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QUBO formulations for training 
machine learning models
Prasanna Date1*, Davis Arthur2 & Lauren Pusey‑Nazzaro3

Training machine learning models on classical computers is usually a time and compute intensive 
process. With Moore’s law nearing its inevitable end and an ever-increasing demand for large-scale 
data analysis using machine learning, we must leverage non-conventional computing paradigms like 
quantum computing to train machine learning models efficiently. Adiabatic quantum computers can 
approximately solve NP-hard problems, such as the quadratic unconstrained binary optimization 
(QUBO), faster than classical computers. Since many machine learning problems are also NP-hard, 
we believe adiabatic quantum computers might be instrumental in training machine learning models 
efficiently in the post Moore’s law era. In order to solve problems on adiabatic quantum computers, 
they must be formulated as QUBO problems, which is very challenging. In this paper, we formulate 
the training problems of three machine learning models—linear regression, support vector machine 
(SVM) and balanced k-means clustering—as QUBO problems, making them conducive to be trained on 
adiabatic quantum computers. We also analyze the computational complexities of our formulations 
and compare them to corresponding state-of-the-art classical approaches. We show that the time and 
space complexities of our formulations are better (in case of SVM and balanced k-means clustering) or 
equivalent (in case of linear regression) to their classical counterparts.

The importance of machine learning algorithms in scientific advancement cannot be understated. Machine 
learning algorithms have given us great predictive power in medical science1, economics2, agriculture3 etc. These 
algorithms can only be implemented and deployed after they have been trained—a process that requires tuning 
the model parameters of a machine learning model in order to extract meaningful information from data. Train-
ing a machine learning model is a time and compute intensive process usually. In such situations, one is often 
forced to make a trade-off between the accuracy of a trained model and the training time. With the looming 
end of Moore’s law and rapidly increasing demand for large-scale data analysis using machine learning, there is 
a dire need to explore the applicability of non-conventional computing paradigms like quantum computing to 
accelerate the training of machine learning models.

Quantum computers are known to bypass classically-difficult computations by performing operations on 
high-dimensional tensor product spaces4. To this extent, we believe that machine learning problems, which often 
require such manipulation of high-dimensional data sets, can be posed in a manner conducive to efficient quan-
tum computation. Quantum computers have been shown to yield approximate solutions to NP-hard problems, 
such as the quadratic unconstrained binary optimization (QUBO) problem5, graph clustering problem6, protein 
folding problem7 etc. In addition to these results, demonstration of quantum supremacy by Google8 has led us 
to believe that quantum computers might offer speedup in a much wider range of problems such as accelerating 
training of machine learning models.

To this extent, the principal contributions of our work are: 

1.	 We formulate the training problems of three machine learning models—linear regression, support vector 
machine (SVM) and balanced k-means clustering—as QUBO problems so that they can be trained on adi-
abatic quantum computers.

2.	 For the aforementioned models, we provide a theoretical comparison between state-of-the-art classical train-
ing algorithms and our formulations that are conducive to being trained on adiabatic quantum computers. 
We observe that the time and space complexities of our formulations are better in case of SVM and balanced 
k-means clustering, and equivalent in case of linear regression, to their classical counterparts.
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Our formulations provide a promising outlook for training such machine learning models on adiabatic quantum 
computers. In the future, larger and more robust quantum computers are sought to abate the limitations of cur-
rent machines and potentially allow machine learning models to be trained faster and more reliably.

Related work
Quantum machine learning algorithms have been proposed for both universal and adiabatic quantum comput-
ers. We briefly review a handful of such algorithms that leverage universal quantum computers here. Relevant 
algorithms leveraging adiabatic quantum computers have been reviewed in the subsequent sections. Quantum 
machine learning algorithms, and in general, all quantum algorithms will greatly benefit from optimal design 
of quantum circuits9,10, optimized quantum states11, quantum memory12, improved quantum coherence times13 
and quantum error correction14. Today’s quantum machine learning algorithms are catered towards quantum 
computers in the noisy intermediate-scale quantum (NISQ) era. Results presented in this paper are part of our 
ongoing work to accelerate training of machine learning models using quantum computers15–17.

Farhi et al. proposed the Quantum Approximate Optimization Algorithm (QAOA), which produces approxi-
mate solutions for combinatorial optimization problems18–20, is computationally universal21, and has been used to 
train unsupervised machine learning models22. Farhi and Neven also proposed quantum neural networks where 
a sequence of parameter dependent unitary transformations act on classical or quantum input data and produce 
classification predictions on the output qubits23. Gyongyosi and Imre proposed training optimizations for such 
gate-based quantum neural network models24. Benedetti et al.25 proposed the use of the variational quantum 
eigensolver (VQE) algorithm in conjunction with parameterized quantum circuits as quantum machine learning 
models. QAOA and VQE based quantum machine learning models are widely used in the literature.

Adiabatic quantum computers
The adiabatic theorem states that a quantum physical system remains in its instantaneous eigenstate under a 
slowly acting perturbation if there is a gap between its eigenvalue and the rest of the Hamiltonian’s spectrum26. 
Adiabatic quantum computers leverage the adiabatic theorem to perform computation27. Specifically, starting 
with the global minimum of a simple Hamiltonian, they homotopically connect it to the global minimum of the 
problem of interest28. The D-Wave adiabatic quantum computers, for instance, are adept at approximately solving 
the quadratic unconstrained binary optimization (QUBO) problem, which is stated as follows:

where, M is a natural number; B = {0, 1} is the set of binary numbers; z ∈ B
M is the binary decision vector; 

A ∈ R
M×M is the real-valued M ×M QUBO matrix; and, b ∈ R

M is the real-valued M-dimensional QUBO 
vector.

Notation
We use the following notation throughout this paper:

•	 R , N , B : Set of real numbers, natural numbers and binary numbers ( B = {0, 1}).
•	 N: Number of data points (number of rows) in the training data set, N ∈ N.
•	 d: Number of features (number of columns) in the training data set, d ∈ N.
•	 X: Training data set, usually X ∈ R

N×d , i.e. X contains N data points along its rows, and each data point is a 
d-dimensional row vector.

•	 Y: Regression labels of the training data set in case of regression ( Y ∈ R
N ); classification labels of the training 

data set in case of support vector machine ( Y ∈ B
N).

Linear regression
Background.  Linear regression is one of the oldest statistical machine learning techniques that is used in a 
wide range of applications, such as scientific research29, business30 and weather forecasting31. Linear regression 
models the relationship between a dependent variable and one or more independent variables.

Adiabatic quantum computing approaches have been proposed in the literature for solving the linear regres-
sion problem (Eq. 2). Borle et al. propose a quantum annealing approach for the linear least squares problem32. 
Chang et al. present a quantum annealing approach for solving polynomial systems of equations using least 
squares33. Chang et al. propose a method for solving polynomial equations using quantum annealing and discuss 
its application to linear regression34. While these approaches can only find positive real-valued regression weights, 
our formulation finds both positive and negative real-valued regression weights.

Here, we denote X ∈ R
N×(d+1) as the augmented regression training data matrix, where we have augmented 

each row of the original X ∈ R
N×d with unity for the sake of mathematical convenience. The regression training 

labels are denoted by Y ∈ R
N , and the regression weights are denoted by w ∈ R

d+1 . Given X and Y, training a 
linear regression model can be stated as follows:

Here, E(w) is the Euclidean error function. With reference to Fig. 1, the blue dots represent the data points X 
and Y, and the green line, characterized by the weights w, is the regression hyperplane which fits the data. The 
regression problem has an analytical solution, given by

(1)min
z∈BM

zTAz + zTb

(2)min
w∈Rd+1

E(w) = ||Xw − Y ||2
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If (XTX)−1 does not exist, the pseudo inverse is computed. Time complexity of linear regression is known to 
be O(Nd2).

QUBO formulation.  We start by rewriting Problem (2) as:

Next, we introduce a K-dimensional precision vector P = [p1, p2, . . . , pK ]T . Each entry in P can be an integral 
power of 2, and can be both positive or negative. We also introduce a K-dimensional vector ŵi ∈ B

K with binary 
coefficients, such that the inner product ŵi

TP yields a scalar wi ∈ R . This scalar wi represents the ith entry in our 
weight vector, where 1 ≤ i ≤ (d + 1) . The entries of P must be sorted, for instance P =

[

−2,−1,− 1
2 ,

1
2 , 1, 2,

]T . 
ŵik can be thought of as a binary decision variable that selects or ignores entries in P depending on whether its 
value is 1 or 0 respectively. With this formulation, we can have up to 2K unique values for each wi when P con-
tains only positive values for instance. However, if P contains negative values as well, then the number of unique 
attainable values for each wi might be less than 2K . For example, if P = [−1,− 1

2 ,
1
2 , 1] , then only the following 

seven distinct values can be attained: {− 3
2 ,−1,− 1

2 , 0,
1
2 , 1,

3
2 }.

Now, let us define the binary vector ŵ ∈ B
K(d+1) , such that

Similarly, we can define a precision matrix ( P ) as follows:

where Id+1 represents the (d + 1)-dimensional identity matrix, and ⊗ represents the Kronecker product. Note 
that P has the dimensions (d + 1)× K(d + 1) . We can now recover our original weight vector by observing that:

We have thus represented our weight vector (to finite precision) in terms of the precision matrix P and the 
binary vector ŵ ∈ B

K(d+1) . We are now able to pose the minimization problem of Eq. (4) as an equivalent QUBO 
problem. Let us substitute the expression we obtained for the weight vector w in terms of P and ŵ into Eq. (4), 
which yields:

Note that we have neglected the term YTY  because it is a constant scalar and does not affect the optimal solution 
to this unconstrained optimization problem. Observe that Eq. (8) now has the form of a QUBO problem, as 
desired. Hence, we can solve this optimization problem using an adiabatic quantum computer.

Computational complexity.  The regression problem (Problem 2) has O(Nd) data (X and Y) and O(d) 
weights (w), which is the same for Problem (8). We introduced K binary variables for each of the d + 1 weights 
when converting Problem (2) to Problem (8). So, we have O(dK) variables in Eq. (8), which translates to quad-
ratic qubit footprint ( O(K2d2) ) using an efficient embedding algorithm such as the one proposed by Date et al.5 

(3)w = (XTX)−1XTY

(4)min
w∈Rd+1

E(w) = wTXTXw − 2wTXTY + YTY

(5)ŵ = [ŵ11 . . . ŵ1K ŵ21 . . . ŵ2K . . . ŵ(d+1)1 . . . ŵ(d+1)K ]T

(6)P = Id+1 ⊗ PT

(7)w = Pŵ

(8)min
ŵ∈B(d+1)K

E(ŵ) = ŵT
P

TXTXPŵ − 2ŵT
P

TXTY

Figure 1.   Fitting a linear regression model (green line) to data (blue dots).
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Embedding is the process of mapping logical QUBO variables to qubits on the hardware, and is challenging 
because inter-qubit connectivity on the hardware is extremely limited. So, the space complexity of our approach 
is O(K2d2).

Solving the regression problem takes O(Nd2) time classically. We analyze the time complexity of our approach 
in three parts: (i) Time taken to convert the regression problem into QUBO problem; (ii) Time taken to embed 
the QUBO problem onto the hardware; and (iii) Time taken to perform quantum annealing. From Eq. (8), we 
can infer that the conversion takes O(Nd2K2) time. Since we have O(dK) variables in the QUBO formulation, 
embedding can be done in O(d2K2) time using the embedding algorithm proposed by Date et al.5. While the 
theoretical time complexity of quantum annealing to obtain an exact solution is known to be exponential ( O(e

√
d)

)35, a more realistic estimate of the running time can be made by using measures such as ST99 and ST99(OPT)36, 
which give the expected number of iterations to reach a certain level of optimality with 99% certainty. Quan-
tum annealing is known to perform well on problems where the energy barriers between local optima are tall 
and narrow because such an energy landscape is more conducive to quantum tunneling. In order to estimate 
ST99 and ST99(OPT) for our approach, details on specific instances of the regression problem are required. It 
remains out of the scope of this paper to estimate ST99 and ST99(OPT) for generic QUBO formulation of the 
regression problem.

Having said that, we would like to shed some light on the quantum annealing running times observed in 
practice. An adiabatic quantum computer can only accommodate finite-sized problems—for example, D-Wave 
2000Q can accommodate problems having 64 or fewer binary variables requiring all-to-all connectivity5. For 
problems within this range, a constant annealing time and a constant number of repetitions seem to work well 
in practice. So, the total time to convert and solve a linear regression problem on adiabatic quantum computer 
would be O(Nd2K2).

It may seem that this running time is worse than its classical counterpart. However, the above analysis assumes 
that K is variable. On classical computers, the precision is fixed, for example, 32-bit or 64-bit precision. We can 
analogously fix the precision for quantum computers, and interpret K as a constant. The resulting qubit footprint 
would be O(d2) , and the time complexity would be O(Nd2) , which is equivalent to the classical approach.

Support vector machine (SVM)
Background.  Support vector machine (SVM) is a powerful supervised machine learning model that pro-
duces robust classifiers as shown in Fig. 2. The classifier produced by SVM maximizes its distance from the 
classes of the data points. Although SVM was meant for binary classification originally, several variants of SVM 
have been proposed over the years that allow multi-class classification37,38. SVM has wide ranging applications 
in multimedia (vision, text, speech etc.)39, biology40, and chemistry41, among many other scientific disciplines.

Some quantum approaches for training SVM using adiabatic quantum computers have been proposed in the 
literature. Ahmed proposes a formulation for quantum SVM that runs on noisy intermediate-scale quantum 
(NISQ) processors42. Welsh et al. propose a formulation of SVM for the D-Wave quantum computers43. Our 
findings improve upon their formulation, allowing for real-valued learning parameters up to a certain precision.

Given training data X ∈ R
N×d and training labels Y ∈ {−1,+1}N , we would like to find a classifier (deter-

mined by weights, w ∈ R
d , and bias, b ∈ R ), that separates the training data. Formally, training SVM is expressed 

as:

(9)
min
w, b

1

2
||w||2

subject to: yi(w
Txi + b) ≥ 1 ∀i = 1, 2, . . . , N

Figure 2.   SVM model (green line) correctly classifying training data (red and blue dots).
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Note that xi is the ith row vector in X and yi is the ith element in Y. The objective function is convex because 
its Hessian matrix is positive semidefinite. Furthermore, since the constraints are linear, they are convex as 
well, which makes Problem (9) a quadratic programming problem. To solve Problem (9), we first compute the 
Lagrangian as follows:

where, � is the vector containing all the Lagrangian multipliers, i.e. � = [�1 �2 · · · �N ]T , with �i ≥ 0 ∀i . The 
non-zero Lagrangian multipliers in the final solution correspond to the support vectors and determine the 
hyperplanes H1 and H2 in Fig. 2. The Lagrangian dual problem (Eq. 10) is solved in O(N3) time on classical 
computers by applying the Karush-Kuhn-Tucker (KKT) conditions44,45. As part of the KKT conditions, we set 
the gradient of L(w, b, �) with respect to w to zero. We also set the partial derivative of L(w, b, �) with respect 
to b to zero. Doing so yields:

Substituting Eqs. (11) and (12) into Eq. (10):

Note that Eq. (13) is a function of � only. We want to maximize Eq. (13) with respect to the Lagrangian multipli-
ers, and also ensure that �i , �j ≥ 0 ∀i, j , while satisfying Eq. (12).

QUBO formulation.  In order to convert SVM training into a QUBO problem, we write Eq. (13) as a mini-
mization problem:

This can be written in a matrix form as follows:

where, 1N and 0N represent N-dimensional vectors of ones and zeros respectively, and ⊙ is the element-wise 
multiplication operation.

We now reintroduce the K-dimensional precision vector P = [p1, p2, . . . , pK ]T as described in the “Linear 
regression” section of this paper, but only allow positive powers of 2 in order to impose the non-negativity con-
straint on � . We also introduce K binary variables �̂ik for each Lagrangian multiplier such that:

where, pk denotes the kth entry in the precision vector P. Next, we vertically stack all binary variables:

We now define the precision matrix as follows:

Notice that:

Finally, we substitute the value of � from Eq. (19) into Eq. (15):

Equation (20) is identical to Eq. (1) with z = �̂ , A = 1
2P

T (XXT ⊙ YYT )P , b = −PT1N , and M = KN . Hence, 
we have converted the SVM training problem from Eq. (10) into a QUBO problem in Eq. (20), which can be 
solved on adiabatic quantum computers.

(10)L(w, b, �) = 1

2
||w||2 −

N
∑

i=1

�i

[

yi(w
Txi + b)− 1

]

(11)∇wL(w, b, �) = w −
N
∑

i=1

�iyixi = 0 =⇒ w =
N
∑

i=1

�iyixi

(12)
∂L(w, b, �)

∂b
= −

N
∑

i=1

�iyi = 0 =⇒
N
∑

i=1

�iyi = 0

(13)L(�) =
N
∑

i=1

�i −
1

2

N
∑

i=1

N
∑

j=1

�i�jxixjyiyj

(14)min
�

L(�) = 1

2

N
∑

i=1

N
∑

j=1

�i�jxixjyiyj −
N
∑

i=1

�i �i , �j ≥ 0 ∀i, j

(15)min
�

L(�) = 1

2
�
T (XXT ⊙ YYT )�− �

T1N � ≥ 0N

(16)�i =
K
∑

k=1

pk�̂ik ∀i = 1, 2, . . . ,N

(17)�̂ = [�̂11 . . . �̂1K �̂21 . . . �̂2K . . . �̂N1 . . . �̂NK ]T

(18)P = IN ⊗ PT

(19)� = P �̂

(20)min
�̂∈BNK

L(�̂) = 1

2
�̂
T
P

T (XXT ⊙ YYT )P �̂− �̂
T
P

T1N
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Computational complexity.  We begin our theoretical analysis by defining the space complexity with 
respect to the number of qubits needed to solve the QUBO. The SVM training problem stated in Eq. (15) con-
tains O(N) variables ( � ) and O(Nd) data (X and Y). The QUBO formulation of the SVM training problem stated 
in Eq. (20) consists of the same amount of data. However, as part of the QUBO formulation, we introduced K 
binary variables for each Lagrangian multiplier in the original problem (Eq. 15). So, the total number of variables 
in Eq. (20) is O(KN) . So, the qubit footprint (or space complexity) of this formulation would be O(N2K2) after 
embedding onto the hardware.

The time complexity of classical SVM algorithms is known to be O(N3)46. We analyze the time complexity for 
training an SVM model in three parts as outlined in “Linear regression” section. Firstly, the time complexity for 
converting Problem (9) into a QUBO problem can be inferred from Eqs. (14) and (16) as O(N2K2) . Secondly, 
the time taken to embed the (NK)-sized QUBO problem on the quantum computer is O(N2K2) (see “Linear 
regression” section for more details). Lastly, for the reasons mentioned in the “Linear regression” section, it is not 
straight forward to get a realistic estimate of the time complexity of the quantum annealing process. However, a 
constant annealing time in conjunction with a constant number of repetitions seems to work well in practice on 
an adiabatic quantum computer of fixed and finite size as explained in “Regression” section. So, the total time 
complexity is O(N2K2).

Note that the qubit footprint O(N2K2) and time complexity O(N2K2) assume that K is a variable. If the 
precision for all parameters ( ̂� ) is fixed (e.g. limited to 32-bit or 64-bit precision), then K becomes a constant 
factor. The resulting qubit footprint would be O(N2) , and time complexity would also be be O(N2) . This time 
complexity is an order of magnitude better than the classical algorithm ( O(N3)).

Balanced k‑means clustering
Background.  k-Means clustering is an unsupervised machine learning model that partitions training data 
into k clusters such that each point belongs to the cluster with the nearest centroid. The optimal cluster assign-
ments of the training data minimizes within-cluster variance. Balanced k-means clustering is a special case of 
the k-means model where each cluster contains approximately N/k points as shown in Fig. 3. Balanced cluster-
ing models have applications in a variety of domains including network design47, marketing48, and document 
clustering49.

Quantum approaches to training clustering models have been discussed in the literature. Ushijima-Mwesigwa 
et al. demonstrate partitioning a graph into k parts concurrently using quantum annealing on the D-Wave 2X 
machine50. Kumar et al. present a QUBO formulation for k-clustering that differs from the k-means model51. 
Bauckhage et al. propose a QUBO formulation for binary clustering ( k = 2)52 and k-medoids clustering53. Our 
QUBO formulation for balanced k-means clustering synthesizes a number of ideas proposed in the literature.

Given training data X ∈ R
N×d , we would like to partition the N data points into k clusters � = {φ1, ...,φk} . 

Let the centroid of cluster φi be denoted as µi . Formally, training the generic k-means clustering model is 
expressed as:

In the case that each cluster is of equal size, |φi| is constant, and Problem (21) reduces to:

(21)min
�

k
∑

i=1

1

2|φi|
∑

x,y ∈ φi

||x − y||2

(22)min
�

k
∑

i=1

∑

x,y ∈ φi

||x − y||2

Figure 3.   Training a balanced k-means clustering model ( k = 3 ) on training data (yellow, green, and red dots).
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Note that for most applications of balanced clustering, the cluster sizes are only approximately equal to one 
another. In these cases, the solution to Problem (22) may not be the exact solution to Problem (21). Classically, 
the k-means clustering problem is solved heuristically through an iterative approach known as Lloyd’s algorithm. 
A modified version of this algorithm is used for balanced k-means clustering to uphold the constraint that no 
cluster contains more than N/k points54. This modified version of Lloyd’s algorithm runs in O(N3.5k3.5) time on 
classical computers55.

QUBO formulation.  To formulate Problem (22) as a QUBO problem, it will be useful to define a matrix 
D ∈ R

N×N where each element is given by:

where xi and xj are the ith and jth data points in X. We also define a binary matrix Ŵ ∈ B
N×k such that ŵij = 1 

if and only if point xi belongs to cluster φj . Since we are assuming clusters of the same size, each column in Ŵ 
should have approximately N/k entries equal to 1. Additionally, since each data point belongs to exactly one 
cluster, each row in Ŵ must contain exactly one entry equal to 1. Using this notation, the inner sum in Prob-
lem (22) can be rewritten:

where ŵ′
j is the jth column in Ŵ . From this relation, we can cast Problem (22) into a constrained binary optimi-

zation problem. First, we vertically stack the Nk binary variables in Ŵ as follows:

Provided the constraints on ŵ are upheld, Problem (22) is equivalent to:

where Ik is the k-dimensional identity matrix.
We can add the constraints on ŵ by including penalty terms that are minimized when all conditions are satis-

fied. First, we account for the constraint that each cluster must contain approximately N/k points. For a given 
column ŵ′

j in Ŵ , this can be enforced by including a penalty of the form:

where α is a constant factor intended to make the penalty large enough that the constraint is always upheld. 
Dropping the constant term α(N/k)2 , this penalty is equivalent to ŵ′T

j αFŵ
′
j where F is defined as:

Using this formulation, the sum of all column constraint penalties is:

Next, we account for the constraint that each point belongs to exactly 1 cluster. For a given row ŵi , this can be 
enforced by including a penalty of the form:

where β is a constant with the same purpose as α in Eq. (27). Dropping the constant term, this penalty is equiva-
lent to ŵT

i βGŵi where G is defined as:

To find the sum of all row constraint penalties, we first convert the binary vector ŵ into the form v̂ shown below:

This can be accomplished through a linear transformation Qŵ where each element in Q ∈ B
Nk×Nk is defined as:

After the transformation, the sum of all row constraint penalties is given by v̂T (IN ⊗ βG)v̂ . This can be equiva-
lently expressed as:

Combining the penalties from Eqs. (29) and (34) with the constrained binary optimization problem from 
Eq. (26), Problem (22) can be rewritten as:

(23)dij = ||xi − xj||2

(24)
∑

x,y∈φj
||x − y||2 = ŵ′T

j Dŵ′
j

(25)ŵ = [ŵ11 . . . ŵN1 ŵ12 . . . ŵN2 . . . ŵ1k . . . ŵNk]T

(26)min
ŵ

ŵT (Ik ⊗ D)ŵ

(27)α(ŵ′T
j ŵ

′
j − N/k)2

(28)F = 1N − 2N

k
IN

(29)ŵT (Ik ⊗ αF)ŵ

(30)β(ŵT
i ŵi − 1)2

(31)G = 1k − 2Ik

(32)v̂ = [w11 . . .w1k w21 . . .w2k . . .wN1 . . .wNk]T

(33)qij =
{

1 j = Nmod(i − 1, k)+ ⌊ i−1
k ⌋ + 1

0 else

(34)ŵTQT (IN ⊗ βG)Qŵ



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10029  | https://doi.org/10.1038/s41598-021-89461-4

www.nature.com/scientificreports/

Equation (35) is identical to Eq. (1) with z = ŵ , A = (Ik ⊗ (D + αF)+ QT (IN ⊗ βG)Q) , and b = 0 . Thus, we 
have converted Eq. (22) into a QUBO problem which can be solved on adiabatic quantum computers.

Computational complexity.  The balanced k-means clustering problem stated in Eq. (22) contains O(Nd) 
data and O(N) variables. In our QUBO formulation, we introduce k binary variables for each variable in the 
original problem. Thus, the total number of variables in Eq. (35) is O(Nk) . This translates to a quadratic qubit 
footprint of O(N2k2).

While an exact solution to the generic k-means clustering model (Problem 21) requires O(Nkd+1) time56, a 
classical algorithm for balanced k-means clustering will converge to a locally optimal solution in O(N3.5k3.5) 
time55. To compute the time complexity for converting Eq. (22) into a QUBO problem, we can rewrite Eq. (35) 
as follows:

From Eq. (36), the time complexity is O(N2kd) , which is dominated by the first term. Embedding a QUBO 
problem having O(Nk) variables takes O(N2k2) time using the embedding algorithm proposed by Date et al.5. 
For the reasons mentioned in the “Linear regression” section, it is not straight forward to get a realistic estimate of 
the time complexity of the quantum annealing process. However, a constant annealing time in conjunction with 
a constant number of repetitions seems to work well in practice on an adiabatic quantum computer of fixed and 
finite size as explained in the “Linear regression” section. Therefore, the total time complexity for the quantum 
algorithm is O(N2k(d + k)) . This time complexity is better than the worst case time complexity of the classical 
algorithm (O(N3.5k3.5)) . However, the number of iterations in the classical algorithm varies greatly depending 
on the quality of the initial guess at the cluster centroids. In some cases, the classical algorithm may converge in 
much less than O(N3.5k3.5) time and outperform its quantum counterpart.

Conclusion
As the task of training machine learning models becomes more computationally intensive, devising new methods 
for efficient training has become a crucial pursuit in machine learning. The process of training a given model 
can often be formulated as a problem of minimizing a well-defined error function for a given machine learning 
model. Given the power of quantum computers to approximately solve certain hard optimization problems with 
great efficiency as well as the demonstration of quantum supremacy by Google, we believe quantum comput-
ers can accelerate training of machine learning models. In this paper, we posed the training problems for three 
machine learning models (linear regression, support vector machine, and balanced k-means clustering) as QUBO 
problems to be solved on adiabatic quantum computers like D-Wave 2000Q. Furthermore, we analyzed the 
associated time and space complexity of our formulations and provided a theoretical comparison to the state-
of-the-art classical methods for training these models. Our results are promising for training machine learning 
models on quantum computers in the future.

In the future, we would like to empirically evaluate the performance of our quantum approaches on real 
quantum computers. We would also like to compare the performance of our quantum approaches to state-of-
the-art classical approaches. Finally, we would like to formulate other machine learning models such as logistic 
regression, restricted Boltzmann machines, deep belief networks, Bayesian learning and deep learning as QUBO 
problems that could potentially be trained on adiabatic quantum computers.
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