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Deciphering the spectral collapse 
in two‑photon Rabi model
C. F. Lo

In this communication, based upon a squeezed‑state trial wave function, we have performed a simple 
variational study of the spectral collapse of the two‑photon Rabi model. Our analysis indicates that 
the light‑matter interaction and the spin‑flipping effectively constitute two competing impacts upon 
the radiation mode. Whilst the former tries to decrease the radiation mode frequency, the latter 
may counteract or reinforce it, contingent upon the state of the atomic system. The light–matter 
interaction appears to dominate the frequency modulation as its coupling strength goes beyond the 
critical value, leading to the emergence of the spectral collapse. However, at the critical coupling the 
dominance of the light–matter interaction is not complete, and incomplete spectral collapse appears. 
The extent of incomplete spectral collapse is found to depend upon the energy difference between the 
two atomic levels as well.

The quantum two-photon Rabi model, which is specified by the Hamiltonian (� = 1)

represents the simplest, yet nontrivial, model of the nonlinear two-photon coupling in light-matter interac-
tion. Owing to recent advancement in the quantum technology, the two-photon Rabi model can be realized in 
various experimental setups over a very wide range of coupling  strength1–11. In particular, both the trapped-ion 
 technology1–3 and the state-or-the-art circuit quantum electrodynamics  technology4,11 are anticipated to provide 
the most promising platforms for realizing the two-photon Rabi model. Theoretical studies have shown that the 
two-photon Rabi model exhibits a counter-intuitive feature, namely the “spectral collapse”, which occurs when 
the coupling strength ǫ is larger than half of the frequency ω of the radiation mode, i.e. ǫ > ω/212–24. That is, as 
the coupling strength increases, the spacing of the discrete eigenenergy levels of the two-photon Rabi model 
diminishes monotonically, leading to a continuum energy spectrum beyond the critical value. Unfortunately, 
both analytical analyses (like Braak’s G-function  method15–18) and numerical methods (such as numerical exact 
 diagonalization12,20 and those based upon spectral function and continued  fraction19) are unable to approach the 
collapse point satisfactorily. The characteristic behaviour of the eigenstates at the critical coupling thus remains 
as a mystery until recently.  Lo24 has rigorously shown that at the critical coupling some discrete energy levels 
exist below a continuum energy spectrum, and the number of these bound states available depends upon the 
energy difference ω0 between the two atomic levels. In other words, incomplete spectral collapse appears at the 
critical coupling.

Even though the aforementioned transition has been confirmed by various theoretical studies (both analytical 
and numerical), a simple physical picture providing intuitive insights for the underlying physics is still lacking. 
In particular, the existence of incomplete spectral collapse at the critical coupling remains as a mystery. Accord-
ingly, it is the aim of this communication to solve the mystery via an elementary quantum mechanics approach, 
namely a simple variational study based upon a squeezed-state trial wave function. In spite of its simplicity, 
the variational study is able to demonstrate rigorously how the transition occurs as the coupling strength goes 
beyond the critical value. Specifically, it is shown that beyond the critical value the variational estimate of the 
ground-state energy is not bounded below, implying that no normalisable eigenstate exists in the Hilbert space 
spanned by the photon number states. Our analysis indicates that the light-matter interaction effectively tries 
to decrease the radiation frequency whilst the spin-flipping may counteract or reinforce it, contingent upon the 
state of the atomic system. These two competing impacts clearly dictate the emergence of the spectral collapse. 
Likewise, the same approach can be applied to investigate the spectral collapse in other generalised Rabi models 
such as the intensity-depedent Rabi  model25, the two-mode two-photon Rabi  model26, and the two-photon 
Rabi model with a full quadratic  coupling27 for these models share the same SU(1,1) dynamical symmetry as 
the two-photon Rabi model.

(1)H = ω0Sz + ωa†a+ 2ǫ
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Two‑photon Rabi model
As in Ng et al.12, we first express the Hamiltonian of the two-photon Rabi model as

where

are the three generators of the Lie algebra SU(1,1)28. The Lie algebra SU(1,1) is defined by the commutation 
relations

and its Casimir operator C is given by

which has the eigenvalue k(k − 1) for a unitary irreducible representation (UIR). The parameter k is commonly 
known as the Bargmann index. For the UIR known as the positive discrete series D+(k)28, the eigenstates |m, k� 
of the compact operator K0 are defined by

for k > 0 and m = 0, 1, 2, 3, . . . , and the operators K+ and K− act as raising and lowering operators respectively, i.e.

The corresponding SU(1,1) generalized coherent states |α; k� are given by

It should be noted that in the single-mode bosonic realization of the Lie algebra SU(1,1) k can be equal to 14 or 
3
4

28. For k = 1
4 the basis states |m, k� consists of the even-parity states of the bosonic mode, whereas k = 3

4 refers to 
the subspace of the odd-parity states. For k = 1

4 , the coherent state |α; 1
4 � is simply the well-known single-mode 

squeezed vacuum state with the squeezing parameter α.
Then, to faciliate a better understanding of the two-photon Rabi model, we introduce the unitary 

 transformation12

to decouple the spin degree of freedom from the photon mode as follows:

Obviously, within the subspace of the Bargmann index k = 1
4 the transformed Hamiltonian is reduced to

whereas for k = 3
4 we obtain

In both cases each eigenstate is simply the product state |M�|φn� , where |M� is an eigenstate of the spin opera-
tor and |φn� the n-th eigenstate of the one-body bosonic Hamiltonian:
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for M = ± 1
2 . Hence, the Hilbert space of H̃ comprises four different subspaces, each of which is specified 

by the Bargmann index k and the spin quantum number M. It should be noted that in the special case of 
ω0 = 0 we can diagonalize the one-body Hamiltonian H̄ by the unitary SU(1,1) displacement transformation 
T = exp

{

− 1
2 tanh

−1 (2ǫ/ω)(K+ − K−)
}

 as  follows12:

where ω̃ = ω
√

1− (2ǫ/ω)2 . It is clear that the transformed radiation mode has a lower frequency. In other 
words, the light-matter interaction has the effect of generating a redshift to the radiation mode frequency. Since 
the function tanh−1 (2ǫ/ω) is well-defined for 2ǫ/ω < 1 only, it means that there is no unitary transformation 
which can diagonalize H̄ for 2ǫ/ω > 1 . Indeed, as pointed out by Ng et al.12, the system represents a simple har-
monic oscillator for 2ǫ/ω < 1 , becomes a free particle at the critical coupling, and finally turns into an inverted 
harmonic potential barrier for 2ǫ/ω > 1 . Such an abrupt change in the fundamental nature of the system thus 
leads to the collapse of a set of discrete eigenenergy levels into a continuum energy spectrum.

Squeezed‑state trial wave function
Now we perform a variational study of the ground state in each of the four subspaces. To begin with, being 
motivated by the aforementioned unitary SU(1,1) displacement transformation, we introduce a squeezed-state 
trial wave function which is given by

for some real variational parameter ξ . Then, by direct calculation of the expectation value of H̄ with respect to this 
trial wave function, we obtain an upper bound of the ground-state energy in each of the four subspaces as follows:

Apparently, for 2ǫ/ω < 1 the second term of E, i.e. the term with the braces, is positive definite for all values 
of ξ so that E approaches infinity as ξ → ±∞ for 

∣

∣

∣
Mω0sech

2k(ξ)

∣

∣

∣
< ω0/2 , regardless of k. Thus, a minimum 

value of E is guaranteed for each subspace. For ω0 = 0 , the minimum appears at ξ = − tanh−1 (2ǫ/ω) ≡ ξ0 . It 
is obvious that once the spin-flip term is turned on, the minimum moves above ξ0 for M = − 1

2 and below ξ0 for 
M = 1

2 , regardless of k. That is, the spin-flipping counteracts the light-matter interaction for M = − 1
2 whilst 

reinforcing it for M = 1
2 . On the other hand, for 2ǫ/ω > 1 the term with the braces decreases monotonically as 

ξ approaches −∞ , indicating that E is not bounded below. This is in agreement with the observations of Ng 
et al.12 that the numerical diagonalization of H̄ using the basis states |m, k� in each subspace does not give any 
converged results at all, implying the non-existence of bound states.

Nevertheless, at the critical coupling E is reduced to

For M = 1
2 , it is clear that E + ω/2 is positive definite for all values of ξ regardless of k and ω0 , and that E 

approaches its minimum value, i.e. −ω/2 , as ξ → −∞ . This clearly indicates the occurrence of spectral collapse 
for these two states. On the other hand, for M = − 1

2 and k = 1
4 , since E + ω/2 → 0− as ξ → −∞ and E → ∞ 

as ξ → ∞ , there must exist some finite ξ at which

In fact, the cubic equation has one real and two complex  roots29. Hence, according to Rolle’s  theorem29, 
there must be a minimum of E for some finite ξ , implying that we always have a normalizable ground state in 
this subspace. Likewise, for M = − 1

2 and k = 3
4 , we have E + ω/2 → 0+ as ξ → −∞ , E = ω − ω0/2 at ξ = 0 

and E → ∞ as ξ → ∞ so that the existence of a minimum of E at some finite ξ is contingent upon the value of 
ω0 . Specifically, if there exists some interval of finite values of ξ in which E + ω/2 < 0 , then a minimum can be 
found at some finite ξ ; otherwise there is none. The existence of such an interval obviously depends upon the 
value of ω0 . In other words, the final outcome depends upon the competing impacts of the light-matter interac-
tion and the spin-flipping. Simple numerical calculations show that a bound state emerges for ω0 � 2.1ω only. 
This vividly illustrates how the extent of incomplete spectral collapse at the critical coupling depends upon the 
energy difference between the two atomic levels.

Finally, in order to examine the accuracy of the variational estimates, we apply the shooting method (together 
with the fourth-order Runge–Kutta method) to numerically solve the time-independent Schrödinger equation 
in Eq. (23) of Ref.24 for both the ground state (corresponding to k = 1

4 and M = − 1
2 ) and first excited state (cor-

responding to k = 3
4 and M = − 1

2 ) at the critical coupling. In Table 1 both the (numerically) exact values and 
variational upper bounds of the eigenenergies of these two states for different values of the model parameter ω0 
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are tabulated. Evidently, not only are the upper bounds of the ground-state energy very tight but also those of 
the first-excited-state energy are satisfactory. In addition, the exact calculations find that the emergence of the 
first excited state occurs at ω0 = 1.7ω , which is fairly close to the variational estimate, i.e. ω0 = 2.1ω.

Conclusion
In this communication, by performing a simple variational study of the ground states in the four subspaces of 
the two-photon Rabi model, we have succeeded in demonstrating how the spectral collapse occurs as the light-
matter coupling strength goes beyond the critical value. Based upon the squeezed-state trial wave function, our 
analysis indicates that the light-matter interaction and the spin-flipping effectively constitute two competing 
impacts upon the radiation mode; the former tries to decrease the radiation mode frequency whilst the latter 
may counteract or reinforce it, contingent upon the state of the atomic system. It is apparent that the light–matter 
interaction appears to dominate the frequency modulation as its coupling strength goes beyond the critical value, 
and this results in the emergence of the spectral collapse. However, at the critical coupling the dominance of 
the light–matter interaction is not complete, and incomplete spectral collapse appears. The extent of incomplete 
spectral collapse is also found to depend upon the energy difference between the two atomic levels, as illustrated 
by numerical examples. Furthermore, we believe that the same approach can be applied to investigate the spectral 
collapse of the intensity-dependent Rabi  model25, the two-mode two-photon Rabi  model26, and the two-photon 
Rabi model with a full quadratic  coupling27 for these models share the same SU(1,1) dynamical symmetry as 
the two-photon Rabi model.
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