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The paradox of retained genetic 
diversity of Hippocampus guttulatus 
in the face of demographic decline
Rupert Stacy1, Jorge Palma1,2, Miguel Correia1,2, Anthony B. Wilson3,4, 
José Pedro Andrade1,2 & Rita Castilho1,2*

Genetic diversity is the raw foundation for evolutionary potential. When genetic diversity is 
significantly reduced, the risk of extinction is heightened considerably. The long-snouted seahorse 
(Hippocampus guttulatus) is one of two seahorse species occurring in the North-East Atlantic. The 
population living in the Ria Formosa (South Portugal) declined dramatically between 2001 and 2008, 
prompting fears of greatly reduced genetic diversity and reduced effective population size, hallmarks 
of a genetic bottleneck. This study tests these hypotheses using samples from eight microsatellite loci 
taken from 2001 and 2013, on either side of the 2008 decline. The data suggest that the population 
has not lost its genetic diversity, and a genetic bottleneck was not detectable. However, overall 
relatedness increased between 2001 to 2013, leading to questions of future inbreeding. The effective 
population size has seemingly increased close to the threshold necessary for the population to 
retain its evolutionary potential, but whether these results have been affected by sample size is 
not clear. Several explanations are discussed for these unexpected results, such as gene flow, local 
decline due to dispersal to other areas of the Ria Formosa, and the potential that the duration of the 
demographic decline too short to record changes in the genetic diversity. Given the results presented 
here and recent evidence of a second population decline, the precise estimation of both gene flow and 
effective population size via more extensive genetic screening will be critical to effective population 
management.

The loss of genetic diversity is a primary concern in conservation biology and should be at the forefront of 
strategy to promote biodiversity conservation  management1,2. It was once thought that marine fishes were too 
abundant and fecund to be faced with threats from  overexploitation3. Fishing was a right, oceans were open 
access, and baseline data were, more or less, non-existent. More than a century of literature and observations later, 
it is now recognized that the paradigm of inexhaustible marine fishes and exploitation is unequivocally  false4–6. 
Unfortunately, while the burden of proof often falls to scientists to demonstrate that anthropogenic activity is 
the root cause of environmental degradation, the lack of baseline data for comparison often hampers inferences 
on  impact7. As a result, many marine environments have been subjected to degradation in the form of pollution, 
overexploitation and habitat loss. While the paradigm of inexhaustible ocean resources has eroded, many ongoing 
discussions continue in the field of conservation biology. One of which, relevant here, was proposed by  Lande8, 
who suggested that species are often driven to extinction before genetic consequences have time to take effect. 
However, a bulk of empirical evidence indicates the  contrary9, and more recently, reduced genetic diversity has 
been documented in threatened  species10. Quantifying gene flow, metapopulation structure and demographic 
and stochastic events are necessary when assessing whether a reduction in population size is likely to lead to a 
reduction in genetic  diversity11.

Interestingly, just as there has been contention about the effects of genetic changes on threatened popula-
tions, a similar debate has been held over inbreeding in the wild. Despite many questioning the likelihood that 
inbreeding depression can lead to declines in wild  populations12–14 that ca. 90% of studies have shown reduced 
fitness in inbred populations compared with non-inbred  individuals15. For example, inbreeding depression was 
reported in 99 species of birds in which failed hatching rate increased with genetically similar  parents16, as well 
as in fish, where inbred populations of Poeciliopsis monacha suffered from spinal curvature, deformation and 
reduced resistance to low  oxygen17.
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While inbreeding depression may not inevitably lead to population decline, its interaction with basic param-
eters of a population’s viability, such as population growth rate and variation in population size, may influence 
population persistence. A population may experience positive growth and reach its carrying capacity, but when 
hampered with sequential levels of inbreeding, may reach that carrying capacity at a slower rate. Should a popula-
tion reach a relatively high level of inbreeding, the negative effect of inbreeding depression may cause population 
growth to become negative, setting it on a path to possible  extinction18. This is why maintaining genetic diversity 
in a population is so important. If evolutionary potential reflects the capacity of a population to adapt to environ-
mental change, then genetic diversity is the raw material that enables natural selection to select for adaptations 
that are beneficial for dealing with those environmental  changes18,19. Additionally, population genetic theory 
predicts that populations with small effective population size (Ne) lose genetic diversity faster than populations 
with a larger Ne due to genetic  drift20. Thus, genetic factors are important to consider when evaluating extinction 
risks because threatened species often have smaller and/or declining population  sizes21. In such populations, the 
loss of genetic diversity and an increased probability of inbreeding is  inevitable18.

Seahorses are marine fish with relatively fast growth rates, which mature at young ages, and have short gen-
eration  times22, suggesting that seahorse populations may rapidly recover from population  declines23. However, 
their low mobility, monogamous mating pattern, relatively few offspring, mate fidelity and elaborate parental 
 care22 could increase their vulnerability.

Hippocampus guttulatus Cuvier, 1829, is one of two seahorse species occurring in the north-east Atlantic 
Ocean from the North African coast to the coast of Shetland Isles, into the North Sea and in the United Kingdom, 
the Mediterranean and the Black Sea. Along with the sympatric H. hippocampus, both species are classified as 
‘Data deficient’ at global and regional European levels and near-threatened within the Mediterranean, according 
to regional assessments from the  IUCN24,25. The long-snouted seahorse displays a preference for shallow, sheltered 
and complex coastal habitats, with high seagrass density and extensive vegetation cover that provide holdfasts 
and abundant  food26,27,37. It reaches its highest abundances in marine  lagoons27–29. The species’ dependence on 
shallow and protected environments that are physically isolated from each other potentially limits its dispersal 
across unsuitable habitat stretches.

DNA sequence variation in H. guttulatus across its range is low (1.23% and 1.49% in mitochondrial 
cytochrome b and control region, respectively)30. Previous genetic differentiation assessments revealed the exist-
ence of five cryptic lineages across the species distributional  range31,32: Parapatric North and South European 
Atlantic lineages (including Portugal), which meet in Southwest France, where they coexist in sympatry; two 
lineages in the Mediterranean, associated with lagoon and marine habitats; and a Black Sea  lineage31,32. More 
regional studies in the NW Iberian Peninsula based on 13 microsatellite loci found no evidence of reproductive 
 isolation33. Recent work on the Mediterranean marine lagoons of Taranto in southern Italy and Thau in the Gulf 
of Lion, France, based on eight microsatellite loci and a mitochondrial DNA region (cytochrome b) revealed 
private mitochondrial haplotypes and unique genotypic profiles that make these populations distinct from marine 
coastal  locations34. The populations’ low genetic diversities in those two lagoons are consistent with a severe or 
long  bottleneck34.

The population of H. guttulatus living in the Ria Formosa, South Portugal (Fig. 2), was once noted as having 
particularly high densities, an order of magnitude higher than similar seahorse surveys in other locations of 
this species’ geographic  distribution26,35 Woodall et al.30. A significant reduction in density from 0.09 n/m−2 in 
2001/2002 to 0.007 n/m−2 in 2008/2009, representing a 94% decrease, suggested a severe decline of this popula-
tion. A subsequent rebound to 0.053 n/m-2 in 2010–2013, no significant differences between the 2001/2002 and 
the 2010/2013 (2012 in Fig. 1) population surveys, and a positive correlation between density and holdfast avail-
ability could indicate an extreme population fluctuation rather than a consistent downward  decline36. However, 
more recent surveys suggest similar densities to those detected in 2008/2009 survey, indicating a relapse and an 
overall decline over ~ 20-year  period37 (Fig. 1).

While the strong decline in 2008 has been attributed to habitat  loss36–38, we cannot discard the role of other 
variables such as warmer temperatures, food availability or abundance of  predators36. The decline in 2018 is 
most probably due to illegal fishing (J.Palma, person.comm.). Unfortunately there are no data available on the 
possible effect of these variations in density over this short temporal window on population dynamics of the 
species except that more recently only one large class size was observed (J.Palma, pers. obser.).

Extinction rates are estimated to be three to eight times higher for populations than for  species39. As genetic 
diversity provides the raw foundation for adaptation and evolutionary potential, acquiring estimates of genetic 
diversity of the Ria Formosa’s H. guttulatus population in the light of extreme fluctuation and continued anthro-
pogenic environmental change would provide critical insights into patterns of demographic change in contem-
porary time, and suggest potential management responses.

The nature and severity of the threats faced by the H. guttulatus population in the Ria Formosa and declining 
population trends may lead to the suspicion that this population is facing a demographic bottleneck that may 
induce genetic erosion. Using two genetic snapshots of samples taken 12 years apart, this study aims to examine 
the effects of population fluctuations as inferred by census data on the genetic diversity of the Ria Formosa H. 
guttulatus population. Individuals were sampled in 2001 and 2013, and for both years estimates of observed and 
expected heterozygosity, allelic richness, private allele richness, effective population size and relatedness were 
calculated for comparison. This study hypothesizes that the severe population decline observed in the 2008 survey 
would likely reduce the effective population size of the following generations and contribute to a reduction in 
the genetic diversity of H. guttulatus.
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Figure 1.  Demographic changes of Ria Formosa’s H. guttulatus. Data  from37, and J. Palma (pers. comm.).

Figure 2.  The Ria Formosa barrier island system, South Portugal. The black box on the European map 
represents the sampling region. The Ria Formosa barrier island system, South Portugal. The black box on the 
European map represents the sampling region. Raw map was downloaded from https:// freev ector maps. com/ 
and edited in Adobe Illustrator CC2019 (version 23.0.1) (https:// www. adobe. com/ produ cts/ illus trator. html).

https://freevectormaps.com/
https://www.adobe.com/products/illustrator.html
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Material and methods
Sampling. Seahorses were individually sampled in 2001 (N = 76) and 2013 (N = 258) from Ria Formosa 
(Fig. 2) by scuba diving. When a seahorse was found, two skin filaments (4 mm on average) were clipped using 
sharp scissors, one millimetre above the bone insertion of the filament. The clipped filaments were placed in 
15 ml Falcon tubes filled with seawater until the end of the underwater sampling process and transferred to an 
Eppendorf tube filled with 95% ethanol and kept in the freezer prior to DNA analysis. This non-lethal method 
does not impact the health and welfare of the animal, as skin filaments rapidly  regenerate40,41. The sampling pro-
cedures comply with the guidelines of the European Union Council (2010/63/EU). All protocols were approved 
by the ethical committee ORBEA of CCMar / University of Algarve and performed under a ‘‘Group-C” license 
from the Direcção-Geral de Veterinária, Ministério da Agricultura, do Desenvolvimento Rural e das Pescas, 
Portugal.

DNA extraction, amplification, fragment analysis, genotyping and pre-processing. DNA from 
filament samples was extracted by standard phenol–chloroform protocol, according to  Sambrook42. Following 
DNA extraction, amplification of 12 highly polymorphic microsatellite loci (Electronic supplement S1) isolated 
for H. guttulatus (or obtained by cross-amplification in H. hippocampus) was performed as described in Pardo 
et al.43 and van de Vliet et al.44. PCR reactions with labelled primers were performed using standard procedures, 
and amplified products were run on an ABI 3130XL (Applied Biosystems) automated sequencer. Genotype 
scoring was performed using STRand (https:// vgl. ucdav is. edu/ infor matics/ strand. php). It was assumed that a 
single panmictic population was being  assessed31, and downstream analyses of the 2013 sample pooled all loca-
tions into a single year population. To filter for missing data, the missingno function of the  poppr45 R-package46 
was used, removing loci with more than 25%, and individuals with more than 10% missing data, respectively. 
Genotyping errors and null alleles were estimated using calculations by Summers and  Amos47, Dempster et al.48, 
 Brookfield49, and Chakraborty et al.50.

Genetic diversity. Calculations of observed (Ho) and expected (He) heterozygosity, allelic richness (Ar) and 
the inbreeding coefficient (Gis) were made for each locus and across all loci to assess changes in genetic diversity. 
These statistics were computed using diveRsity package in  R46,51. He differences between 2001 and 2013 were 
calculated using a Monte Carlo exact test based on 10,000 permutations from  Adegenet52. Allelic richness was 
calculated with a 1000 re-sampling rarefaction technique with replacement using the smallest sample size in the 
data set to standardise for differing sample sizes (i.e. 2001 sample with 33 successfully genotyped individuals). A 
measure of private allelic richness (PAr) was also calculated by HP-Rare 1.153.

Relatedness analysis. Relationships between individuals from the two sampling years were estimated with 
the program ML-RELATE54. ML-RELATE calculates coefficients of relatedness (r) and putative relationships 
among individuals (e.g., unrelated, siblings, parent/offspring) using a maximum likelihood approach. Random 
genotype simulations were performed 1000 times for likelihood ratio tests and identified plausible relationships 
(full-sibling, half-sibling, parent-offspring, unrelated) based on a 99% confidence interval  criterion54. Estimates 
of the percentage of sample pairs identified as full-siblings and half-siblings were calculated. ML-RELATE can 
accommodate the presence of null alleles in the estimates via a Monte-Carlo randomization  test55 and the U-sta-
tistic of  Rousset56. The test is one-tailed, i.e. it estimates the probability of obtaining the observed U statistic or 
greater value under Hardy–Weinberg conditions. If null alleles are present, ML-RELATE will use a maximum 
likelihood estimate of their frequency in all calculations which is considered to be more accurate than other 
 estimators47,49,50,54.

Inbreeding. Estimates of inbreeding depression often rely on limited datasets that can be affected by the pres-
ence of null alleles, which have been shown to induce an upward bias in inbreeding coefficient (Fis)  estimates57. 
This is especially true when sampling in small geographical areas in which inbred or closely related individuals 
 occur58,59, as is the case for H. guttulatus from Ria Formosa. Therefore, in this study, simultaneous estimation 
of the inbreeding coefficient, null allele frequencies and random genotyping failures were conducted using the 
software INEST v2.259. This software implements a Bayesian approach comparing different combinations of 
parameters (f = inbreeding, n = null alleles, b = genotype failures) and chooses the model with the lowest devi-
ance information criterion (DIC) as the best fit. MCMC (Monte Carlo Markov Chain) used 500,000 cycles and 
a burn-in of 50,000, retaining parameters every 100th cycle.

Genetic demography. To explore the possibility of a demographic bottleneck in Ria Formosa seahorses, 
two tests were performed. First, we used a test for heterozygosity  excess60 implemented in INEST v2.259, under 
the null expectation that a population under a mutation-drift equilibrium should have an equal probability of 
exhibiting a heterozygosity excess or deficiency at a given locus. Populations that have experienced a recent 
reduction in size typically exhibit fewer alleles and lower heterozygosity. However, allelic diversity declines at 
a faster rate than heterozygosity due to random genetic drift, which eliminates lower frequency alleles. Thus, 
this test contrasts the expected heterozygosity assuming Hardy–Weinberg equilibrium with expected heterozy-
gosity under mutation-drift. The latter is more sensitive to declines in low-frequency alleles that are expected 
when populations become reduced in size. A bottleneck is inferred when heterozygosity under Hardy–Weinberg 
equilibrium exceeds heterozygosity under mutation-drift60,61. This analysis was run using a two-phase mutation 
model (TPM) with the proportions of multi-step mutations (pg) set as 0.22 and the mean size of multi-step muta-
tions (Dg) as 3.1 as recommended by  Peery61. Stepwise mutation (SMM) and infinite allele models (IAM) were 

https://vgl.ucdavis.edu/informatics/strand.php
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also carried out for comparison, as these represent the extremes of mutation models. The Wilcoxon signed-rank 
test was applied to test for the significance of heterozygosity excess for both mutation models using  106 permuta-
tions to approximate the exact value, as well as combined z-scores62.

Second, a mode shift test was used to determine whether a shift has occurred in allele frequency classes. 
This test assumes that stable populations have a peak in allele numbers at the lowest frequency class, display-
ing an L-shaped distribution. Population bottlenecks tend to distort this distribution to the right, as the loss of 
alleles results in a rightward skew in the allelic  distribution62. To test if the data conformed to the L-shaped null 
hypothesis of a stable population, Bottleneck v2.2.0163 was used.

Effective population size. Estimates of contemporary effective population size (Ne) may be obtained from 
single or temporal  samples64. In this study, the former approach was used, because the samples from 2001 and 
2013 covered a restricted time interval and there were no age estimates from the sampled  individuals65,66. Ne was 
assessed from levels of linkage-disequilibrium (LD)67 with NeEstimator v2.168. Monogamy was  assumed69 and 
95% confidence intervals of Ne were estimated using the jackknife‐across samples  method70. Sample sizes are 
an important consideration when estimating Ne, and small sample sizes can result in considerable  biases66. Due 
to the sample size disparity between the 2001 and 2013 samples, genetic data for both years were rarefied by 
generating 1000 replicate files with 30 individuals in each. Alleles with low frequencies (< 0.02) were omitted to 
avoid bias because their inclusion can bias estimates of Ne

68. Population-specific Ne was calculated by taking the 
harmonic mean of LDNe estimates from each year the population was sampled. As 95% confidence intervals of 
Ne based on the LD often included infinity, only 95% lower bounds are reported, as these are considered valuable 
indicators of changes in population  size64.

Results
A total of 434 individuals were screened across 12 loci (https:// tinyu rl. com/ ya5tg k6a; Annex B). Four loci (Hgut9, 
USC1, USC6 and USC7) and 135 genotypes were removed after filtering at 25% and 10% of missing data, respec-
tively, resulting in 291 informative individuals across eight loci, 33 individuals in 2001 and 258 in 2013. Estimated 
null allele frequencies averaged across loci were low (< 9%) for both years, except for Hhip3 locus from the 2001 
sample, ranging between 0.147 and 0.198 across all four methods. Samples from 2001 show a higher frequency 
of null alleles (< 9%) than in 2013 (< 3%), possibly due to the poor preservation of the older samples.

Between-year comparative genetic diversity. The number of alleles per locus ranged from 6 to 28 in 
2001 and from 12 to 51 in 2013 (Table 1), with a total of 150 and 292 alleles of variable frequency, respectively 
(Fig. 3). Average observed (Ho) and expected (He) heterozygosity was over 0.72, showing an overall increase in 
time (Table 1). The increase in He between 2001 and 2013 was supported by a significant Fis, which measures 
the reduction of heterozygosity of a population due to inbreeding via a Monte Carlo-based test (2001: 0.142, 95% 
CI:0.102–0.190; 2013: 0.049, 95% CI:0.031–0.067). Allelic richness averaged across loci was also significantly dif-
ferent between years (paired t-test; p < 0.05), increasing from 15.8 in 2001 to 20.3 in 2013 (Table 1), and average 
PAr increased from 4.1 to 6.5 during this period (Table 1), despite a decrease at the Hgut6 locus from 8 to 4. The 
average inbreeding coefficient across loci declined from 0.16 in 2001 to 0.05 in 2013 (Table 1).

Relatedness analysis. The analysis of genetic relationships between individuals, with or without the 
accommodation for the presence of null alleles, did not change the results significantly (p > 0.05). Inference of 
all 528 pairwise relationships for 33 individuals from 2001 identified 22 (4%) half-sibling pairs. Of the 31,878 
pairwise relationships between the 258 individuals collected in 2013, ML RELATE classified 2482 (8%) as half-
sibling pairs and 62 (0.2%) as full-sibling pairs.

Inbreeding. The Bayesian approach of simultaneous examination of null alleles and inbreeding indicated 
the best model for 2001, according to DIC values, to include only the inbreeding (f) parameter (Table 2). How-

Table 1.  Diversity indices for the two sampling periods (2001 and 2013). Na number of alleles; Ar allele 
richness rarefied to the smaller N; PAr private allelic richness (unrarified); Ho observed heterozygosity; He 
expected heterozygosity; Gis inbreeding coefficient.

Locus

Na Ar = 30 PAr Ho He Gis

2001 2013 2001 2013 2001 2013 2001 2013 2001 2013 2001 2013

Hgut4 27 47 23 28 5 7 0.88 0.93 0.97 0.97 0.09 0.03

Hgut6 28 42 23 23 8 4 0.85 0.92 0.96 0.96 0.12 0.04

Hhip1 20 43 18 24 4 10 0.91 0.92 0.95 0.96 0.04 0.04

Hhip3 16 44 14 22 3 10 0.61 0.89 0.92 0.95 0.34 0.06

Hhip4 21 30 18 21 3 4 0.82 0.95 0.95 0.95 0.14 0.00

Hhip9 24 51 19 26 6 10 0.79 0.85 0.94 0.96 0.16 0.12

USC5 8 23 7 11 1 5 0.64 0.76 0.80 0.82 0.20 0.08

USC9 6 12 5 6 1 2 0.27 0.41 0.35 0.42 0.22 0.04

Average 19 37 16 20 4 6 0.72 0.83 0.85 0.87 0.16 0.05

https://tinyurl.com/ya5tgk6a
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ever, the difference in DIC values between the model incorporating only inbreeding and the model containing 
null alleles (fn ΔDIC = 0.4) is modest, as DIC values are as large as 21,000. The most parsimonious model (f) 
has Avg (Fi) values of 0.14, similar, but slightly lower than Gis estimates (Table 1), whereas, the model includ-
ing null alleles (fn) results in Avg (Fi) of 0.09. Regardless of the model choice, 95% HPD values of both these 
models do not include zero, indicating low to mild inbreeding. Using the 2013 data, the best fit model includes 
inbreeding and random genotyping failures (fb). However, this fit is similar, and only slightly better than the f, 
fn and fnb models, as all ΔDIC values are ≤ 1.2 (Table 2). Such a small degree of improvement in DIC values 
from the full model (fnb) to the model with the lowest DIC (fb) (ΔDIC = 1.2) suggests that the most appropriate 
model includes all parameters. The mean inbreeding coefficient of the optimal model was low (Avg (Fi) = 0.053; 
95% HPD = 0.0412–0.066) and the 95% HPD does not include zero, consistent with minimal inbreeding in the 
sample.

Figure 3.  Allele frequencies of eight microsatellite loci in H. guttulatus from Ria Formosa.

Table 2.  INEST best Bayesian model to estimate inbreeding coefficients adjusted for possible null alleles 
for 2001 and 2013 samples. Models abbreviations: f inbreeding, n null alleles, b genotyping errors, fnb 
combinations of models f, n, and b, and null the null model; DIC Deviance Information Criterion, Δ DIC 
change in DIC value between models, Avg (Fi) sample mean inbreeding coefficient, 95% HPD high and low 
posterior density interval.

Model

2001 2013

95% HPDDIC Δ DIC Avg (Fi) 95% HPD Model DIC ΔDIC Avg (Fi)

f 21,474.7 0.0 0.141 0.0941–0.2001 fb 21,474.8 0.0 0.053 0.0417–0.0662

fb 21,474.8 0.1 0.142 0.0916–0.1996 f 21,474.9 0.1 0.053 0.0409–0.0657

fn 21,475.2 0.4 0.085 0.0004–0.1641 fn 21,475.5 0.6 0.034 0.0102–0.0556

fnb 21,478.2 3.5 0.084 0.0000–0.1607 fnb 21,476.0 1.2 0.034 0.0108–0.0557

nb 21,482.2 7.4 NA NA n 21,484.9 10.1 NA NA

n 21,482.3 7.5 NA NA nb 21,485.2 10.4 NA NA

Null 21,615.6 140.9 NA NA Null 21,615.6 140.8 NA NA

b 21,617.3 142.6 NA NA b 21,616.9 142.0 NA NA
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Genetic demography. Overall, both genetic bottleneck analyses do not reflect the drastic decrease observed 
in the census data. From the eight loci examined, the results from the TPM were not significant (p > 0.05) for het-
erozygosity excess for either the Wilcoxon signed-rank test (p = 0.96) or the z-test for combined z-scores (p = 1). 
Similar non-significant results (p > 0.05) were obtained for SMM and IAM, which represent opposite ends of the 
mutation spectrum (SMM Wilcoxon’s test p = 0.99 and z-test p = 1; IAM Wilcoxon’s test p = 1 and z-test p = 1). All 
loci except two (Hgut4 and Hhip4) showed a deficiency of heterozygotes. Similarly, no distortion to the typically 
L-shaped distribution of allele frequencies was found (98% of alleles occurring in < 0.1 frequency class), consist-
ent with a stable population size.

Effective population size. The results from both 2001 and 2013 datasets revealed Ne values of the same 
order of magnitude (Fig. 4a,b) for both tested methods. Both approaches (single point estimate with true sample 
size values, and point estimates using randomly generated files with rarefied sample sizes) provided larger esti-
mates for the 2013 sample. However, the 95% confidence intervals for population-specific Ne values overlapped, 
and upper confidence limits were indeterminate (Fig. 4a).

Discussion
The initial hypothesis for this investigation was based on the premise that the drastic decline in census popula-
tion numbers reported between 2001 and 2008 would be reflected in reduced genetic diversity in subsequent 
generations. Based on this prediction, lower genetic diversity was expected in the 2013 sample. In contrast to 
this expectation, the H. guttulatus population of the Ria Formosa showed an increasing level of genetic diver-
sity between 2001 and 2013. Only the number of private alleles at one microsatellite locus (Hgut6) showed any 
substantial decrease. Over this same period, although Ne has risen and Fis has seemingly declined, no evidence 
was found to support the occurrence of a genetic bottleneck, apart from the observation that the overall related-
ness has increased. Before discussing the implications of these findings, it is important to highlight some of the 
caveats of this study.

Firstly, it must be stressed that the sample size disparity between both years may have, to some extent, 
influenced the results presented here. Some diversity estimates are more prone to biases due to sample size than 

Figure 4.  Effective population size (Ne) estimates determined using the linkage disequilibrium method with a 
minimum allele frequency of 0.02. (a) Point estimates for 2001 (N = 33) and 2013 (N = 258). Error bars indicate 
95% confidence intervals estimated by jackknife estimates, where those running off the chart include infinity. 
Red dots represent point estimates. (b) Lower bound values of the confidence intervals for 2001 (N = 30) 
[the reduction from 33 to 30 is to allow resampling] and 2013 (N = 33) from 1000 re-sampled files. Red dots 
represent harmonic means of all the point estimates based on 1000 replicates.
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others, making them more useful in the context of a comparison between years. For instance, while the number of 
alleles per locus in a small sample is greatly biased relative to an estimate based on a large sample size, this can be 
overcome with rarefaction, which improves the ability to compare between samples differing in  size71. Secondly, 
the genetic diversity of the 2001 sample was derived from a higher number of sites (15) than that sampled in 2013 
(6)26,36. Thirdly, the presence of null alleles in the dataset may have affected the study, particularly as cross-species 
amplification was  used72. While the frequency of null alleles in the 2001 dataset was higher than that inferred 
for 2013, likely due to poor preservation, no evidence of null alleles in previous studies has been detected using 
these  markers43,44. Thus, we found no reason to alter allele frequencies or exclude loci, except when using INEST, 
in cases in which the inclusion of null alleles or genotyping errors was found to upwardly bias Fis estimates. 
Finally, it is important to note that neutral microsatellites, particularly a limited number of loci, do not represent 
genome-wide diversity, and may fail to detect changes in the genetic diversity of loci experiencing  selection73.

Genetic diversity. Genetic diversity indices were generally high and showed an overall increase between 
2001 and 2013, rejecting our initial hypothesis of a reduction in genetic diversity due to census population 
declines over the study period. The genetic diversity observed in our study averaged across loci (Na: 19/37; 
Ar(30): 16/20; He: 0.85/0.87 for 2001 and 2013, respectively) is higher than that detected in Ria Formosa samples 
from 2004/2005 with values averaged across five sampling sites of He: 0.37; Ho: 0.3674. Although these differences 
may be due in part to the use of different markers, Hgut4 was used in both studies, and as both studies employed 
similarly large sample sizes, this is unlikely to be a sampling artefact. When all available demographic and 
genetic diversity results are taken into consideration (Table 3), evidence for an association between population 
reductions based on census data and reductions in genetic diversity as estimated by microsatellites is equivocal. 
In other similar lagoonal environments in the Mediterranean, Taranto and Thau, expected heterozygosities at 
eight microsatellites loci are very low (N: 40, He: 0.31 and N: 8, He: 0.39, respectively)34. Other coastal locations 
in the Mediterranean typically display low expected heterozygosities ranging from 0.30 to 0.54 with sample sizes 
from 2 to 17 see Table 334. In H. guttulatus from the Galician coasts in NW Spain, 32 individuals scored for 12 
microsatellite loci, yielded He of 0.50043. Another study with samples from the same area, but from a consider-
ably larger number of individuals, 255 and 13 microsatellite loci, resulted in overall expected heterozygosities 
(observed heterozygosities values not reported) lower than 0.62033. However, common to our study are four loci, 
Hgut4, Hgut6, Hgu-USC5 and Hgu-USC9. Except Hgu-USC9 which has very low heterozygosity (ranging from 
0.29 to 0.40) the remaining loci display high expected heterozygosities (ranging from 0.77 to 0.97), in line with 
the present study (Hgut4, Hgut6, Hgu-USC5 heterozygosities ranging from 0.80 to 0.97, and Hgu-USC9 from 
0.35 to 0.40). Therefore, in spite of the severe population decline, Ria Formosa displays higher heterozygosities 
than coastal or lagoon populations elsewhere in Europe.

The apparent reduction in He and Ho between 2001 and 2004/200574 samples is perplexing, considering that 
this time interval is only equivalent to approximately two  generations23. A possible scenario is that gene flow 
into the Ria Formosa has enabled some level of genetic diversity to permeate back into the population, a pat-
tern supported by a more extensive temporal survey of seahorses in the area (Wilson et al., unpublished data). 
This hypothesis is also supported by studies that have shown that South Iberian populations display low levels 
of microsatellite genetic  differentiation74 and are panmictic with respect to 286  SNPs31. Despite suggestions that 
seahorses are capable of assisted long-distance translocations, likely through rafting on floating debris, carried 
by oceanic and coastal  currents75, that this is implausible in the Ria Formosa, where H. guttulatus have high 
site-fidelity and very limited dispersal  capacity38, and the lack of intermediate required habitat does not facilitate 
seahorse dispersal. The panmictic nature of the South Iberian populations remains to be fully explained even 
though a commonly cited rule of thumb is that one migrant per generation is needed to sufficiently minimise 
the loss of polymorphism and heterozygosity within  subpopulations18,76,77.

Relatedness and inbreeding. While the present results are inconsistent with a genetic bottleneck related 
to the inferred population decline, heterozygote deficiency was noted at six out of the eight loci, which could 
be a result of recent population  expansion60, corroborating other  findings36,37. It is possible that the doubling of 
related individuals between 2001 and 2013 is an artefact of the demographic decline inferred in 2008. With fewer 
individuals in the period after the population reduction, the likelihood of sampling related individuals would be 
expected to be higher, due to the remaining individuals contributing to the recovery reported by 2012. Neverthe-

Table 3.  Summary results from previously published genetic and demographic data from Ria Formosa. 
N number of individuals analysed, genetic diversity: observed heterozygosity, for microsatellite data, and 
haplotype diversity for mtDNA data.

Year Demography Marker N
Allele numbers 
(average)

Genetic 
diversity Fis

Bottleneck 
detected

Reference for 
genetic data

2001 High Microsatellites 76 19 0.72 0.16 No This study

2004/2005 High mtDNA 29 11 0.72–0.88 0.032–0.102 Not tested Woodall74

2008/2009 Low Microsatellites 50 7.6 0.36 0.04 Inferred Woodall et al.32

2012 High No data

2013 High SNP 38 No data No data − 0.014 Not tested Riquet et al.31

2013 Low Microsatellites 258 37 0.83 0.05 No This study
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less, both our investigation and Woodall’s74study used the heterozygosity excess  method60, which is expected to 
have more power to detect recent population bottlenecks relative to the M-ratio  statistic78. With this in mind, 
we suggest that H. guttulatus in the Ria Formosa may be naturally prone to population fluctuations that may 
be exacerbated by anthropogenic activity, e.g. clam farming, fisheries,  dredging79,80. Seahorse populations are 
vulnerable to  fluctuations81–83, which makes the conservation of their preferred habitats  critical26,41 and of great 
urgency if disturbances and habitat degradation are identified.

Effective population size. Both 2001 and 2013 Ne point estimates were negative, indicating that the results 
can be entirely explained by sampling error rather than  drift68. This situation usually occurs when Ne is large, 
which may suggest that the Ria Formosa population was substantial during both sampling periods. Linkage 
disequilibrium due to drift is low in large populations and difficult to detect, rendering the estimation of Ne in 
large populations (i.e., Ne > 1,000) challenging, particularly with the small number of markers employed in this 
 study64. More comprehensive genetic screening via high-throughput sequencing may offer an opportunity to 
overcome this limitation, and more precisely estimate Ne

64. Reporting the lower limits of these estimates remains 
valuable as an indicator of changes in population  size64. Here, lower bound Ne means remained relatively stable, 
with a slight increase, less than the increases inferred from harmonic means and point estimates. The interpreta-
tion of these Ne estimates must be made with  caution84 because there is only weak genetic differentiation between 
the Ria Formosa and other South Iberian  subpopulations31,74. This implies a level of historical and/or contempo-
rary gene flow, which seems improbable given the species’ life-history traits and habitat preferences. Neverthe-
less, Ne estimates may be inflated and/or reflect Ne of a larger metapopulation rather than the local population. 
While this cannot be ruled out, even with an apparent increase in Ne, the estimates of harmonic means reported 
here centre around 2000 individuals, and 50% of the lower bounds are below 500 (Fig. 4b). A commonly used 
guideline employed in a conservation context is the 50/500 Ne rule of  thumb85, although more recently, this has 
been revised upward to 100/1000 Ne

86,87. Ne ≥ 100 thought to be required to avoid inbreeding depression and 
limit the loss of total fitness to 10% and Ne ≥ 1000 is suggested in order to retain evolutionary potential in per-
petuity. Our lower bound Ne estimates are worryingly close to levels thought to be required for the maintenance 
of long-term evolutionary potential (500/1000 Ne), particularly in light of unpublished data that has shown that 
another severe decline has taken place, indicating an overall decline over the last 20 years.

Overall, based on the results presented here and in previous literature, it seems that the H. guttulatus popu-
lation of the Ria Formosa has been able to retain relatively high genetic diversity despite evidence of a recent 
demographic decline. Perhaps the decline reported in 2008 was not sustained for long enough for drift to have had 
an effect and a sufficient number of individuals were left to retain high genetic diversity. According to empirical 
observations e.g. kit  foxes88 and  simulations89, changes in genetic diversity following a decline in population size 
may take a number of generations to become obvious, and that the short time span of our study was not enough 
to capture the full range of genetic parameter fluctuations.

Future studies using an increased number of loci compared to those used here (such as Single Nucleotide 
Polymorphisms, SNPs) could help to test this prediction. Alternatively, a recently published survey of available 
seahorse microsatellites identified 18 highly polymorphic loci for H. guttulatus, which would provide a more 
extensive panel of markers for the analysis of neutral  diversity90. If SNPs or more microsatellite loci reveal declines 
in genome-wide genetic diversity, Fis will become extremely critical, as small differences in Fis values can signifi-
cantly alter extinction  risk18,91. Furthermore, the estimation of Ne for the broader region may highlight if the Ne 
value reported here is inflated through gene flow. Considering the lower bound estimates of Ne, the precautionary 
principle must be taken. We recommend that active management actions for this population should be continued 
and enhanced to protect the diversity and numbers indicated here.

Coastal lagoons such Ria Formosa rank among the most productive ecosystems on Earth, and provide a 
wide range of ecosystem services and resources. Anthropogenic impacts are escalating in many coastal lagoons 
worldwide because of increasing population growth and associated land-use alteration in adjoining coastal 
 watersheds92. Among the main stressors affecting coastal lagoons are habitat loss and alteration; eutrophication; 
sewage and organic wastes; fisheries overexploitation; sea-level rise; chemical contaminants, sediment input/ 
turbidity and floatables and  debris93. Despite Ria Formosa being a semi-protected lagoon, many activities that 
alter the environment are permitted, including legal fisheries, anchoring and dredging, which contribute to habi-
tat loss in the  lagoon79,94. Habitat loss was identified as the leading probable cause for seahorse  decline38, which 
was to some extent confirmed by other  studies36,37. The observed extreme fluctuations in seahorse populations 
are correlated to the availability of  holdfasts95. However, we cannot discard the impact that other undetermined 
abiotic or biotic factors such as warmer temperatures, food availability, or abundance of  predators36 or overfishing 
may have on local populations. There is empirical evidence of a rapid and somewhat uncontrollable unreported 
and unregulated fishing (IUU) activity which may be a significant factor contributing to population decline (J. 
Palma, person.comm.).

It is difficult to explain the maintenance of the high levels of genetic diversity observed in Ria Formosa 
individuals when census data suggest such a dramatic decline. While we cannot discard the possibility that the 
individuals have moved to other areas, the lagoon has been visited regularly by divers experienced in seahorse 
detection. During 2020, the number of visited sites was increased, and although an overall decline in population 
size was observed, local increases were found at the microhabitat level. Expansions of individual home ranges in 
response to low densities of potential mates have been observed in previous  years35, suggesting that short distance 
migrations outside the survey area may have influenced census results. Seahorses have been found to colonize 
previously degraded habitats after being enriched with artificial  structures95. We discard the possibility that the 
seahorses might have moved outside Ria Formosa in search of partners, because of the lack of suitable habitats 
(e.g., availability of holdfasts), both to the west and the east of the lagoon. It is perplexing not to find a genetic 
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signature of the demographic bottleneck in terms of allelic loss and of heterozygote decrease. At this short time 
scale, it would be expected to see an effect in allele number if not a reduction in heterozygosities, as it is known 
that heterozygosity decay trails the allele number  reduction96.

Conservation implications. This study showed that genetic diversity and effective population size of the 
Ria Formosa long-snouted seahorse was retained through a severe recent demographic decline as inferred from 
census data. However, this population has suffered an even steeper decline in recent years (2018–2020) (J. Palma, 
pers. comm.). Therefore, despite the genetic results, conservation measures and demographic and genetic moni-
toring should continue to be implemented. Enhanced protection and restoration of H. guttulatus habitats would 
help to retain the genetic diversity in the Ria Formosa. The use of artificial holdfasts has been shown to be a 
useful tool for repopulating areas in which habitats have been damaged or  disappeared95. However, this does 
not resolve the issue of degrading habitat, which should be at the forefront of conservation in the Ria Formosa. 
Clam farming poses a significant threat to the seagrass Zostera noltii80, and other species of seagrass have been 
degraded by coastal construction and  dredging79. H. guttulatus have a preference for complex  habitats26,35,41, 
which are likely to be subject to human impacts, fluctuations and disturbances in the dynamic barrier island 
system that characterizes the Ria  Formosa97. Identifying temporally stable areas and enhancing habitat may help 
to ensure the long-term viability of seahorses in the Ria  Formosa98, in addition to the enhanced protection of 
important refuges. Finally, future studies will need to clarify the potential impact of gene flow between subpopu-
lations of the South Iberian Peninsula, as previously suggested by other  authors31,74 in order to determine the 
relevant conservation unit for seahorses in the region.

Conclusion
Molecular data suggest that, contrary to our initial hypothesis, a severe demographic decline reported in 2008 
did not reduce the genetic diversity of H. guttulatus in the Ria Formosa, nor cause a genetic bottleneck, and that 
the effective size of this population has instead modestly increased. A more in-depth genomic study could help 
to illuminate genetic changes at the whole genome level and identify genetic regions experiencing differential 
selection, which may be especially prone to population fluctuations. Finally, although the goal of this study 
was to assess genetic changes in diversity, it must be acknowledged that the effective conservation of essential 
habitat is critically  important99,100. Bearing in mind the observed pattern of population fluctuations, the use of 
artificial holdfasts may alleviate pressures from environmental variation. Active and enhanced monitoring and 
conservation of key habitats should remain at the forefront of conservation efforts in nearshore environments 
such as the Ria Formosa.
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