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A radiomics approach 
for automated diagnosis of ovarian 
neoplasm malignancy in computed 
tomography
Shiyun Li1,5, Jiaqi Liu2,5, Yuanhuan Xiong1,5, Peipei Pang3, Pinggui Lei4, Huachun Zou2, 
Mei Zhang2, Bing Fan2* & Puying Luo1*

This paper develops a two-dimensional (2D) radiomics approach with computed tomography (CT) to 
differentiate between benign and malignant ovarian neoplasms. A retrospective study was conducted 
from July 2017 to June 2019 for 134 patients with surgically-verified benign or malignant ovarian 
tumors. The patients were randomly divided in a ratio of 7:3 into two sets, namely a training set (of 
n = 95) and a test set (of n = 39). The ITK-SNAP software was used to delineate the regions of interest 
(ROI) associated with lesions of the largest diameters in plain CT image slices. Texture features were 
extracted by the Analysis Kit (AK) software. The training set was used to select the best features 
according to the maximum-relevance minimum-redundancy (mRMR) criterion, in addition to the 
algorithm of the least absolute shrinkage and selection operator (LASSO). Then, we employed a 
radiomics model for classification via multivariate logistic regression. Finally, we evaluated the 
overall performance of our method using the receiver operating characteristics (ROC), the DeLong 
test. and tested in an external validation test sample of patients of ovarian neoplasm. We created a 
radiomics prediction model from 14 selected features. The radiomic signature was found to be highly 
discriminative according to the area under the ROC curve (AUC) for both the training set (AUC = 0.88), 
and the test set (AUC = 0.87). The radiomics nomogram also demonstrated good calibration and 
differentiation for both the training (AUC = 0.95) and test (AUC = 0.96) samples. External validation 
tests gave a good performance in radiomic signature (AUC = 0.83) and radiomics nomogram 
(AUC = 0.95). The decision curve explicitly indicated the clinical usefulness of our nomogram method 
in the sense that it can influence major clinical events such as the ordering or abortion of other 
tests, treatments or invasive procedures. Our radiomics model based on plain CT images has a high 
diagnostic efficiency, which is helpful for the identification and prediction of benign and malignant 
ovarian neoplasms.

Ovarian tumors are common tumors of the female reproductive system. These tumors can be categorized into 
malignant or benign types, based on whether the tumor tends to become progressively worse (leading to dete-
rioration or death) or not. Different types of ovarian tumors have different management and treatment schemes. 
Therefore, accurate identification of ovarian tumors as benign or malignant is highly crucial1.

Ovarian tumors are usually occult in the deep female pelvic cavity with insidious onset. The diagnosis of such 
tumors usually depends on the clinical experience of the gynecologists and the characteristics of the employed 
imaging technique, which might be ultrasonography, magnetic resonance imaging (MRI)2. Because of the sub-
jectivity of ultrasonography, the expensive of MRI and the allergy prone of contrast agent, plain CT is optimal 
selection for this study on account of population usability and mass acceptance. However, diagnosis of the ovar-
ian tumor malignancy has been traditionally based on the subjective qualitative judgment of radiologists and 
gynecologists who use their clinical experience to examine imaging data and assess ovarian tumors of high tissue 
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diversity and heterogeneity3. Subjective evaluation is generally unstable under the influence of wide variations 
in the human rater expertise.

Radiomics is a new subfield of radiology that has recently emerged as an alternative to the traditional qualita-
tive diagnosis approach4,5. In radiomics, imaging data quantification is assisted by a variety of advanced methods 
of image processing. In particular, algorithms for data characterization are utilized for deriving an immense 
number of numerical features from radiographic images4,5. Furthermore, numerous investigations have dem-
onstrated that CT-based radiomics typically show high performance in the differentiation between benign and 
malignant lesions in several human organs including the kidneys, lungs, and liver6. Our work is based on the 
hypothesis that we can utilize CT-based radiomics features extracted from primary ovarian tumor lesions in 
order to establish imaging biomarkers that can non-invasively identify benign and malignant tumors, and also 
differentiate between them.

Materials and methods
General information.  The current investigation is a retrospective one, which has been scrutinized closely 
and thoroughly, and then officially approved and accepted by the Ethics Committee of Jiangxi Provincial Peo-
ple’s Hospital Affiliated to Nanchang University. Informed consent was formally secured from all concerned 
parties, particularly patients. All the relevant guidelines and regulations that are agreed upon worldwide were 
observed while carrying out this work. We retrospectively reviewed relevant surgical and radiological data col-
lected between 2017 and 2020. Persons selected for inclusion in this study satisfied the following criteria: (a) 
female patients with histopathological verified ovarian tumors, (b) persons with no history of previous or cur-
rent malignancy other than that of ovarian tumors, (c) patients who were subjected to preoperative high-resolu-
tion procedures for ovarian cancer staging, and (d) patients who had preoperative CT for the pelvic area within 
the preceding half a month. Among patients satisfying these criteria, 38 patients were not included according 
to the following considerations: (1) patients who were subjected before the CT examination to radiotherapy, 
chemotherapy or chemoradiotherapy (n = 20). (2) patients diagnosed to suffer from inflammatory disease con-
ditions (n = 11), (3) patients with low-quality imaging records (n = 7). We also selected 26 eligible patients from 
another hospital for external validation. Eventually, 160 patients were considered in our study.

CT image acquisition.  The CT images were obtained by the SOMATOM Definition CT scanner. We used 
automatic modulation with those scanning parameters: a tube voltage of 120 kVp, a tube current of 150 mAs, a 
section thickness of 5 mm, a reconstruction interval of 1 mm, and a slice gap of 1 mm.

Region‑of‑interest segmentation.  All regions of interest were segmented from baseline DICOM images 
using ITK-SNAP (Version 3.6.0). Manual ROI segmentation from the slice with the largest lesion diameter7 
was performed independently by two radiologists (henceforth referred to as readers A and B, who have 5 and 
15 years of abdominal radiology experience, respectively) (See Fig. 1).

Feature extraction.  We extracted textural features for 134 ROIs (62 Benign and 72 malignant) using the 
Artificial Intelligence Kit for life sciences (Version 3.0.1.A, GE Healthcare). For each ROI, a total of 396 features 
were computed including those of texture, histograms, form factors, gray-level co-occurrence matrices (GLCM), 
grey level run-length matrix (RLM), and gray-level zone-size matrices (GLZSM). GLCM and RLM in four direc-
tions (0°, 45°, 90°, 135°) and three displacements (1, 4, 7) were calculated to describe patterns or the spatial 
distribution of voxel intensities. The details are shown in the “Supplement S1”.

Feature preprocessing.  Before feature selection, three steps of feature preprocessing were performed: (1) 
replacing the outliers by the median of the same feature; (2) the control and patient groups are subdivided into 

Figure 1.   Manual delineation on the slice having the largest ovarian lesion diameter.
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training (n = 95) and test (n = 39) sets with an approximate ratio of 7:3; (3) Z-score data normalization is applied 
Z-score normalization was done in the training dataset to eliminate the differences in the value scales of extrac-
tion features. And both training and test datasets were normalized using the mean and standard deviation com-
puted using in the training dataset alone. (In this normalization process, the mean value is subtracted from the 
original feature value and then the difference is divided by the standard deviation).

Feature selection and model construction.  The feature selection and model construction were per-
formed in the training dataset. First, we tested the robustness and reproducibility of image features. Since the 
features were extracted based on the ROIs segmented by radiologists manually, we only used the features that 
were most robust against the manual segmentation among different radiologists8. The correlation coefficient for 
each feature was calculated between the feature set-1 (from Radiologist-A) and feature set-2 (from Radiologist-
B) by using the Spearman rank correlation test. Features with correlation coefficients greater than 0.8 were 
regarded as robust features, since a correlation coefficient of 0.8 indicated a high consistency and repeatability9. 
Second, we employed the maximum-relevance minimum-redundancy (mRMR) algorithm to select the features 
by maximizing the correlation between selected features and differentiating benign and malignant, eliminating 
the redundancy between features. Next, the least absolute shrinkage and selection operator10,11 (LASSO) method 
was employed to further select the most useful features by penalty parameter tuning λ. We chose the optimal λ 
based on the minimum criteria according to tenfold cross-validation. The radiomics signature (Radscore) was 
then calculated for each case via a linear combination of selected features that were weighted by respective coef-
ficients. 

The radiomics nomogram construction and evaluation.  Univariate logistic regression was exploited 
to find independent predictors for ovarian tumors. The candidate predictors included clinical factors (i.e., age, 
ascites, and boundary), biomarker expression (CA125)12,13, and the RAD score7,14. “Supplementary Methods 
S1” summarizes the details of the high-performance predictors. Multivariate logistic regression was utilized to 
combine those individual predictors, develop a more robust prediction model for the ovarian tumor malignancy, 
and also construct the radiomics nomogram15.

A calibration curve was used for performance evaluation, and the model fitness was examined using the 
Hosmer Lemeshow test16. The nomogram-based diagnosis performance was assessed using the receiver oper-
ating characteristics (ROC). The probabilistic malignancy score for ovarian tumors was determined using the 
nomogram method, and all involved patients were assigned based on the ROC curve cut-off value to low- or 
high-probability groups. The clinical significance of the nomograms was assessed on the cases of patients with 
ovarian tumors of different degrees of malignancy. We performed decision curve analysis (DCA) to check the 
feasibility of the nomograms17.

Statistical analysis.  The data normality was verified using the Kolmogorov–Smirnov test. This test was 
carried out using the SPSS 23.0 software and the R statistical tools (Version 3.4.4). The probability scores from 
the benign and malignant samples were statistically compared based on the t-test (for normally distributed 
data) and the Mann–Whitney U test (for data with skewed distributions), where the scores were expressed by 
mean ± standard deviation (x ± s). The χ2 test was employed in comparing count data among the two groups. The 
model predictive efficacy was assessed using typical diagnostic indicators such as the accuracy, the sensitivity, 
the specificity, as well as the area under the ROC curve (AUC)18.

Ethical approval.  All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards. Officially approved and accepted by the 
Ethics Committee of Jiangxi Provincial People’s Hospital Affiliated to Nanchang University.

Informed consent.  Informed consent was obtained from all individual participants included in the study.

Results
Patient characteristics.  As indicated in Table  1, no significant differences could be detected among 
patients from the training and test subsets with respect to the factors of age, ascites, boundary, or biomarker 
expression (i.e., CA125). Nevertheless, for patients with benign or malignant tumors, significant statistical differ-
ences were realized in age, ascites, CA125, and the radiomic signature (all p < 0.05). The other differences turned 
to be insignificant, as demonstrated in Table 2.

Performance outcomes for the clinical prediction model.  The constructed clinical prediction model 
for identifying benign and malignant ovarian neoplasms returned the following performance metrics. For the 
training set, the AUC was 0.82 (with a 95% CI 0.73–0.91), while the sensitivity, specificity, and accuracy were 
76.5%, 88.6%, and 82.1%, respectively. For the validation data, the AUC was 0.82 (with a 95% CI 0.68–0.96), 
while the sensitivity, specificity, and accuracy rates were 71.4%, 88.9%, and 79.5%, respectively (See Table 3).

Construction and assessment of the radiomic signature.  Multivariate logistic regression were 
employed for the construction of the radiomic signature. After feature selection, 14 features were selected, which 
were utilized in forming the radiomic signature model (radiomics) (see Fig. 2). Our results show that good pre-
diction performance using the radiomic signatures for both the training and test sets, with a marginal difference 
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in performance on the two sets. Specifically, the radiomic signature exhibited favorable performance with AUC 
values of 0.88, 0.87 and 0.83 on the three sets, accuracy values of 81.1,82.1 and 76.0%, specificity values of 84.0, 
77.7, and 53.8%, and sensitivity values of 78.4, 85.7, and 100.0%, respectively (see Table 3). The radscores showed 
a significant statistical difference among the benign and malignant samples for both training and testing. This 
indicates that the radiomic signature correlates well with the differential tumor diagnosis, as shown in Fig. 3.

Table 1.   Demographic characteristics in the training and validation sets.

Training set (n = 95)

P-value

Validation set (n = 39)

P-valueBenign Malignant Benign Malignant

Number 44 51 18 21

Age 41.6 ± 19.0 53.4 ± 11.8 0.001 41.3 ± 17.9 52.8 ± 8.2 0.031

< 18 4(9.1%) 1 (2.0%) 1 (5.6%) 0 (0.0%)

> 18, ≤ 30 11(25.0%) 2 (3.9%) 4 (22.2%) 0 (0.0%)

> 30, ≤ 50 16(36.4%) 16(31.4%) 9 (50.0%) 9 (42.9%)

> 50 13(29.5%) 32(62.7%) 4 (22.2%) 12 (57.1%)

CA125 < 0.0001 0.0007

< 35 21 (47.7%) 5 (9.8%) 9 (50.0%) 3 (14.3%)

> 35, ≤ 200 20 (45.5%) 13 (25.5%) 9 (50.0%) 5 (23.8%)

> 200, ≤ 500 2 (4.5%) 11 (21.6%) 0 (0.0%) 3 (14.3%)

> 500 1 (2.3%) 22 (43.1%) 0 (0.0%) 10 (47.6%)

Ascites < 0.0001 0.0002

None 30 (68.2%) 8 (15.7%) 10 (55.6%) 3 (14.3%)

Little 11 (25.0%) 12 (23.5%) 8 (44.4%) 4 (19.0%)

Middle 1 (2.3%) 12 (23.5%) 0 (0.0%) 5 (23.8%)

Large 2 (4.5%) 19 (37.3%) 0 (0.0%) 9 (42.9%)

Boundary 0.0003 0.024

Clear 38 (86.4%) 26 (51.0%) 17 (94.4%) 12 (57.1%)

Intervenient 6 (13.6%) 14 (27.5%) 1 (5.6%) 4 (19.0%)

Obscure 0 (0.0%) 11 (21.6%) 0 (0.0%) 5 (23.8%)

Radscore median [iqr] − 1.3 [− 2.8, 0.2] 1.6 [0.7, 2.1] < 0.0001 − 1.5 [− 3.8, 0.3] 1.6 [1.2, 2.2] < 0.0001

Table 2.   Results of univariate and multivariate logistic regression for predicting malignancy in ovarian 
masses.

Variable

Univariate regression Multivariate regression

Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value

Age 2.798 [1.577;4.963] 4.35E − 04 3.33 [1.45;7.64] 0.005

CA125 4.670 [2.508;8.695] 1.18E − 06 3.29 [1.56;6.96] 0.002

Boundary 4.947 [2.030;12.056] 4.35E − 04

Ascites 3.970 [2.272;6.936] 1.27E − 06 2.75 [1.50;5.06] 0.001

Table 3.   Predictive performance outcomes of the radiomic nomogram, radiomic algorithm, and clinical 
model.

Group Model Accuracy 95% CI Sensitivity Specificity

Training

Clinical 0.821 [0.729;0.892] 0.765 0.886

Radiomics 0.811 [0.717;0.884] 0.784 0.841

Nomogram 0.905 [0.828;0.956] 0.902 0.909

Validation

Clinical 0.795 [0.635;0.907] 0.714 0.889

Radiomics 0.821 [0.665;0.925] 0.857 0.778

Nomogram 0.897 [0.758;0.971] 0.947 0.850

External validation

Clinical 0.760 [0.549;0.906] 0.583 0.923

Radiomics 0.760 [0.549;0.906] 1.000 0.538

Nomogram 0.880 [0.688;0.975] 0.846 0.917
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Construction and assessment of the radiomic nomogram.  We revealed through univariate logistic 
regression that age, ascites, CA125, and the radiomic signature could independently predict and diagnose ovar-
ian tumors. As shown in Table 2 and Fig. 4, multiple logistic regression was carried out using these predictors in 
order to construct more robust prediction models and the nomogram.

Excellent consistency among the predicted and actual ovarian tumor types was shown using the calibra-
tion curves in the radiomic nomograms for both patient sets. The AUC values of the nomogram-based tumor 
prediction in the three sets were respectively 0.95, 0.96 and 0.95. The accuracy, specificity, and sensitivity were 
90.5, 90.2, and 90.9% for the training set; 89.7, 94.7, and 85.0% for the test set and 88.0, 84.6, and91.7% for the 
external validation set, respectively (Table 3 and Fig. 5). According to the DeLong test, the AUCs of the models 
based on clinical information were significantly different from the nomogram-based ones for the training and 
testing sets (See Table 4). Hence, the nomogram method was found to have good performance on both sets. In 
addition, the Hosmer–Lemeshow test demonstrated no statistically significant differences among the training 
and testing subsets (p > 0.05). This verifies the nomogram diagnostic superiority. The nomogram was also used 
to estimate the probability scores of the ovarian tumors, where patients were categorized into the low- and high-
probability groups based on the Youden index19 (with a cut-off value of 0.391), which was defined according to 
the training-set nomogram. The high- and low-probability groups had a significant difference in the number of 
benign and malignant samples (p < 0.0001). Figure 6 depicts the DCA plot of the radiomic nomogram. Clearly, 
the plot shows that the radiomic nomogram method outperforms the clinical model for the “treat none” vs. “treat 
all” strategies with a treatment probability threshold ranging from 0 to 0.9.

Discussion
Since the introduction of radiomics in 2012, this paradigm has been widely used in investigating ovarian tumors. 
Zhang et al.7 report that MRI-based radiomic features show high correlation with ovarian endometrioid car-
cinoma (OEC) classification and patient prognosis. Also, Park et al.8 showed that models of machine learning 
(ML) using age and texture features of contrast-enhanced CT resulted in high sensitivity as well as moderate 
specificity for malignant lesion detection20. However, there is currently no single CT-based texture feature to 
identify benign and malignant ovarian tumors. Hence, this study explored CT texture features based on plain 
CT scans, which has a wide range of clinical applicability.

Among the examined features, the gray-level size-zone matrix features have the largest value among the 14 
features. This reflects the feature strength heterogeneity and emphasizes the extensive heterogeneity in ovar-
ian tumors21,22. The form-factor features describe the 3D size and shape of the tumor area23. In this study, no 

Figure 2.   Feature selection using the LASSO-based logistic regression. (A) Selection of the tuning parameter 
(λ) using tenfold cross-validation and the minimum criteria. A plot of the partial likelihood deviance was made 
against log (λ). The minimum and 1-SE criteria were used to draw the dotted vertical lines at the optimal values. 
(B) Profiles of the LASSO coefficients for the 20 texture features. The vertical line was drawn at a value selected 
from the log (λ) sequence using tenfold cross-validation. Six features of non-zero coefficients are shown. (C) The 
selected radiomic features and corresponding coefficients.
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form-factor features were consistent with the research focus on 2D plain CT images. This also indicates no 
statistically significant correlation between the tumor type and size.

We now consider the gray-level co-occurrence matrix (GLCM) features, that describe the frequencies of the 
pairwise arrangements of voxels associated with the same gray-level value. The investigated features in this study 
included three types of the GLCM features (namely, the energy, the inverse difference moment, and the Haralick 
correlation), which further characterize the heterogeneity of local tumor regions22,24. The grey-level run-length 
matrix (RLM) features reflect the texture roughness and directionality, since the value of the long-run emphasis 

Figure 3.   Comparison of the radscore for benign and malignant ovarian tumors on the training and test sets, 
respectively. (left: training set; right: test set).

Figure 4.   A nomogram for identifying benign and malignant ovarian tumors.
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Figure 5.   The AUC values for radiomic signatures used in identifying benign and malignant ovarian tumors.
(left: training set; middle: test set; right: external set).

Table 4.   Comparison of the prediction with the radiomic nomogram, radiomics algorithm, and the clinical 
model.

Group Model 1 Model 2 P-value

Training

Clinical Radiomics 0.224

Radiomics Nomogram 0.013

Nomogram Clinical 0.002

Validation

Clinical Radiomics 0.560

Radiomics Nomogram 0.087

Nomogram Clinical 0.040

Figure 6.   Decision curve analysis of imaging and clinicopathological features. The green, blue and red lines 
correspond to the nomograms from the clinical, radiomic, and nomogram models, respectively. Also, the 
light gray line is associated with the hypothesis that all imaging and clinicopathological features are related to 
ovarian malignant tumors. As well, the dark gray line is associated with the hypothesis that all imaging and 
clinicopathological features are not related to ovarian malignant tumors.
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is dominant in a rough image25. We found that the screening results contained 5 RLM features. In fact, three 
RLM features were present in the front row: low-run grey-level emphasis, long-run grey-level emphasis, and 
grey-level nonuniformity.

Texture analysis of CT imaging data has demonstrated promising results on various types of tumors for 
pathological feature prediction, prognosis, and response to therapy6. Meng et al.14 suggested that the approach 
of CT-based radiomics has a clear potential for differentiating between the sarcomatous renal cell carcinoma 
(SRCC) and the clear cell renal cell carcinoma (CCRCC). Dong et al.15 used a deep-learning approach in order 
to construct a robust predictive model based on preoperative CT images, tumor histology, and cancer grading 
in patients with cervical cancer. A reasonable accuracy was achieved by this model in predicting the lymph 
node state in cases of cervical cancer. In our work, we have built a 2D CT-based radiomic nomogram model for 
identifying benign and malignant ovarian tumors. The nomogram method resulted in AUC scores of 0.95 and 
0.96 for the training and test sets, respectively. The nomogram method was indeed capable of providing good 
calibration and differentiation of ovarian tumors, and proved to be a reliable and effective method for screening 
malignant ovarian lesions.

In our work, we chose 2D CT-based texture signatures for the analysis of ovarian tumors. As 2D ROIs were 
easy to manipulate, and the proposed signatures offered lower complexity and faster computations, the use of 
2D features in clinical practice is highly recommended26. The outcomes based on the introduced signatures for 
identifying benign and malignant ovarian tumors were surprisingly superior. All ovarian lesions initially emerge 
as small tumors that show temporal steady growth. So, the tumor volume estimate depends clearly on the imaging 
time. Therefore, a small or intermediate tumor volume could not be a reliable biomarker27. Future studies should 
be implemented with large expanded datasets and more clinical features. Such enhancements shall reduce the 
dependence of the radiomic model on relevant clinical features4,28.

There are several limitations of this study. First, ROI segmentation for the ovarian tumors was carried out 
manually. This inherently resulted in both inter-observer and intra-observer variabilities, as it has been usually 
the case for other cancer types. The applicability of the developed signature is limited to scans acquired with the 
same scanner and scanning parameters. The reproducibility of radiomic features across different acquisition 
and reconstruction parameters based on data with reference values (Phantom scans) will be performed in our 
future study to obtain a generalizable radiomic model. Second, due to the retrospective nature of the analysis, 
the reproducibility and comparability of the results would be hindered by potential selection bias. Third, bor-
derline tumors were not included in this research, and this deliberate choice may cause bias. Last but not the 
least, besides expanding the sample set, state-of-the-art techniques (e.g. fully-automated image segmentation, 
feature dimensionality reduction, deep learning, and multiobjective optimization) could be further exploited 
for boosting classification performance.
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