, requires expertise in both image acquisition and interpretation. Image acquisition 
consists from system calibration, blood clearance by a contrast agent along with synchronization of 
the pullback process. Accurate interpretation demands careful review by the operator of a segment 
of 50–75 mm of the coronary vessel at steps of 5–10 frames per mm accounting for 375–540 images 
in each OCT run, which is time consuming and necessitates some expertise in OCT analysis. In this 
paper we developed a new deep learning algorithm to assist the physician to identify and quantify 
coronary calcifications promptly, efficiently and accurately. Our algorithm achieves an accuracy of 
0.9903 ± 0.009 over the test set at size of 1500 frames and even managed to find calcifications that 
were not recognized manually by the physician. For the best knowledge of the authors our algorithm 
achieves high accuracy which was never achieved in the past.

Coronary calcifications pose a challenge to the interventional cardiologist when performing percutaneous coro-
nary intervention (PCI) as such lesions portend increased risk for complications, lower success rate and higher 
frequency of stent failure at follow-up1. Optical coherence tomography (OCT) is an advanced intracoronary 
imaging technique that allows high-resolution of the coronary structure including vessel lumen size and vessel 
wall characteristics up to the level of a single cell. OCT allows identification and quantification of the amount and 
location of calcification, plaque characteristics, vessel wall dissection and intraluminal thrombus2–4. In addition, 
OCT enables assessment and optimization of stent deployment including treatment of under-expansion and edge 
dissections5–7. Moreover, recently, an entity of calcific nodule was shown to be the etiology of acute coronary 
syndrome in a significant number of patients with higher rate of adverse events when treated percutaneously8,9. 
The advantage of OCT in coronary calcification quantification has led to a scoring system to predict stent under 
expansion and consequently stent failure10.

However, currently these OCT features are interpreted manually by the physician. It requires experience 
in image acquisition and interpretation and thereby interfering with the catheterization laboratory workflow. 
Therefore, an automatic algorithm for identify the coronary calcifications in the blood vessels is desirable. An 
algorithm that is based on deep learning (DL) can help achieve accurate automatic segmentation of calcific vessel 
segments. One of the main advantages of such algorithm is the automation of OCT images interpretation along 
with reduction in procedural overall time and subsequently reduction in cost.

Our aim was to develop such algorithm that can accurately perform these tasks. In this manuscript we will 
describe the methods used including image pre-processing and DL model building in order to perform auto-
mated segmentation with a quantitative image assessment results based on criteria of loss function, accuracy 
function and dice coefficient.
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Methods
In order to segment the calcifications on OCT images, we used methods from the fields of image processing and 
DL. We have built a plan that includes pre-processing the data, performing segmentation of the images manually 
and building a model based on deep learning in order to perform automated segmentation.

Pre‑processing the data.  The OCT runs usually contain additional information beyond the area of inter-
est. For example, in many OCT images there are parts that are irrelevant for the purpose of training a segmenta-
tion model such as areas where blood is not properly cleared by the contrast agent, and subsequently interferes 
with the optical rays transmitted through the OCT catheter, thereby it obscures the coronary lumen and vessel 
wall and hampers the quality of the image. In other cases, the OCT catheter which is pulled back automatically 
enters the guide catheter at the origin of the coronary vessel and no longer images the artery itself. Therefore, 
frames of inadequate quality were filtered out, leaving-in the most relevant frames in order to train a model 
efficiently. In addition, the OCT results contain other measurement which are irrelevant to the current purpose 
and therefore were also removed leaving only the raw images for the training process. In order, to augment the 
data, each image was rotated by 90°, 180° and 270°.

Creating ground truth database.  In order to be able to train a supervised deep learning model we are 
required to point towards the desired results apart from OCT imaging results. This is introduced into the model 
by the investigators in order to enable the learning process. For this purpose, Manual segmentation of calcifi-
cations in 8000 OCT images was performed by two independent individuals, from consecutive patients that 
underwent coronary angiography with OCT at Soroka Medical Center, Beer Sheva, Israel. Local ethics commit-
tee approved the present study and informed consent was waived due to the anonymization of the retrospectively 
collected data. In case of disagreement, a consensus of two annotators together with an expert interventional 
cardiologist was sought. This enabled to refine the data and correct mistakes in calcification identification. We 
expected that as we introduce more annotated data the results of the training will become more robust and its 
performance will improve over the test set. The process of manual segmentation was conducted according to the 
current consensus and described in Fig. 111.

Each frame is described by three layers that corresponds to RGB colors represented as a three-dimensional 
tensor with size of (400, 400, 3). For each frame we created a mask that represents the area where calcification 
occurs. This mask is a matrix with size of (400, 400) the mask consists of arrays of 0 and 1 where 1 represents 
a pixel where there is calcification and 0 represents a pixel without calcification. We organized and sorted all 
the frames and their masks in order to provide the highest quality data for the model. We carefully selected the 
frames with the best accuracy of manual segmentation and dropped frames with equivocal findings (Fig. 2). We 
also selected for the training process only frames in which calcification was found. In addition, in cases where 
we discovered that there was a mistake in the human identification of the calcification, we corrected the masks 

Figure 1.   Identification of calcified segments flow chart. (Region of interest—vessel wall characteristics, 
symmetricity, irregularities etc.).
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of those frames. After filtering the data by removing corrupted frames, wrong annotations and frames without 
segmentation at all, we were left with only 540 frames for the purpose of training and testing the model. We 
divided the data to two sets, 490 of them used for training and 50 frames for the purpose of testing the model.

CNN Model for segmentation.  Following a review of the U-net architecture12, we noted that it can pro-
vide adequate results in the field of medical image segmentation13. We modified the model structure so that it 
could receive as input OCT data in large size (400, 400), and we also modified the size of the filters to fit larger 
images than the images inserted into the model in the original article12. Resizing the filters allows the model to 
be able to distinguish objects that are spread over more than (3, 3) pixels, so we increased the size of the filters in 
the down-sampling process to (5, 5) filters. In addition, we changed the size of the model output to (400, 400) to 
match the size of the frames inserted into the model.

Model description.  The architecture of the model we implemented is based on a convolution neural net-
work and was designed to quickly and accurately segment medical images. The model is built symmetrically, 
which means that it is easier to unify data coming from different layers in the network. In this network, features 
are collected during the down-sampling blocks and concatenating to the data enters the up-sampling blocks, this 
operation helps keep the location which the features came from in the 2D image space (Fig. 3).

Block description. 

•	 The down-sampling block extracts features and reduces the dimensions of the data entering it, this block is 
made up of an input layer, which passes through two convolution layers and then a max pooling operation is 
performed which reduces the dimensions of the data and produces the output of the down-sampling block.

•	 The bottleneck block extracts features and preserves the dimensions of the data entering it, this block is 
made up of an input layer, this layer passes through two layers of convolution that produce the output of the 
bottleneck block.

•	 The up-sampling block receives data from a layer with smaller data dimensions and increases its dimensions. 
Then it attaches data coming from parallel layers in the network, and extracts features from this data. The 

Figure 2.   Example of single frame in the data set we created. The calcified area in the coronary is marked with 
green in the annotated image.

Figure 3.   Visual block description. blue arrow stands for convolution layer operation, red arrow stands for Max 
pooling operation, green arrow stands for up-sampling with zero padding and blue boxes describe the size of the 
feature maps.
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block consists of an up-sampling operation, a concatenating operation with data from another layer which 
then the passess through two convolution layers to produce the output of the up-sampling block.

Model architecture.  Our model consists of four down-sampling blocks, one bottleneck block and four 
up-sampling blocks.

The blocks are connected one after the other as follows.
A single RGB frame is the entrance layer of the model, this frame is described by three matrices with the size 

of (400, 400) pixels, the entrance layer passes through the first down-sampling block which produces 16 feature 
maps with size of (200, 200) pixels, then the features pass through three more down-sampling blocks which 
create 128 feature maps with size of (50, 50) pixels, these features go into a bottleneck block and from there the 
up-sampling process begins, the up-sampling process consists of four up-sampling blocks. The feature maps that 
enters the up-sampling blocks collected from parallel blocks that belong to the down-sampling process as well 
as feature maps from the previous block. Upon completion of the up-sampling process, 16 feature maps with 
size of (400, 400) pixels are obtained. In order to produce the output layer we add one more convolution layer 
with kernel size of (1, 1) and sigmoid activation function in order to receive a single output frame with values 
from 0 to 1 (Fig. 4). This was constructed in order to provide the operator the ability to fine tune the system as 
a probability based.

Results
In order to evaluate the quality and accuracy of calcification segmentation, we defined two main criteria. The 
first is a qualitative criterion by visual assessment of an interventional cardiologist. The second is a quantitative 
criterion measured by using loss function, accuracy function and dice coefficient with the data fed into the model 
in its original form without any coordinate transformation.

Qualitative assessment.  We compared the model prediction results to the manual annotation by ana-
lyzing the original image with the manual annotated image and the corresponding model image prediction. 
Approximately in 90% of the cases the cardiologist indicated that model prediction of calcification is correct. As 
a part of this test we noticed that in some cases the model result is more accurate than manual annotation, since 
some of the manual annotations had incomplete delineation of coronary calcifications. Example for two different 
situations of visual assessment are shown in Fig. 5. The green area in annotated images is the calcification area 
both prediction and manual annotation.

Quantitative assessment.  For a quantitative assessment of the quality of the model prediction results we 
used the next measures: accuracy loss function, dice coefficient metric and accuracy metric. The loss measure14 
is calculated on a training and testing set, and its interpretation is based on how well the model is doing in these 
two sets. It is calculated as the mean of errors made for each image in training or testing sets. In the field of seg-
mentation of medical images, the Binary Cross-Entropy function (1) has shown excellent results, therefore we 
decided to use it in our model as well. The concept of this function is that for each true calcification pixel ( yi = 1 ) 
it adds the log probability of calcification. Conversely, it adds the log probability of no calcification, for each true 
no calcification pixel ( yi = 0).

(1)Binary Cross - Entropy = Hp
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Figure 4.   Deep learning Model architecture described by the fundamental blocks.
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An accuracy metric (2)15 is used to measure the model’s performance in an interpretable way. The accuracy 
of the model is a measure of how many both True Positive (TP) pixels and True Negative (TN) pixels exist in 
each image. It is the measure of how accurate the model’s prediction is compared to the true data. Our optimize 
model scored 0.9903± 0.009 in this parameter.

A dice coefficient metric (3) is16 a measure of how many TP exist in each image. This metric penalizes for 
the false positives (FP) and false negative (FN) that the method finds. Unlike accuracy index this metric is not 
affected by the relative size of the calcification in the image. Our optimized model scored 0.7143± 0.2609 in 
this parameter.

The results of accuracy and dice coefficient metrices are considered a significant achievement in relation to 
the results of similar studies17. Figure 6 shows the learning process of the model over training and testing data 
in terms of accuracy and loss measures.

The graphs show also that the model learns very well in the first 100 epochs (sharp slope). Then the pattern 
of testing set graph remains approximately constant while the graph of the training set continues to improve. 
This process shows that the model is about to become over-fitted and therefore finished learning and from the 
100th epoch the model begins to learn more specific details about the training set, which is irrelevant in our case 
because the model should be implemented on new data.

In addition, the pattern of training graph both in loss and accuracy functions resembles saw-tooth wave, the 
reason is that the training stage consists of 30 iterations, when each iteration of the model is fitted with altered 
data five times which is the epochs number. While the altered data is produced by rotation and permutation.

Discussion
In this paper, we have shown that using algorithms from the field of DL and high-quality data, it’s possible to train 
a model that aims to perform automatic segmentation of calcifications in coronary arteries on top of products 
of OCT technology, with very high accuracy. Our algorithm supports interventional cardiologists decisions 
when performing PCI in calcified coronary arteries. The algorithm could help achieve better success rates and 
long-term clinical outcome for the patients.

When we started the initial training stages of the model, our results had lower quality than the final result. 
After an in-depth review of the results we noticed that the model was able to differentiate areas with and without 
calcifications, but we are unable to accurately find the boundary between a healthy area and an unhealthy area. 
Following these results, we decided to perform a massive sifting of the data for training, we discovered that 
there are samples where the manual segmentation we performed was not accurate enough. Following exclu-
sion of low-quality samples, we performed the model training process again. This process now included only 
490 frames, compared to 1500 frames before filtering, resulting in a significant improvement in the dice index 

(2)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(3)D.C =
2|X ∩ Y|

|X| + |Y|
; |A| =

∑

ai∈A

ai; (A ∩ B)i = Ai · Bi

Figure 5.   Visualize Results. Two examples of automated segmentation. (A) High accuracy of the model 
(B) Improved accuracy over manual annotation. (1) Original Image. (2) Manual annotation. (3) Automatic 
segmentation.
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which rose from a score of 0.47–0.65. On the same architecture of model. This improvement indicates a very 
high sensitivity of the model to the data quality. Since we observed that the quality is superior to the quantity 
and we decided to continue with the sifting data set where 490 frames were used for training and only 50 frames 
were used for testing.

Another significant improvement we were able to achieve during the study concerns the traditional structure 
of the U-net network. Our main task in this study was to identify the calcifications on OCT image. In most cases 
despite the high focus and resolution of the technology, the calcifications sometimes have unclear boundaries 
which makes it difficult to discern their borders. This phenomenon forced us to work at a relatively high resolu-
tion compared to what is accepted in the field of deep learning (400, 400). In order to distinguish details within 
an image at such a high resolution, filters larger than (3, 3) are needed, because on the order of 9 pixels, it is 
almost impossible to distinguish different trends in the image, nor can the textures of a diseased or healthy area 
be discerned. Following this distinction, we changed the size of the filters in the down-sampling process to size 
filters (5, 5) which actually gave us a much better ability to notice the different trends. Finally, in order to increase 
the accuracy towards the network output we left the filters of the up-sampling and bottleneck process at the size 
of (3, 3) in order to focus the decision of the network to smaller areas. Subsequently, we noted another significant 
improvement in the results that led to the final results of 0.71 in the dice index.

Further research that could lead to further improvements in the identification quality of the calcifications 
would include a DL model based on three-dimensional convolution in order to allow the model to diagnose 
the immediate environment of each frame and thereby improve the predictability for each frame. This can be 
achieved for example by building a model that takes three frames at a time and performs a three-dimensional 
convolution with size filters (5, 5, 3) to test feasibility. In addition, the effect of pre-identification of the lumen of 
the artery should be investigated and the results of identifying the artery lumen provided as an additional input 
to the model identifying the calcifications because in many cases the calcifications distort the shape of the artery 
and early detection of this deformity can help identify the calcification.

Conclusions
DL algorithm can successfully and accurately identify coronary calcification on OCT images in an automated 
manner. This may potentially assist the interventional cardiologist to apply the appropriate measures in treating 
calcified lesions and consequently achieve optimal procedural success and therefore improved long-term result. 
Further algorithm improvement with more data, and additional features will result in superior results. Future 
research should consider other types of network such as U Net 3+18, meanwhile the present results already pro-
vide the operator a useful tool that may be very valuable.
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