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Evolution of altruistic punishments 
among heterogeneous conditional 
cooperators
Balaraju Battu

It has been known that altruistic punishments solve the free rider problem in public goods games. 
Considering spatial structure and considering pure strategies significant advances have been made in 
understanding the evolution of altruistic punishments. However, these models have not considered 
key behavior regularities observed in experimental and field settings, where the individuals behave 
like conditional cooperators who are more willing to donate and are also more willing to punish 
free riders. Considering these behavioral regularities, without imposing a spatial structure on the 
population, I propose an evolutionary agent-based model in which agents behave like conditional 
cooperators, each agent’s donation conditional on the difference between the number of donations in 
the past and the threshold value and the propensity value of the agent. Altruistic punishment depends 
on the difference between the threshold value of the focal agent and the randomly matched another 
agent. The simulations show that, for certain inflicted costs of punishments, generous altruistic 
punishments evolve and stabilize cooperation. The results show that, unlike previous models, it is not 
necessary to punish all free riders equally; it is necessary to do so in the case of the selfish free riders 
but not in the case of negative reciprocators.

Unlike other species, humans cooperate with genetically unrelated individuals, even if these are individuals 
they have never met in the past. In the literature several mechanisms have been proposed to understand the 
suitable conditions with which to establish cooperation in dyadic interactions1–7. The mechanism focuses on 
the conditions required to offset the current cost of cooperation with future obtainable benefits. Unlike dyadic 
interactions, in public goods provision, an individual incurs personal costs by contributing to the public good 
and the benefits are shared among the group members because public goods are ‘non-excludable,’ i.e., each 
individual can share them equally, irrespective of their contributions8. Contrary to the assumptions of standard 
economic theory, laboratory9–11 and field studies12 suggest that, in repeated public goods games, the majority of 
the population is willing to punish the free riders, even at incurring substantial personal costs13. Remarkably, 
the punishments are implemented even if the interactions are anonymous, with no gain in personal payoff and 
reputation11. Neurobiological studies show that altruistic punishment has been linked to the reward centers of 
the brain, suggesting that in the past such behavior was rewarded and evolved in populations14. An altruistic 
punisher incurs personal costs by punishing free riders and the free riders gain a relatively higher payoff than 
the punishing individuals and cooperators. In evolutionary biology costs and benefits are measured in terms of 
fitness, therefore the altruistic punisher reduces his/her fitness in order to improve the group’s fitness. Altruistic 
punishments are a powerful mechanism with which to establish cooperation in social dilemmas. Why altruistic 
punishments proliferate in human societies has been an evolutionary puzzle because natural selection supposes 
favoring free riding rather than costly punishments.

In the last decade, significant advances have been made to understand the evolution of punishments in social 
dilemmas. It has been proposed that pool15–18 and peer19–22 punishments provide a solution to free rider problem 
in public goods games. In general, a population consists of cooperators, free riders, and punishers, it is hard to 
evolve punishment strategies when the individuals interact in a well-mixed manner, but spatial structure allows 
for the evolution of diverse punishment strategies and can establish stable cooperation21,23–27. For instance, 
conditional strategies such as conditional punishments28, class dependent strategies24, sharing responsibility for 
punishments25, and social diversity23 also protect a population from free riding in public goods games. It has been 
shown that when the population consists of altruists, unconditional defectors or free riders, non-participants, and 
altruistic punishers, the altruistic punishers dominate the population; but when the individuals in the population 
are averse to losing their reputation due to free riding29,30 and punishers separate from the cooperators and punish 
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the free riders20,21, the population can solve the second order free rider problem. The former method requires an 
additional layer of indirect reciprocity imposed on a public goods game and the latter method requires spatial 
structure to separate punishers from cooperators and punish free riders.

Without considering the spatial structure of the population, the evolution of altruistic punishments in public 
goods games has been studied and explained in two important classes of model based on group selection31–33 and 
individual selection34. The group selection models have shown that in certain conditions altruistic punishment 
does evolve and is evolutionarily stable when the punishment is common, but this does not explain how the 
altruistic punishment emerges within the group or when individual selection operates within the group. In both 
classes of model, the cooperative strategies and punishment strategies do not depend on the past behavior of other 
individuals in their groups. The behavioral regularities observed in experimental public goods games35,36 and field 
studies12,37 suggest that individuals in the population behave like conditional cooperators and the population is 
heterogeneous in their conditional nature35–38. Further, there are no separate altruists and altruistic punishers 
and the individuals who are more willing to donate to the public good are also more willing to punish the free 
riders9,37 or are involved in costly monitoring of the group12. There are a few studies set in spatial public goods 
games, such as conditional punishments28 and class dependent strategies24, which consider the composition of 
the population and define punishment strategies, but in these studies the individuals are not conditional coopera-
tors. Clearly, although these studies made significant contributions to understand the evolution of punishment 
in public goods games, these models did not consider some of the properties of conditional cooperators. In other 
words, in the current model, I address how altruistic punishment strategies evolve in the population of hetero-
geneous conditional cooperators who are more willing to donate and also more willing to punish free riders.

By considering the behavioral regularities observed in repeated public goods games in the field and experi-
mental settings, I propose an evolutionary agent-based model with a population of heterogeneous conditional 
cooperators. Unlike the previous models20,21,24,25,28,32–34,39,40, in the proposed model, (a) the majority of the popu-
lation behave like conditional cooperators, (b) the more individuals willing to donate are also more willing to 
punish free riders, and (c) the population is heterogeneous12,36–38,41. The proposed model involves three stages: 
individuals or agents make donations occasionally to a public goods game according to their conditional coopera-
tive strategies. After a couple of rounds of the game, reciprocators potentially punish the potential free riders, and 
agents imitate successful role models’ social behavior. In all three stages agents may commit mistakes. Whenever 
an agent donates, the agent incurs a certain cost and whenever an agent is punished the agent incurs inflected 
cost and inflected cost is more than the cost of the altruistic punishment. The simulations show that populations 
of heterogeneous conditional cooperators establish high levels of cooperation in repeated public goods games 
and the altruistic punishers dominate the population for certain inflected costs. The cooperation is stable against 
occasional mutations in the population. Further, for certain inflected costs, evolution favors generous altruistic 
punishment strategies more than strict punishment strategies, i.e., agents punish the occasional free riders with 
less frequency and the selfish free riders with higher frequency.

Method
The above developed intuition is converted into an agent-based evolutionary model in the context of public goods 
provision. In the proposed evolutionary agent-based model42, all the agents play a linear public goods game by 
using conditional cooperative strategies, enforcing altruistic punishments based on relative differences in their 
cooperation tendencies, and imitating successful role models’ social behavior with certain errors. The process is 
iterated several thousands of generations.

Population type.  In the proposed model, the individuals or agents in the population behave like condi-
tional cooperators and the population is heterogeneous in its conditional nature. The agents who are more will-
ing to cooperate are also more willing punish to potential free riders. Each individual is born with an arbitrary 
conditional cooperative criterion (CCC​) and a propensity, β. Both are positive values. The agents with higher 
CCC​ donate less frequently than the agents with a higher CCC​ for the given same amount of past cooperation 
levels. The same agents can cooperate or enforce altruistic punishments or free ride given the past cooperation 
levels in the population. β indicates the propensity to implement a conditional cooperative decision and imitate 
the successful role model’s social behavior. Each agent’s CCC​ value is drawn from a uniform distribution (0, 
N), where N is the population size, and β is drawn from a uniform distribution (0, 3). With β = 0 the actions 
of the individuals are random and with β = 3 the individuals behave like ideal conditional cooperators. With 
intermediate values the individuals behave like non-ideal conditional cooperators. The consideration is equal 
to the natural selection designing the conditional cooperative strategies. The combinations of CCC​ and β create 
heterogeneous populations with varieties of propensities. The consideration is close to the conditional nature of 
the population observed in experimental settings12,36.

Conditional cooperative decision.  The conditional cooperative decision of the agent is operationalized 
in the following way43,44. For instance, in the rth round, an agent i (with CCC​ = CCC​i value) donates to the public 
good with probability, qd,

nC indicates the number of donations in the (r − 1)th round. The parameter βi controls the steepness of the prob-
ability function. For the higher βi, the agent is highly sensitive to the (nC-CCC​i). For instance, as βi → ∞, the qd is 
sensitive to the sign of the (nC -CCC​i), i.e., if (nC -CCC​i) > 0 then qd = 1 and if (nC -CCC​i) < 0 then qd = 0. Either with 

(1)qd =
1

1+ exp(−(nC − CCCi)βi)



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10502  | https://doi.org/10.1038/s41598-021-89563-z

www.nature.com/scientificreports/

(nC -CCC​i) = 0 or with βi = 0 and both are zero, the agent donates to PGG with 50% time. In the model 0 < βi < 3. 
With βi > 2, the agent is more sensitive to the conditional rule. For βi = 0, the agent ignores the rule and behaves 
randomly. In βi < 2 and (nC -CCC​i) < 2 the individual does not follow the conditional rule, occasionally. In this 
construction both agents with the same CCC value may act differently with different βi values. For example, an 
agent with nC = 25, CCC​i = 24, and βi > 2 donates with probability close to one and βi < 2, donates with the prob-
ability less than one. With a non-zero amount of cooperation in the zeroth round, very low CCC​ value agents 
potentially behave like altruists, middle CCC​ value agents behave like conditional cooperators and very high 
CCC​ value agents behave like free riders. In the model the population and the conditional cooperators are het-
erogeneous. The assumption is similar to the experimental and field observations in repeated public goods9,12,36,37.

Public goods game.  All the individuals in the population play a linear public goods game37 three times in 
each generation. In each round, each agent is given an initial endowment E and individuals potentially donate 
an amount ui using Eq. (1). After all the individuals make their decisions, the collective amount is enhanced by 
a factor (α > 1) and the resulting public goods are distributed equally among all the agents, irrespective of their 
contributions towards public accounts. An agent’s total payoff from each linear public goods game is calculated 
using the following equation.

πGi is payoff of agent i from the game. The first term (E − ui) indicates the payoff from what was not contributed 
to the public goods (the private payoff). The second term indicates payoff from the public goods. Each unit 
donated becomes worthα > 1 unit. Due to the ‘non-excludable’ nature of public good, all the agents gain equal 
payoff from the public goods game. Clearly, all the individuals by donating can create an efficient PGG and by 
free riding increase his/her private payoff but reduce the group’s payoffs. Overall, the free riders gain relatively 
higher payoffs than the donors if the game starts with few initial donations. Given the same amount of coopera-
tion level, the higher CCC agents donate less frequently and gain relatively higher payoffs than the payoffs of the 
lower CCC agents who donate more frequently.

Altruistic punishments.  The assumptions of the model allow the following two rules: (i) the agents who 
are more willing to donate are also more willing to punish9,12,37. (ii) the agents punish the free riders more fre-
quently than the occasional free riders12,37. The CCC value of an agent acts as a proxy measure of an individual’s 
donation tendency and punishment tendency. The individuals enforce altruistic punishment based on the rela-
tive CCC​ difference of randomly matched pairs. An agent i (with CCC​i) has the potential to punish another agent 
j (with CCC​j) with probability qp.

With (CCC​j-CCC​i) > 1 and βi > 2 or with (CCC​j-CCC​i) > 2 and βi > 1, the agent i punishes the agent j with high 
probability. With (CCC​j-CCC​i) × βi < 1, the agent i punishes the agent j occasionally. In this construction, a lower 
CCC​ agent with β > 2 punishes a higher CCC​ agent more accurately than a slightly lower CCC​ agent. A lower CCC​ 
agent with β < 2 punishes a higher CCC agent less accurately and may not punish a slightly lower CCC​ agent. For 
example, in a random pair, with (CCC​j-CCC​i) = 1 with βi > 2 agent i punishes the agent j with a high probability 
close to one and βi < 2 punishes rarely. Depending on the differences in CCC​ values and β many possibilities 
exist. The above considerations are different from the existing models of altruistic punishments31,34 and close to 
the experimental observations in public goods provision12,37. In the population of heterogeneous conditional 
cooperators, the lower CCC​ agents donate and punish frequently, the moderate CCC​ agents occasionally free 
ride and punish, and very high CCC​ agents mostly free ride and do not punish.

Reproduction.  After altruistic punishments, each agent’s total payoff equals to the sum of the payoff from 
the PGG and the potential costs incurred in imposing  altruistic punishments (πalt) and the cost paid if the 
punishment is received (πin). For instance, ith agent’s payoff will be πi = πGi + πalt + πin. All the agents occasionally 
update their strategies by pairing another randomly matched agent and adapting the role model’s strategy with 
a probability proportional to the payoff difference45,46. In terms of cultural evolution each individual imitates 
the successful agent’s social behavior; all the agents update their CCC and βi values simultaneously with certain 
mutations. The updating is done by the following procedure4,44. An agent i potentially imitates successful indi-
vidual j’s social behavior (CCC​j) and βi with probability, qr,

where (πj-πi) is the cumulative payoff difference of agents j and i respectively. βi is ith agent’s propensity, which 
controls the steepness of Eq. (4). An agent with a higher βi more accurately imitates the social behavior of the 
role model. In each generation the population undergoes 10% mutations, i.e., each individual miscopies success-
ful role models’ properties with probability 0.1. From Eqs. (1) and (4) it suggests that the agents who are more 
willing to donate are also more willing to punish free riders.

(2)πGi = (E − ui)+
α

N

(

N
∑

i=1

ui

)

, i = 1, 2, 3, . . .N, α > 1,
α

N
< 1
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1
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Simulations.  In the simulations, the initial propensity (β) values are drawn from uniform distribution [1, 
3] and CCC​ values are drawn from [1, N], where N is the population size = 100 similar population size is chosen 
elsewhere45,47. Agents enter into the PGG with the initial payoff (u) = 50 units and number of donations in the 
zeroth round = 10. Each agent decides their donation by using a stochastic conditional decision rule, Eq. (1). 
The donation cost is 1 unit and the enhancing factor of the collected donation is α = 3 units. The total payoff 
of an agent is given by Eq. (2). A generation consists of three rounds of PGG. After each generation, altruistic 
punishments were implemented and, subsequently, the population updates or reproduces by using Eq. (3) with 
10% mutations.

Mutations are created by adding a random value, drawn from a Gaussian distribution with mean zero and 
s.d. = 5 (max = 50 and min =  − 50). Each agent in the population miscopies the role model properties with a prob-
ability 0.1. After updating by using Eq. (4), a randomly drawn CCC​ value is added to the updated CCC​ value and 
a β value is replaced by a randomly drawn value from uniform distribution of (0, 3). If the updated CCC​ value is 
greater than N, it is rounded off to N; if the resultant CCC​ value is negative, it is rounded off to zero. This allows 
the population to have unconditional free riders (CCC​ = N) and unconditional cooperators (CCC​ = 0).

The number of donations in the zeroth round is 10. A generation consists of three rounds of repeated PGGs 
without enforcing altruistic punishments. After each generation altruistic punishments were implemented and 
subsequently all the individuals in the population simultaneously update their strategies with 10% mutations. To 
reduce individual trial variations, each experimental condition (a fixed set of parameters) is run over 20,000 and 
iterated 20 times and the average data is used to plot the results. We observed that there is no difference in the 
results after the first few thousand generations; therefore, we have plotted donation fractions for the first 10,000 
generations. We plotted the distribution of CCC and β values for different experimental conditions in the last 
20,000th generation. We measured donation fractions, i.e., the fraction of donations in a specified number of 
generations. Asymptotic donation fractions are computed by taking donations in the last 20,000 generations of 
the 20,000th generation. We computed the distribution of CCC​ of the population and β values, which indicates 
the composition of population (or strategies). In simulations, we kept the following parameters constant: the 
donation cost (u) = 1, enhancing factor of collected donations (α) = 3. The probability of altruistic punishments 
after each generation is designated by w. Simulations are performed with varies w(w < 1) and inflected costs. In 
the model, if the punishing cost is x, the inflicted punishment cost will be 3x.

Results
Agents starting with arbitrary CCC​ and β values, donating to the public good by using Eq. (1), enforcing altru-
istic punishments using Eq. (2), and updating strategies using Eq. (4), for certain punishment costs, meant that 
altruistic punishment evolved in the population. Evolution of altruistic punishments crucially depends on the 
inflected cost of the punishment and the opportunities given to individuals to enforce punishments.

Figure 1 represents donation fractions (fraction of population donated to PGG) for various inflected costs 
across generations with w = 1 and w = 0.5. The donations are much higher with w = 1 than with w = 0.5 for the same 
inflected costs. With w = 1, the donation fractions decline as the cost of the inflected punishment also declines.

In Fig. 2, asymptotic donation rates are shown across different costs of inflected punishments with w = 1(when 
the agents have been given more opportunities to punish after every few rounds) and with w = 0.5 (when the 
agents punish randomly) respectively. With w = 1 the donation rates are higher after inflected cost > 0.9. With 
w = 0.5, the donation fractions are higher only for higher inflected costs.

In Fig. 3, the distribution of CCC​ values of the population shown for various inflected costs. With w = 1 and 
with inflected cost = 3, the frequency of punishments is high, therefore high CCC agents are penalized substan-
tially. The higher CCC​ agents become extinct from the population because the score of these agents is lower than 
the mean population score. As the generations increase, with cost = 3, the population moves towards lower CCC​ 
agents (mean = 8.47 and median = 7.80) and, with inflected cost = 0.9, the population moves towards moderate 
CCC​ value agents (mean = 17.01 and median = 16.15).

In Fig. 4, the distribution of CCC​ values of the population is shown for various inflected costs. The results 
show that lower CCC​ agents proliferate in the population with higher inflected costs, these individuals not only 
donate to the public good but also enforce altruistic punishments. The population remains heterogeneous.

With w = 0.5 and with inflected cost = 3, the frequency of punishments is low, therefore high CCC​ agents are 
not penalized substantially, thus, moderate CCC​ agents still remain in the population. The population moves 
towards moderate CCC​ agents (mean = 14.42 and median = 13.95). With inflected cost = 0.9, the population moves 
towards larger CCC​ value agents (mean = 31.76 and median = 32.05).

In Fig. 5 the average β values of the population shown for various inflected costs with w = 1 and with w = 0.5. 
For higher inflected costs the average values of β decline, i.e., the population adapted to probabilistic donations 
and punishments. With w = 0.5, β values increase only for higher costs of inflected punishment; the population 
adapted relatively higher β values than in the previous condition.

Discussion
The results of the simulations show that in a population starting with arbitrary conditional cooperative strate-
gies, enforcing altruistic punishments based on relative differences in CCC​ values, and adapting successful 
role models’ social behavior, altruistic punishments evolve in the population and establish stable cooperation. 
Interestingly, with certain infected costs, the population is adapted to generous altruistic punishment strategies. 
Showing generosity towards occasional free riders allows the individuals to cooperate in the next interaction 
and it has been shown that generosity is a superior strategy when the well-intentioned players commit mistakes 
occasionally48. The evolution of generosity in the population crucially depends on the cost of altruistic punish-
ment or inflicted punishments and the opportunities given to the population to enforce altruistic punishments. 
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In other words, when the punishment cost is moderate, agents do not punish negative reciprocators (middle 
range CCC​ value agents) accurately but punish selfish free riders accurately (high CCC​ value agents). When 
punishment costs are high, agents punish selfish free riders accurately as the population is dominated by lower 
CCC​ agents. The recognition that conditional cooperators are adapting to generous altruistic punishments rather 
than strict altruistic punishments has important consequences in enforcing altruistic punishments12,21,37,49 and 
in understanding the evolution of altruistic punishments in social dilemmas9,10.

In the standard PGG without altruistic punishments, the free riders (high CCC​ agents) proliferate in the 
population because these agents score relatively higher payoffs than the reciprocators (lower CCC​ agents), thus 
no cooperation is established. Suppose, a population consists of pure strategies such as altruists, free riders, 
and reciprocators who not only cooperate but also punish the free riders, clearly the reciprocators score fewer 
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Figure 1.   Donation rates for (A) (w) = 1 and for (B) (w) = 0.5 for various cost values for the first 10,000 
generations.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10502  | https://doi.org/10.1038/s41598-021-89563-z

www.nature.com/scientificreports/

payoffs than the altruists who donate but do not punish free riders. The situation might change when we con-
sider the spatial structure of the population21. For sufficient costs of inflicted punishments, altruists proliferate 
in the population. In this stylistic model, the cooperation is not stable; in the sea of altruists, when an occasional 
mutant, a free rider, enters into the population, the free riders destroy the cooperation. Whereas, when the 
population consists of heterogeneous conditional cooperators, the free riders do not gain a very high payoff, 
thanks to altruistic punishments and the heterogeneity of the population. If an occasional free rider, a mutant, 
gets into the population, the cooperation is not destroyed as the population remains heterogeneous and consists 
of reciprocators who also act as altruistic punishers. However, the composition of the population depends on 
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the inflected costs and number of opportunities given for the implementation of altruistic punishments. Lower 
inflected costs and rare opportunities to punish free riders do not establish cooperation.

In the model, with w = 1, all the agents have an opportunity to punish potential free riders in the population 
after each generation. Typically, the lower CCC​ agents potentially punish the higher CCC​ agents or potential 
free riders (Eq. 3). The altruistic punishments are only effective if the population punishes the free riders more 
frequently and occasional free riders less frequently. For certain critical inflected punishment costs, after pun-
ishments are implemented, the relative payoff of the higher CCC​ agents is less than the payoff of the lower CCC​ 
agents. For example, with w = 1 and inflected punishment cost = 3 units, the population starting with arbitrary 
CCC​ values, after several thousands of generations, the population is adapted to lower CCC​ values (mean = 8.47) 

Figure 3.   The distribution of CCC​ values in the 20,000th generation with a bin size of 10. With w = 1 (A) 
(cost) = 3 and with (B) (cost) = 0.9.
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(Fig. 3A) and also adapted to higher β values (Fig. 5A). With the higher β values and with lower CCC​ values, 
from the Eq. (3) the reciprocators punish the selfish free riders frequently.

When the inflected cost is lower, the population is adapted to relatively higher CCC​ and lower β values (see 
Figs. 3A and 5A), cooperation is established but is not high. In this condition if the occasional free riders or 
negative reciprocators were punished frequently, the population would wipe out many moderate CCC​ agents 
who are helpful in creating critical levels of cooperation and involved in altruistic punishments against the selfish 
free riders. The population does not establish conditional cooperation if the inflected costs are too low (Fig. 2A). 

Figure 4.   The distribution of CCC​ values in the 20,000th generation with a bin size of 10. With w = 0.5 (A) 
(cost) = 3 and with (B) (cost) = 0.9.
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When the punishments were enforced in a probabilistic manner, i.e., w < 1, the agents get rare opportunities to 
punish free riders, thus higher CCC agents dominate the population, and thus no cooperation is established. 
For the same punishment cost with w < 1, the population is adapted to relatively lower β values and higher CCC 
agents than the above condition (w = 1). With β > population enforces altruistic punishment,and imitates success-
ful role models’ behavior accurately and with β < 2 vice-versa. For instance, with w = 0.5 with inflected cost = 3, 
the population is dominated by moderate CCC​ values (mean = 14.42, see Fig. 3B), higher β values (see Fig. 5B), 
and the cooperation levels are higher but not higher as with w = 1. In this condition population is adapted to 
generous punishment strategies. With w = 0.5 and with lower inflected cost = 0.9 (see Fig. 2B), the donation lev-
els are close to zero and the CCC​ values of the population are higher (mean = 31.76) with cost = 0.9. Switching 
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Figure 5.   Population average β values for various costs in the 20,000th generation. (A) (w) = 1 and (B) (w) = 0.5.
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punishments on and off (w = 0.5) does not reduce the payoff of the higher CCC agents (free riders) substantially, 
therefore moderate or higher CCC​ agents dominate the population, thus no cooperation is established and such 
behavior has been observed in experiments elsewhere50. In summary, with higher inflected cost and w = 1 the 
population able to establish conditional cooperation and the population adapted to higher β and lower CCC 
value agents. Thus, the population is adapted to strict altruistic punishments. Interestingly, with w = 0.5 and with 
higher inflected cost or with w = 1 and with moderate inflected costs, the population is adapted to relatively lower 
β and moderate CCC​ values; the population is adapted to generous altruistic punishments.

In the model, the occasional mutations do not destroy the conditional cooperation when high inflected cost, 
high w, and with a moderate w. In these conditions, for instance, a mutant CCC​ = N(= 100) gets into population, 
with w = 1 and sufficient inflected cost, the mutant will be punished quickly as the population is dominated by 
lower CCC​ agents. On the other hand, if the population consists of only altruists (CCC​ = 0) and suppose an occa-
sional mutant happens to be an unconditional free rider (CCC​ = 100)), the mutant can take over the population 
because free riding gives more advantages than the population average.

The proposed model is placed in the generic settings of conditional cooperation with considering spatial 
structure, yet some aspects of the model do not eliminate its few shortcomings. For example, an agent who 
reciprocated in PGG can be punished by other reciprocators in the group because the altruistic punishments 
are implemented by random pairings and based on relative CCC​ values, not based on the actions of individu-
als. As noted in the literature, free riders can bribe the altruistic punishers51 and free riders can be involved in 
punishing20,21. Punishing reciprocators or negative reciprocators might lead to retaliation against the reciprocators 
or free riding in the next round. However, in the current model such occasions are rare in the long run because 
the difference in CCC values of reciprocators is small and β is not very high. The model does not consider other 
psychological aspects of agents such as ‘warm glow52’ the influence of partners and strangers10, and beliefs about 
other agents38. Further, it is worthwhile to consider conditional punishments28, class dependent punishment 
strategies24, and sharing responsibility of punishing25 in further research.

In summary, the consideration that individuals in repeated public good games behave like conditional co-
operators—i.e. individuals who are more willing to donate are also more willing to punish free riders—, and 
that these conditional cooperators are heterogeneous, throws new light on the evolution of altruistic punish-
ments in a heterogeneous population. The essential feature of conditional cooperation rests on the population’s 
ability to create a critical amount of cooperation in the initial rounds and to create conditions in which recip-
rocators cooperate and establish cooperation. The simulations show that when conditional cooperators make 
occasional mistakes in their punishment strategies, evolution prefers generous altruistic punishment strategies 
rather than strict punishment strategies; these strategies not only save the overall payoff of the group but also 
help to initiate cooperation from conditional cooperators. Unlike previous models31–34,53 and not considering 
spatial structure20,21,24,25,28, the current model provides new mechanisms to establish conditional cooperation 
and the evolution of altruistic punishments. Conditional cooperation operates with reciprocity, fairness, and 
retaliation7 but without using payoff maximizing strategies13. The model shows that to establish cooperation in 
public good scenarios, implementing stern altruistic punishments against negative reciprocators is not required 
but it is necessary to punish selfish free riders to create sufficient cooperation in each round and build cooperation 
in the subsequent rounds. By punishing free-riding in the initial rounds one can facilitate conditions to establish 
cooperation but also help to stabilize cooperation by using feedback loops54,55 (Supplementary Information).

Code availability
The MATLAB code that supports this study’s findings is available in the Supplementary Information.
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