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Differences in host immune 
populations between rhesus 
macaques and cynomolgus 
macaque subspecies in relation 
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Laura Sibley1*, Owen Daykin‑Pont1, Charlotte Sarfas1, Jordan Pascoe1, Andrew D. White1 & 
Sally Sharpe1

Rhesus (Macaca mulatta) and cynomolgus (Macaca fasicularis) macaques of distinct genetic origin are 
understood to vary in susceptibility to Mycobacterium tuberculosis, and therefore differences in their 
immune systems may account for the differences in disease control. Monocyte:lymphocyte (M:L) ratio 
has been identified as a risk factor for M. tuberculosis infection and is known to vary between macaque 
species. We aimed to characterise the constituent monocyte and lymphocyte populations between 
macaque species, and profile other major immune cell subsets including: CD4+ and CD8+ T-cells, 
NK-cells, B-cells, monocyte subsets and myeloid dendritic cells. We found immune cell subsets to vary 
significantly between macaque species. Frequencies of CD4+ and CD8+ T-cells and the CD4:CD8 ratio 
showed significant separation between species, while myeloid dendritic cells best associated macaque 
populations by M. tuberculosis susceptibility. A more comprehensive understanding of the immune 
parameters between macaque species may contribute to the identification of new biomarkers and 
correlates of protection.

Non-human primates are widely used in infectious disease research because of the similarity in immune system 
and physiology to humans. Several genetically distinct populations within different macaque species are avail-
able for research use, and which population/species is chosen may depend on several factors; for example, their 
suitability for certain infectious diseases, and ease of availability.

At Public Health England (PHE), four types of macaque have been used in Tuberculosis (TB) research; rhe-
sus macaques (Macacca mulatta) (RM) of Indian genotype and cynomolgus macaques (Macacca fasicularis) of 
Mauritian (MCM) or Asian (Indonesian (ICM) and Chinese (CCM)) genotype. Macaques show a spectrum of 
TB disease, similar to humans1,2, but it is well known that the populations have differences in susceptibilities to 
TB disease when infected with Mycobacterium tuberculosis (M. tb); MCM and RM are more susceptible to TB 
than CCM3 and ICM4.

The reasons behind differences in the populations are unclear, although correlates of TB risk identified in 
human populations may also be applicable to macaque species. For example, our previous work had shown that 
monocyte:lymphocyte ratio (M:L) did differ between populations. A high, or extremely low M:L has been shown 
in humans to associated with risk to development of TB5, and in our research we have shown that RM and MCM 
have significantly higher M:L ratios than CCM6.

To further investigate differences in the host immune systems of macaque populations, a flow cytometric 
immunophenotyping assay was developed to compare T-cell, NK cell and monocyte subsets between popula-
tions as reports suggest that monocyte subsets and NK cells have the potential to bias the immune system to 
influence susceptibility to TB5,7.
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The aim of this study was to characterise and compare these different host factors across rhesus and cynomol-
gus macaque species and between cynomolgus macaques of distinct genetic origin, and to identify differences 
between them, and determine whether these may have a role in defining their susceptibility to TB through a 
retrospective analysis of data from TB infection studies.

Results
Immune cell differences between genetically distinct macaque populations as measured with 
the haematology analyser.  Differences between immune cell populations were observed between the 
species (Fig. 1). RM had significantly lower numbers of lymphocytes than all cynomolgus macaque populations 
(ICM (p < 0.001), CCM (p < 0.001) and MCM (p = 0.001) (Fig. 1A). The number of lymphocytes counted in the 
ICM was also significantly higher than in the MCM population (p = 0.034) (Fig. 1A).

RM also had the fewest monocytes (Fig. 1B), with levels significantly lower than those measured in ICM 
(p < 0.001), and MCM (p = 0.004). The ICM population showed a significantly higher monocyte count than both 
other cynomolgus populations (MCM p = 0.011, CCM p = 0.001).

ICM had significantly fewer neutrophils than all other populations (CCM (p < 0.001). RM (p = 0.002) and 
MCM (p = 0.004)) (Fig. 1C). The CCM population also displayed significantly higher neutrophil counts compared 

Figure 1.   Comparison of immune cell populations and ratios between macaques of distinct genetic origin, as 
measured using IDEXX ProCyte Haematology analyser. (A) Lymphocytes, (B) Monocytes, (C) Neutrophils, (D) 
Eosinophils, (E) M:L, (F) N:L. Cell populations expressed in absolute counts K/µL. Ratios calculated from cell 
populations expressed in absolute counts (K/µl). Each data point represents an individual animal: Rhesus = Blue 
(n = 84), Mauritian = Red (n = 26), Indonesian = Green (n = 27), Chinese = Purple (n = 18), bars show the group 
median. Kruskall–Wallis tests with Dunn’s multiple comparisons were applied, as not all groups passed Shapiro–
Wilk test for normality (p = 0.05. *p < (or equal) 0.05, **p < 0.01 and ***p < 0.001.
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to RM (p = 0.025). The ICM population displayed the least variation in neutrophil count (standard deviation 
(SD) = 1.55); with RM, MCM and CCM displaying considerable spread within each population (SD RM = 3.45, 
ICM = 3.72, CCM = 3.60).

RM and CCM had fewer eosinophils than ICM and MCM (Fig. 1D); RM had significantly fewer eosinophils 
than both MCM and ICM (both p < 0.001) and CCM had significantly fewer eosinophils than ICM (p = 0.002), 
but not significantly lower than RM or MCM (Fig. 1D).

CCM had a signifcantly lower M:L than RM (p = 0.0001), MCM (p = 0.0010), and ICM (p = 0.001) (Fig. 1E). 
However, none of the other differences in M:L reached significance. The spread in values was greatest in RM 
(standard deviation (SD) = 3.31, MCM = 2.20), ICM = 1.47, CCM = 0.91), although this may be due to the large 
sample size assessed (n = 84). ICM had significantly lower neutrophil:lymphocyte ratio (N:L) compared with 
RM (p < 0.001), MCM (p = 0.020) and CCM (p = 0.043) (Fig. 1F). No other significant differences were observed 
in N:L between macaque sub-species.

Cell frequencies as measured using immunophenotyping of PBMCs.  To look in more detail at cell 
populations and subsets, cryopreserved PBMCs from all macaque populations were used to characterise the key 
immune cell populations.

The ICM population had a significantly higher frequency of CD3+ T-lymphocytes when compared to RM 
(p = 0.013) (Fig. 2A) (gating strategy in Supplementary Fig. S1). The frequency of CD4+ T-lymphocytes was sig-
nificantly higher in RM compared to MCM (p < 0.001), ICM (p = 0.001) and CCM (p = 0.016) (Fig. 2B), whereas 
the CD8+ frequency was significantly lower in RM in comparison to MCM (p < − 0.0001), ICM (p = 0.0155) and 
CCM (p ≤ 0.0001) (Fig. 2C). CD4+ CD8+ double positive (DP) T-cells were lower in RM than all cynomolgus pop-
ulations, significantly so in comparison to both MCM and CCM (both p ≤ 0.0001) (Fig. 2D). The CD4:CD8 ratio 
was significantly higher in RM compared with all cynomolgus populations [MCM (p < 0.001), ICM (p = 0.001) 
and CCM (p = 0.001)] (Fig. 2E). Overall, the proportion of CD4+ and CD8+ subsets varied between groups 
(Fig. 2F), with MCM having the highest proportion of CD8+ and RM having the highest proportions of CD4+ 

Figure 2.   Cell populations in PBMCs determined by flow cytometric analysis in rhesus and cynomolgus 
macaques. (A) CD3+ lymphocytes, (B) CD4 + T-cells, (C) CD8 + T-cells, (D) CD4 + CD8 + DP T-cells, (E) 
CD4:CD8 ratio, (F) proportions of CD4+, CD8+ and CD4+CD8+ lymphocytes, (G) NK T-cells, (H) CD11c+ 
B-cells, (I) CD159+ NK cells, (J) CD16 + NK cells, (K) CD56 + NK cells, (L) CD16 + CD56 + DP NK cells, 
(M) proportions of cytotoxic (CD16 + CD56-), intermediate (CD16+ CD56+) and immunomodulatory 
(CD16− CD56+) NK cells, (N) Monocytes, (O) CD14 + monocytes, (P) CD16 + monocytes, (Q) 
CD14 + CD16 + monocytes, (R) proportions of classical (CD14+ CD16−), intermediate (CD14+ CD16+) 
and non-classical (CD14− CD16+) monocytes, (S) mDCs. Each data point represents an individual animal. 
Bars represent mean values in graphs F, M and R. Group numbers varied between comparisons, as previous 
immunophenotyping data for ICM and CCM was used to bolster comparisons: Rhesus (Blue) n = 20 and MCM 
(Red) n = 19. For lymphocyte comparisons ICM (Green) n = 18 and CCM (Purple) n = 22. For comparisons 
monocytes and NK cells, ICM (Green) n = 8 and CCM (Purple) n = 15. Kruskall-Wallis tests with Dunn’s 
multiple comparisons were applied, *p = 0.05, **p < 0.01 and ***p < 0.001.
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T-cells. Other lymphocyte cell types including NK T-cells and antigen presenting CD11c+ B-cells were not found 
to significantly differ between macaque species (Fig. 2G,H).

Differences in NK cell frequency (CD159a+) were apparent between rhesus and cynomolgus species (Fig. 2I) 
with fewer NK cells measured in RM relative to all cynomolgus subspecies. This result was significant when 
compared to MCM (p = 0.032) and ICM (p = 0.010) (Fig. 2I) (gating strategy in Supplementary Fig. S1). Natural 
Killer (NK) cell populations are typically subdivided into cytotoxic and immunomodulatory phenotypes based 
on expression of the surface markers CD16 (cytotoxic) and CD56 (immunomodulatory)8. Cytotoxic (CD16+ 
CD56−) NK-cells were highest in RM with proportions significantly higher than MCM (p = 0.0421) and CCM 
(p = 0.002). Similarly, cytotoxic NK-cells were higher in ICM than in CCM (p = 0.006) (Fig. 2J). The frequencies 
of CD16− CD56+ and DP CD16+ CD56+ NK cells were not significantly different between populations (Fig. 2K,L), 
but there was a trend for MCM have a higher frequency of DP NK cells. Overall, the NK subsets measured in 
MCM and CCM were most similar as both had relatively high proportions of CD56+ and DP NK cell popula-
tions in comparison to RM, and ICM in which the fewest CD56 expressing NK-cells were detected (Fig. 2M).

The overall frequency of monocytes did not significantly differ between populations (Fig. 2N) but significant 
differences in the proportions of different monocyte phenotypes were observed. RM possessed the highest fre-
quency of CD14+ monocytes (Fig. 2O) (gating strategy shown in Supplementary Fig. S2). MCM had a consider-
ably lower proportion of CD14+ monocytes compared to the RM (p = 0.004) and CCM (p = 0.014) populations. 
Significant differences were not seen in frequencies of the CD14+CD16+ (Intermediate) population (Fig. 2P). ICM 
and CCM displayed the highest frequencies of the CD14− CD16+ monocyte (Fig. 2Q), which were significantly 
higher than RM [ICM (p = 0.039) and CCM (p = 0.004)]. The total proportions of monocytes did not vary between 
species (Fig. 2R). Monocyte derived Dendritic Cells (mDC) were significantly higher in both ICM (p = 0.034) 
and CCM (p = 0.026) when compared to RM (Fig. 2S) (gating strategy in Supplementary Fig. S3).

Relationships between cell populations and associations with TB disease.  Principle Component 
Analysis (PCA) was applied to immunophenotyping datasets as a multivariate analysis technique for the identi-
fication of cellular immune compartment variables that differentiated between macaque species and sub-species 
(Fig. 3).

Along dimension 1, the factors that account for 25.4% (eigenvalue of 3.3) of the variance in the data were 
classical and non-classical monocytes, pathology-based scores and CD4+ T-cells, with CD4+ T-cells clustering 
with pathology scores. Dimension 2, which accounted for 21.1% of the variance (eigenvalue of 2.75) were affected 
mostly by CD8+ T-cells, CD16+ Classical monocytes and CD4+ T-cells (Fig. 3A and Supplementary data Fig. S4 
and Supplementary data Table S1).

Looking at the distribution of different populations of macaques, we can see that each population of macaques 
cluster separately, with RM having the largest variation and overlapping with MCM and CCM. ICM and RM 
show little overlap, and there was also little overlap between MCM and CCM. Non-classical monocytes and CD8+ 
T-cells seem to distinguish ICM from RM, and CD8+ and classical monocytes from CCM and MCM (Fig. 3B).

As T-cells appeared to be the most discriminatory between populations, we analysed the relationship 
between these cells and pathology score, calculated as described by Sharpe et al.9. This was used to investigate 
the potential for a common relationship between T-cells prior to infection and pathology score after infection 
with M. tb. We found that the CD4+ T-cells at baseline did correlate with an increased pathology score (r = 0.527, 
p = 0.025) (Fig. 3C). There was a non-significant trend for CD8+ T-cells to negatively correlate with pathology 

Figure 3.   Principle component analysis of immune parameters between macaque groups using the 
immunophenotyping data and correlations with pathology scores. (A) PCA loading plot of immune parameters, 
with a scale for relative contribution of each component to the model. Red = highest to grey = lowest, (B) PCA 
biplot showing how the macaque populations cluster towards the variables that contribute the most to the 
variation in the data. Largest of each shape indicates the mean of each population with smaller shapes indicating 
the outliers. Blue circles = CCM, yellow triangles = ICM, grey squares = MCM, red crosses = RM (C) Correlation 
of CD4 + T-cells with pathology scores following TB infection, with each population indicated by a different 
colour, red = CCM, green = ICM, blue = MCM and red = RM (D) Correlation of CD8 + T-cells with pathology 
scores following TB infection, with each population indicated by a different colour, red = CCM, green = ICM, 
blue = MCM and red = RM.
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score (r = 0.445, p = 0.064) (Fig. 3D). Classical and non-classical monocytes were not found to correlate with 
pathology score (r = 0.270, p = 0.278 and r = − 0.111, p = 0.661 respectively).

Discussion
In this study, two approaches were taken to characterise, enumerate and compare the levels of white cell popula-
tions in the blood of four genetically distinct macaque populations. Although there are limited reports comparing 
the immune cells of humans with those in certain macaque populations10,11 to our knowledge, this is the first time 
a direct comparison of four genetically distinct macaque populations has been performed using the same assays.

Evaluation of the cellular composition of anti-coagulated blood using a haematology analyser enables an 
unbiased analysis of cell population frequency and number per ml of blood for all types of cells present. Con-
versely, data originating from PBMC samples relates to mononuclear cell populations only and is proportional, 
but the main advantages of flow cytometric immunophenotyping is that it can generate more detailed data and 
can be applied to archived samples enabling retrospective interrogation of materials.

The haematology analyser derived data set demonstrated that lymphocytes and monocyte counts were differ-
ent between rhesus and cynomolgus macaque species, whereas there was little difference between the genetically 
distinct cynomolgus populations. Separating the populations into TB disease susceptible (RM and MCM) and 
less susceptible (ICM and CCM) as suggested by the literature4,12, it was only lymphocyte levels that were dif-
ferent between these groupings, and suggests that higher numbers of lymphocytes are important for protection 
against M. tb. Eosinophil and neutrophils counts were different between groups, but the differences were not 
common between the susceptible and less susceptible groups and so, it is perhaps unlikely that basal eosinophils 
and neutrophil numbers have a significant bearing on susceptibility to TB disease.

Immunophenotyping studies of PBMC were used to evaluate the subtypes of the lymphocytes and monocytes 
present. When the least susceptible populations (ICM and CCM) were grouped and compared to the susceptible 
populations (RM and MCM), key differences were identified in the frequency of mDC. The CD4:CD8: ratio also 
differed between RM and cynomolgus macaques.

The availability of fewer samples from some macaque populations compared to others limited the ability 
to interpret differences between populations from the PCA analysis. However, by evaluation of the all animals 
representing a group with a variety of outcomes following M. tb infection, the impact of different cell populations 
in general on TB susceptibility can be evaluated. The frequency of CD4+ T-cells was identified using PCA to 
group the macaque populations generally with some overlap, and the frequency of CD4+ T-cells correlated with 
TB-induced disease burden measured using a pathology-based scoring system. There are also many subtypes of 
CD4+ T-cells to be considered, and this analysis may be too simplistic, and subtypes, functionality and activation 
status also need to be considered in future analysis. The difference in lymphocyte number between macaque 
populations revealed by haematology analysis, when taken with the relationship identified by PCA for CD4+ T 
cells suggest both lymphocyte number and subtype have a role in TB susceptibility; such that a higher number 
of lymphocytes but a lower proportion of CD4 + T-cells may help disease control.

Frequency of CD8+ T-cells and CD16+ NK cells contributed to the PCA second dimension, highlighting a 
potential difference in cells that have cytolytic roles between primate populations. We saw a non-significant cor-
relation between higher numbers of CD8+ cells before infection that correlated with lower pathology scores. In 
CD8+ depletion studies in primates, CD8+ T-cells have been shown to be important in the control of infection13. 
The CD4:CD8 ratios defined in ICM and CCM showed a balance in CD4+ and CD8+ T-cells, whereas in MCM 
a skew towards the CD8 population was found, in line with the previous report from Zitsman et al.14, whereas 
the populations in RM were more biased towards CD4. A low CD4:CD8 ratio has been found to be a predictor 
TB in HIV patients15 so as MCM do have the lowest CD4:CD8 ratio, this could be a contributing risk factor in 
their susceptibility to TB.

NK cell transcripts were found to be lower in CMV + infants, that went on to develop TB7 suggesting a link 
between NK cells and TB susceptibility. A study comparing NK subsets between persons from a TB endemic 
country with TB naïve persons showed that there was little difference in the frequency of cytolytic NK cells, but 
that those NK cells had different reactivity and functional capacity16. Therefore, in this study, the NK subtype 
proportions were most similar between MCM and CCM which have very different susceptibilities to TB so fur-
ther investigation into the functionality of the NK cells is required to determine whether there are differences 
in their capacity to react to TB and influence disease progression.

Monocytes contributed to the variance in the first dimension in the PCA, and there was a difference in the 
proportion of CD14+ classical monocytes between rhesus and cynomolgus macaques, but they did not correlate 
with pathology. Dijkman et al. saw differences in monocyte subtypes and cytokine production post-infection with 
TB between rhesus and cynomolgus macaques17 and so looking post-infection at whether there are differences 
between populations in how they respond to infection that relates to their basal subtypes would be something 
to examine further in future work.

Antigen presenting cells (APCs) such as mDCs are a key component of T-cell activation, and this popula-
tion was present at significantly higher frequencies in the macaque populations that are less susceptible to TB. 
Efficient priming of T-cells is considered to be key in protecting against TB and TB modulates DC activity by 
delaying their ability to migrate to the lymph nodes, hampering the formation of an effective immune response 
and giving the TB infection time to establish18. Furthermore DCs have been found to be present at lower levels 
in patients with TB19. Having a higher number of mDCs has the potential to confer an advantage by increasing 
the likelihood of migration to the lymph nodes and increasing the interactions with T-cells to promote an early 
immune response to infection.

Overall, these studies have revealed differences in the cellular composition of peripheral blood in four geneti-
cally distinct macaque populations, and particularly between rhesus and cynomolgus macaques in terms of 
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lymphocyte populations. The concordance of findings from haematology analyser-based and flow cytometry-
based measurements, supports the concept that there are fundamental differences in the makeup of the immune 
systems of these species. Others have noted that macaques vary genetically substantially between geographi-
cal locations20, and recommend caution when comparing data from different models for the same diseases as 
contributing factors could obscure risk factor-disease associations, or lead to artificial associations. Therefore, 
it is important to understand the genetic background of the animals used in studies, together with the potential 
implications that any consequent constitutive differences between populations may have on the experimental 
outcome. Characterisation of macaque populations provides the opportunity to select populations with desirable 
characteristics for specific studies so differences can be exploited to further understand the factors required to 
promote a successful immune system.

Methods
Information on use of animal tissues.  This study was a retrospective analysis of data generated from 
samples collected from animals housed within the PHE-managed macaque breeding units and from macaques 
enrolled in previous studies at PHE Porton. RM and cynomolgus macaques were obtained from established UK 
Home Office approved breeding colonies in the United Kingdom (ICM, MCM, RM) and China (CCM). Genetic 
analysis of macaques from the UK colonies has previously confirmed the rhesus macaques to be of the Indian 
genotype and cynomolgus macaques of Mauritian21 or Indonesian22 genotypes. The numbers of each species 
used for each type of analysis is outlined in Table 1. Information on housing and procedures have been described 
elsewhere23.

All animals that had taken part in TB infection studies were challenged with M. tb strain Erdman K 01 (BEI 
resources) at the estimated retained doses shown in Table 2 using the method of aerosol infection which has been 
previously reported4,23–26. A description of the necropsy procedures, pathology and bacteriology processes have 
been described for the RM; S36, S40, S51, S50 and S3323, MCM12 and CCM (submitted27) and similar procedures 
were used for all studies. A description of the pathology scoring system is reported by Sharpe et al9.

Table 1.   Number of samples from each population for each type of analysis.

RM MCM ICM CCM

Haematology analyser 84 26 27 18

Flow cytometry 20 19 8 15

Flow cytometry M:L 10 6 6 6

TB infection studies 6 2 4 6

Table 2.   Estimated retained doses of M. tb, study lengths and end points of animals that took part in TB 
infection studies.

ID Species Estimated retained dose (CFU) Study length (weeks) End point (weeks)

D19 RM 75 12 5

S36 RM 100 17 7

S40 RM 100 17 15

S51 RM 100 17 7

S50 RM 100 17 17

S33 RM 100 17 7

0385 CCM 1000 28 28

0803 CCM 1000 28 28

1027 CCM 1000 28 10

4389 CCM 1000 28 5

8979 CCM 1000 28 28

9623 CCM 1000 28 7

802HAHA ICM 75 12 12

044HAFB ICM 75 12 12

978AN ICM 30 12 12

548FBGA ICM 30 12 11

M054E MCM 43 13 13

M064D MCM 35 13 13
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IDEXX ProCyte DX.  Blood samples anti-coagulated with EDTA (1.8 mg/ml blood) or heparin, (both BD 
Biosciences, USA). All ProCyte DX were analysed using the IDEXX ProCyte DX Haematology analyser (IDEXX, 
USA). Results are expressed as absolute counts (K/µl), or ratios thereof.

PBMC Isolation and resuscitation.  Peripheral blood mononuclear cell (PBMC) samples were iso-
lated using standard methods28. The density gradient material used for PBMC isolation was dependent on the 
macaque species; Ficoll Histopaque (GE Healthcare, USA) for rhesus macaques or Percoll (Sigma-Aldrich, UK) 
for cynomolgus macaques. Samples were stored at − 180 °C in isothermal tanks prior to analysis.

Upon resuscitation for analysis, samples were washed twice with RPMI media (Sigma-Aldrich, UK) supple-
mented with 10% foetal calf serum (FCS), with added DNase (1 Unit ml−1) (Sigma-Aldrich, UK) by centrifugation 
at 400 g for 5 min. The samples were rested for either 2 h, or overnight, at 37 °C, 5% CO2.

Flow cytometric staining.  Following resting of cells, adherent cells were washed from the tube by addi-
tion of 2 mM EDTA (Sigma-Aldrich, UK) and gently agitated for 15 min. A viable cell count was performed, 
and 1.5 × 106 cells per animal were used for flow cytometric staining. LIVE/DEAD Fixable Dead Stain Kit Violet 
(Invitrogen, UK) was used according to manufacturer protocol, prior to application of other antibodies to reduce 
background staining; and was incubated for 30-min. Cells were then washed by centrifugation at 400  g for 
5 min and resuspended in PBS. Staining with the full panel of antibodies was applied and incubated for 30 min 
according to the information in Table 2. Lymphocytes and monocytes were initially gated using forward scatter 
(FSC) and side scatter (SSC). Lymphocytes were then determined using Live/Dead and CD20− CD3+ staining 
and CD4+ and CD8+ staining from the CD20− CD3+ population (Supplementary data Fig. S2). NK T-cells were 
taken from the CD20− CD3+ population and were CD16+. CD11c B-cells were CD3−, CD20+ and CD11c+ (Sup-
plementary data Fig. S2). NK Cells were CD3−, CD8+ HLA-DR− and then CD159a+. The subsets of NK cells 
were taken from the CD159a+ population and were defined as either CD16+ CD56− (cytotoxic), CD16+ CD56+ 
(intermediate) or CD16− CD56+ (immunomodulatory) (Supplementary data Fig. S2). From the initial monocyte 
gate, monocytes were characterised by being CD3− and CD20−, then CD14+/− and HLA-DR+ and subsets were 
defined using CD14+ CD16− (classical), CD14+ CD16+ (intermediate) and CD14− CD16+ (non-classical) (Sup-
plementary data Fig. S3). The mDCs were defined as CD14− CD3−, and then CD8− CD20−, followed by CD159a− 
gating, HLA-DR+ gating and then characterised as being CD16+ and CD11c+ (Supplementary data Fig.  S4). 
Following antibody labelling cells were washed twice in PBS by centrifugation at 400 g for 5 min, resuspended in 
4% paraformaldehyde solution and rested for a minimum of 20 min, prior to flow cytometric acquisition using 
LSRII Fortessa flow cytometer (BD Biosciences, Oxford, UK) (Table 3).

Data analysis.  IDEXX data was analysed using GraphPad Prism V8.0.1 (GraphPad Software Inc, USA) and 
the Kruskal–Wallis test for multiple comparisons was applied to data sets. Flow cytometry data was analysed 
using FlowJo V10 (BD Biosciences, UK) and data exported for analysis using GraphPad Prism V8.01. Data was 
tested for normality using Shapiro–Wilk test for normality and the Kruskall-Wallis tests with Dunn’s corrections 
for multiple comparisons were applied to data. Principle Component Analysis (PCA) was carried out using 
RStudio version 3.5.3 (RStudio Inc., Boston, MA, USA).

Ethical approval.  All animal procedures and study design were approved by the Public Health England, 
Animal Welfare and Ethical Review Body, Porton Down, UK, and authorised under an appropriate UK Home 
Office project license.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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Table 3.   Antibody panel.

Antigens CD3 CD4 CD8 CD11c CD14 CD16 CD20 CD56 CD159a HLA-DR Live/Dead

Lymphocyte CD3 CD4 CD8 – – – – – – – L/D

NK-cell – – CD8 – – CD16 – CD56 CD159a Dim/– L/D

Monocyte – – – – CD14 CD16 – – – HLA-DR L/D

mDC – – – CD11c – CD16 – – – HLA-DR L/D

B-cell – – – CD11c – – CD20 – – – L/D

NKT Cell CD3 – CD8 – – CD16 – CD56 – – L/D

Fluorochromes AF700 PerCP-Cy5.5 APC-Fire750 PE APC BV786 PE-Dazzle BV605 PE-Cy7 BUV395 Violet

Clone FN-18 OKT4 SK1 3.9 M5E2 3G8 2H7 MY31 Z199 G46-6 N/A

Manufacturer BD Biolegend Biolegend Biolegend Biolegend Biolegend Biolegend BD Beckman Coulter BD Invitrogen
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