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Extraordinary spin to orbital 
angular momentum conversion 
on guided zone plates
Pablo Acebal*, Luis Carretero & Salvador Blaya 

Focusing systems with high numerical aperture can be used to convert spin angular momentum into 
orbital angular momentum with efficiencies of 50%, while for low numerical apertures this conversion 
vanishes. In this paper, based on the properties of binary Fresnel zone plates, we propose a structure 
that is achieved by making an accurate selection of the width and the depth of the rings. This allows us 
to obtain a large increase in the spin to orbital angular momentum conversion of the resulting focusing 
fields, and it also has the special characteristic that the obtained conversion is higher for low numerical 
aperture structures, where standard focusing systems do not work. The ability of the system to 
perform this extraordinary conversion is demonstrated by FDTD methods and an analytical model 
developed using a combination of guided mode theory for the structure and Stratton–Chu diffraction 
theory.

Generation and control of the angular momentum (AM) of light has become an important research area in 
optics. Together with energy and linear momentum, angular momentum is one of the main properties of light 
and it has important applications in fields such as optical manipulation, telecommunications1,2 or photonics. 
In general, the angular momentum of light can be divided into two different contributions: orbital angular 
momentum (OAM), related to vortex charge, and spin angular momentum (SAM), related to light polarization. 
Each one can be measured independently, since, for example, in the interaction with particles each contribution 
produces different effects (SAM causes the rotation of the particle around its own axis, while OAM produces 
a rotation around the beam propagation axis). Thus, although total angular momentum is a magnitude that is 
conserved, there is an interest in studying the angular momentum transfer between both contributions, which 
produces complex polarization effects. In this sense, Spin to Orbital Angular Momentum conversion has received 
enormous attention3, and several methodologies have been proposed in order to control it. Basically there are 
two mechanisms that produce spin to orbital angular momentum conversion: the interaction of paraxial light 
with anisotropic media possessing certain azimuthal symmetries4–7, which is the basis of the Q-plates; and non-
paraxial optical fields in locally isotropic media, which explains the conversion for the tight focusing of light 
by a high-numerical-aperture lens8–11 or Fresnel zone plate12, scattering by a small particle or apertures13, high 
numerical aperture imaging of small particles14 and cylindrical dielectric and metallic waveguides15.

Here, we propose the use of a modified binary Fresnel zone plate to achieve extraordinary spin to orbital 
angular momentum conversion. The proposed system, the so-called Guided Fresnel Zone Plate (GFZP), is shown 
in Fig. 1. We will demonstrate that if we carefully select the dimensions of the structure, it is possible to obtain 
an extraordinary spin to orbital angular momentum conversion, with efficiencies over 100% in the focus region. 
The proposed system is based on the characteristics displayed by the transmittance of small apertures16, which 
can be treated using waveguide theory. Therefore, in contrast to the standard binary zone plates (see Fig. 1b), 
which have different widths for each ring, in order to have complete control of amplitude and the propagation 
constants of the guided modes, the width of the different rings is the same, as shown in the schematic Fig. 1c. 
Moreover, the different propagation constants generate an anisotropy in cylindrical coordinates, which with the 
adequate selection of the thickness of the zone plate causes the extraordinary angular momentum conversion, 
with conversion efficiencies greater than Q-plates for low numerical aperture systems. It is important to note that, 
due to the employment of a binary structure, the energetic efficiency, defined as the transmitted power respect the 
incident one, can not be as high as that of Q-plate. However, our proposed system has other advantages respect 
to the Q-plates as: it is a passive element that can be adapted to different sizes (number of rings) and it will be 
easily employed on integrated systems due to the limited size; it is continuous in the azimuthal coordinate while 
the Q-plates are formed by discrete cells of liquid crystals with azimuthal pattern; it will be used in the near (few 
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wavelengths) and the far field, since despite that the conversion efficiency is lower in the near field than for the 
far field, the values are much greater than that obtained from tightly focusing systems; and finally, may be the 
most important advantage, since our system is completely scalable to all the electromagnetic spectrum simply 
adapting the dimensions to the corresponding wavelength, from the RX to the microwaves, while the Q-plates 
are limited to the working spectra of the liquid crystals.

The paper is organized as follows. The theoretical background section includes three subsections that describe 
the electromagnetic properties investigated, the transmittance of the GFZP as a function of the propagating 
modes and finally the propagating fields in a homogeneous and dielectric medium calculated from approxima-
tions of the Stratton–Chu diffraction integrals. Results section includes a complete discussion of the results 
obtained for the proposed GFZP with a wide range of focal distances, including a comparison with FDTD 
calculations in order to validate the proposed procedure.

Theoretical background
Electromagnetic properties.  The electromagnetic properties analyzed in this study are energy density 
(U), spin angular momentum (S), orbital angular momentum (L), canonical momentum (P), helicity ( H ) and 
Poynting vector ( P ), which for a homogeneous and dielectric media can be written as15:
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Figure 1.   Schematic representation of the proposed system for spin to orbital angular momentum conversion. 
(a) SAM to OAM conversion in the proposed GFZP with the adequate selection of the width of the rings and 
the thickness β of the structure. (r, φ ) denote cylindrical coordinates for the propagation in the structure. ( ρ , θ , 
z) cylindrical coordinates for the propagation in the homogeneous medium. (b, c) show the bidimensional cut 
of a standard binary zone plate and the proposed zone plate with equal widths.
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Orbital angular momentum is L = r × P , and total angular momentum is J = L + S . Here, E and H denote 
the electric and magnetic fields respectively, while ε and µ are the dielectric constant and the magnetic perme-
ability of the medium. Equation (1) and what follows the asterisk denote the complex conjugate, I[] and R[] being 
the imaginary and real part of the term between square brackets. The symbol ⊗ denote the dyadic product, so the 
operation W∇ ⊗ V have the elements (W∇ ⊗ V)i =

∑

j Wj∂iVj for i and j being {x, y, z}. In order to investigate 
the effect of the designed zone plate on the electromagnetic properties, we will calculate the above mentioned 
properties along with the normalized values per photon15, which are given by the local density ratios S/U, L/U 
or H/U , and the corresponding integral ratios 〈S〉/〈U〉 , etc.

Zone plate transmittance: guided modes.  In this section, we will derive the expressions of the electric 
and magnetic field at the output of the zone plate, which will be used later in the diffraction integrals. As men-
tioned above, the transmittance of small apertures can be explained by waveguide theory, so we will consider 
the transmittance zones of the GFZP as a set of coaxial waveguides, where the propagating modes basically 
depend on the width of each ring. For binary FZPs, the inner and outer radius of the transparent zones can be 
determined by equation ri =

√

i�f + i2�2 , where � is the wavelength in the medium and f is the focal length of 
the zone plate. Therefore, the center of the different transparent zones is given by r0i = (r2i+2 + r2i+1)/2 , and 
the corresponding widths for standard binary FZPs wi = (r2i+2 − r2i+1) , which implies different values for each 
ring (as can be seen in the schematic Fig. 1b). In the case of the proposed GFZP all the coaxial waveguides have 
been selected with the same width, so we can control the number and propagating characteristics of the modes 
allowed for all the waveguides. The characteristic solutions of the waveguides are TE and TM modes, which can 
be described with the following function and vectors in cylindrical coordinates (r, φ , ζ):

where kz and kr are the components of the wavevector, z being the direction of propagation of the guide, while 
Jm and Ym denote the corresponding Bessel functions of the first kind and second kind respectively. Therefore, 
the electric and magnetic fields for the TE modes are ETE = v1 and HTE = kz/(ηk)v2 , where the allowed modes 
obey the following condition as a function of the inner ( r1 ) and outer ( r2 ) radius:

So it is possible to obtain kr of the propagating modes, and therefore kz through the relation k2 = k2r + k2z . 
The constant D can be obtained from the boundary condition Eφ = 0 at r = r1 or r = r2 . In the same way, the 
electric and magnetic fields for the TM modes are ETM = v2 and HTM = −k/(ηkz)v1 , where kr is obtained from 
the following condition:

In this case the constant D can be obtained from the boundary condition Ez = 0 at r = r1 or r = r2 . Finally, 
the excited amplitudes Amn for each propagation mode under illumination conditions can be obtained from 
the continuity condition of the transverse components at the interface, depending on the incident electric and 
magnetic fields and are given by:

where emn and hmn are the transverse components of the different modes and � indicates the dimensions of the 
waveguide.

Let us consider a right circularly polarized plane wave (Ei = ej(kζ+φ){1, j, 0} and Hi = ej(kζ+φ)/η{−j, 1, 0} ) 
with working wavelength in vacuum of �0 = 1.064µm illuminating a binary zone plate with 15 rings with a 
fixed width of wi = 2δ = 0.5µm . Under these conditions, three modes can be propagated in each coaxial guide 
( TE11 , TE12 and TM11 ), but only the two TE modes are efficiently excited through the plane wave illumination. 
Figure 2 illustrates one waveguide (all of them have the same behaviour), showing the amplitude and phase of 
electric and magnetic field components as a function of the displacement with respect to the center of the guide 
at the beginning of the GFZP (all the components include a topological charge of 1 as the plane wave illumina-
tion). As can be seen, both modes are orthogonal, since TE11 has radial component for the electric field with a 
constant amplitude of approximately 1, while TE12 presents only azimuthal component for the electric field, with 
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a spatial average amplitude around 1. Both components present a phase difference of π/2 , so the electromagnetic 
field retains the polarization properties of the incident plane wave at the entry of the zone plate. However, the 
propagation constant is different for the two modes, that causes an anisotropy with azimuthal symmetry, so with 
the adequate selection of the thickness structure β , the polarization will change at the output of the waveguide, 
and consequently, the properties of the electromagnetic fields propagating in the surrounding dielectric media, 
including an extraordinary SAM to OAM conversion.

At this point, we can analyze the fields at the output of the waveguide in the circular basis, which can be 
expressed as function of the corresponding fields in the cylindrical basis as:

where F denote the electric and magnetic components of the circular basis ( F+ , F− and Fz ). Since the width of 
the waveguides is less than half of the wavelength, for the diffraction integrals we are going to consider that the 
transmittance of the waveguide has a homogeneous distribution with the radial coordinate, so we use the spatial 
average as the amplitude for the components of the electric and magnetic fields. The values for average amplitude, 
initial phase and propagation constants of the different components are shown in Table 1. As can be seen, for 
the electric and magnetic field components, the amplitude and the initial phase difference are the same as the 
illumination conditions, but there is a phase difference of approximately π between the propagation constants 

(12)F
± = e±jφ

√
2
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Figure 2.   Amplitude and phase for the components of the electric and magnetic fields of the guided modes 
respect to the center of the guide

Table 1.   Phase, propagation constant and spatial average of the amplitude for the components of electric and 
magnetic fields at the beginning of the waveguide.

Amplitude Phase ( ζ = 0) kz ( µm−1)

Er 1.067 V/m 0 7.85325

Eφ 1.17 V/m π/2 4.71026

Ez 0 0 –

Hr 0.00376 A/m −π/2 4.71026

Hφ 0.00247 A/m 0 7.85325

Hz 0.0033 A/m 0 4.71026
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of the different modes, which will cause the mentioned anisotropy with cylindrical symmetry which depends 
on the thickness β of the zone plate.

Therefore, the electric and magnetic field components in the circular basis at the output each ring of the GFZP 
with thickness β can be expressed as:

where �k = kz2 − kz1 . Finally, the electromagnetic fields at the output of the structure can be calculated taking 
into account the transmittance functions of the zone plate structure given by:

where � denote the Heaviside function, which is used to limit the transparent zones and also in the case of the 
TGFZP
2  take into account that Hz component determines parity with respect to the center of the waveguides. 

Therefore, the electric and magnetic fields at the output of the GFZP, that we use in the next section as boundary 
conditions for the propagation integrals, are given by:

where F can be E or H.

Stratton–Chu diffraction theory.  According to Strantton and Chu17, the electromagnetic field diffracted 
by an aperture can be obtained from the following diffraction formulae, which depends on the electric and mag-
netic field at the output plane of the object ( E0 and H0 respectively)

where R =
√

(x − x0)2 + (y − y0)2 + (z − z0)2 denotes the distance between the point of observation (x,y,z) 
and the points in the exit plane ( x0 , y0 , z0 ), while ψ is given by

where the observation plane is not too close to the exit plane, the gradient of ψ function can be approximated to:

Due to the circular symmetry of the problem, it is more convenient to work with diffraction integrals 
in the circular basis, so we define the orthogonal components for electric field as E− = 1/

√
2(Ex − jEy) , 

E+ = 1/
√
2(Ex + jEy) , and in the same way for the magnetic field H− and H+ . It is also appropriate to use polar 

coordinates rather than Cartesian for the integrals, so we use the following relations x0 = rCos(φ) , y0 = rSin(φ) , 
z0 = 0 , x = ρCos(θ) and y = ρCos(θ) . Therefore, the diffraction integrals, assuming that the contribution of the 
line integral vanishes, can be expressed as:
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Now, we can use the guided modes calculated in the previous section as the initial fields for the diffraction 
problem. Analytic solutions of diffraction integral in each transparent zone can be obtained after some approxi-
mations involving the R function. On the one hand, for the coefficient R, which is not in the complex exponential 
function, we use R ≈ R0i =

√

r20i + z2 for each transparent zone, where r0i denotes the center of the rings that 
compose the zone plate. On the other hand, the R in the exponential function is approximated with series expan-
sion at ρ = 0 truncated in the first term:

With these approximations, it is possible to integrate over the φ variable with the expansion in Bessel func-
tions of the exponential of Cos(θ − φ ). In the case of the r variable, we use a similar approximation to that of R, 
assuming that r ≈ r0i except for the case of the exponential that is assumed to be:

Therefore, analytical integration over the r variable in the different transparent zones can be done. The result-
ing electric and magnetic fields are given by:

where the Ŵ and � functions are:

where the resulting electromagnetic fields propagating in the free space depend on two design parameters given 
by the GFZP, the focal point f, which determines r0i , and depth d.

Results and discussion
In this section, we are going to show the different electromagnetic properties for the fields generated with the 
GFZP as a function of design parameters, such as the focal length and structure thickness, paying special atten-
tion to the extraordinary spin-to-orbital angular momentum conversion. The effect of the guiding characteristics 
of the structure is studied for two different values of the structure depth: one with β = 0.1µm , which is about 
ten times lower than the wavelength, the so-called short guided Fresnel zone plate (SGFZP); and the other with 
β = 1µm , which we call the long guided Fresnel zone plate (LGFZP). A wide range of focal lengths is also 
analyzed to study the ability of the structure to perform the SAM to OAM conversion in the near or far field. In 
order to validate the approximations made in the analytical model, we also compare the results obtained with 
numerical simulations using the FDTD method (Meep program18) for various cases with values of focal distance 
from 3 � to 9 � (which implies a numerical aperture AN range from 1.22 for F = 3� to 0.82 for F = 9� ), where the 
metal selected to form the zone plate is gold, BK7 glass for the substrate and water for the propagating medium.
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Electromagnetic energy density and energy flux.  The results obtained for the normalized electro-
magnetic energy density U in the focal plane are shown in Fig. 3a for SGFZPs and LGFZPs with four differ-
ent focal distances, calculated with the analytical model and the numerical FDTD method. For the SGFZP 
( β = 0.1µm ) we can observe a behaviour that is similar to the characteristic airy disk of focusing systems, with 
a full width at half maximum (FWHM) of about 0.46µm , similar to the experimental values of reference19 for 
chromium FZPs with thickness between 0.06 and 0.09 µ m. Also it is important to note the good correlation 
between the analytical model presented and the results of the FDTD. An interesting result is obtained for the 
LGFZPs ( β = 1µm ), where the electromagnetic energy presents an annular distribution, whose maximum is 
shifted to a higher radius as the focal distance increases. As in the previous case, a good correlation has been 
observed between our model and the numerical FDTD results.

The strong influence of the depth of the structure on the focused electromagnetic energy as a consequence of 
the guiding characteristic is also observed for the other electromagnetic properties, resulting in very interesting 
behaviours for practically all of them. This is the case for the axial component of the Poynting vector, whose 
behaviour in the focal plane is shown in Figure 3b for one SGFZP and one LGFZP with a focal length of 7 � . The 
axial component of the Poynting vector Pz for the SGFZP shows the typical distribution of focusing systems, 
since the energy flows in the propagation direction with the same spatial distribution as electromagnetic energy. 
However, for the LGFZP, we observe that the energy flows in the direction of propagation in the region of the 
maximum values of U (annular distribution), but there is a small region near the axis where the Pz takes negative 
values, i.e., the energy flows opposite to the propagation direction, in the same way as described in reference20 
for the focusing of circularly polarized optical vortex beams with topological charge 2 using Richards and Wolf 
formalism. The ratio between the negative flux in the axis and the maximum positive flux of the annular distri-
bution increases as the focal length decreases, and for focal lengths greater than 23� the effect disappears, so the 
energy flux in the propagation direction become positive for all the positions.

Helicity and angular momentum.  Finally, we are going to analyze the effect on two important electro-
magnetic properties: electromagnetic helicity, which is a measure of the chirality of the field, and in our case, it 
also has a strong influence on the thickness of the GFZP; and the axial component of the angular momentum, 
which can be divided into SAM and OAM contributions, where the conversion between them is strongly modi-
fied by the depth of structure. These properties are well defined for the incident beam, since the right circularly 
polarized plane wave presents an average value per photon of helicity H/U = 1 . In the same way, the local 
density ratios for the axial component of the total and the spin angular momentum of the incident field are 
Sz/U = Jz/U = 1 , since Lz/U = 0 . Figure 4a shows the local density ratio of helicity in the focal plane for the 
SGFZP and LGFZP with a focal length of 7 � . On the one hand, for the SGFZP the value of H/U is about 1 for all 
the range of positions, so in this case the structure preserves the helicity of the incident fields. On the other hand, 
a complete flip of the H/U value is obtained for the fields generated with the LGFZP, where the value is around 
-1 for all the positions, so the structure generates a complete inversion of the chirality of the fields.

Figure 4b shows the behaviour of the axial component of the SAM Sz for both structures, SGFZP and LGFZP. 
As for helicity, the axial component of the SAM retains the same sign as the incident field for the SGFZP structure, 
which corresponds to the behavior of Fresnel zone plates or standard focusing systems. However, the LGFZP 
structure generates a change in the sign of Sz in the annular region where the energy is mainly focalized (see 
Fig. 3), being only slightly positive in the region near the axis. Therefore, as a consequence of the conservation of 
the angular momentum Jz , this change in the sign of Sz will cause a large increase in the SAM to OAM conversion. 
We also want to point out that for both helicity and Sz there is a good correlation between the proposed model 
and the results of the FDTD, as in the case of the other electromagnetic properties.

Figure 3.   (a) Normalized electromagnetic energy in the focal plane for SGFZPs (continuous lines and filled 
circles) and LGFZPs (dashed lines and unfilled circles) with different focal lengths estimated through the 
proposed model (lines) and FDTD (circles). (b) Axial component of the Poynting vector in the focal plane for a 
SGFZP (continuous line and filled circles) and a LGFZP (dashed line and unfilled circles) with focal length of 7 � 
estimated through the proposed model (lines) and FDTD (circles).
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The SAM to OAM conversion is finally analyzed through the corresponding integral ratios of the axial 
component of the spin and orbital angular momentum in the focal plane, which can be considered the values 
per photon. In this way, Fig. 5 shows the integral ratios 〈Sz〉/〈U〉 and 〈Lz〉/〈U〉 for the two structures analyzed, 
SGFZP and LGFZP, over a wide range of focal lengths, the points being the values obtained with FDTD, which 
shows a good correlation with the model proposed. In the case of SGFZP, a high SAM to OAM conversion is 
observed for the lower focal lengths, with a maximum conversion factor of about 50% for F = 3� . In contrast, 
when the focal length increases the value of 〈Sz〉/〈U〉 approaches 1 and the value of 〈Lz〉/〈U〉 tends towards zero; 
so a very low SAM to OAM conversion is observed for SGFZP working in the far field. This result coincides with 
the characteristics of the SAM to OAM conversion observed in focusing systems8–11, which reaches values near 
50% only for high numerical aperture systems. For the designed LGFZP, the 〈Sz〉/〈U〉 becomes negative for all 
the focal lengths, starting from −0.5 for the lower values, and decreasing asymptotically to −1 when the focal 
length of the structure increases. Therefore, the OAM integral ratio has a value of about 1.5 for F = 3� , which 
corresponds to a conversion factor of 150%, and increases asymptotically to 2 as the focal length increases; so 
conversion factors near 200% can be obtained for far field focusing structures. If we employ the convention 
used in Q-plates to measure the efficiency, as the ratio between the reached value for OAM and the maximum 
allowed value (2 in this case), we obtain efficiencies over 98% for focal lengths greater than 300� . In the case 
of high NA, the conversion efficiencies of LGFZP are about 80%, which can be explained by the competition 
between both mechanisms than explain the SAM to OAM conversion detailed in the introduction. Our system 
is designed to generate an anisotropy with azimuthal symmetry that causes the conversion, but for high NA 
aperture structures, the non-paraxial behaviour of the fields also play a role. For this second mechanism the 
conversion is mainly due to the z component of the electric field (non-paraxial behavior), which only contributed 
to the orbital angular momentum with a topological charge of 1 (see Eq. 31)and limits the conversion that can 
be reached. As the NA decreases the z component of the electric field vanishes and the conversion efficiency 
increases. Therefore, the designed GFZP structures generate an extraordinary SAM to OAM conversion, much 
greater than the one described for standard high numerical aperture focusing systems, and with the special 

Figure 4.   (a) Local density ratio of helicity in the focal plane for a SGFZP (continuous line and filled circles) 
and a LGFZP (dashed line and unfilled circles) with focal length of 7 � estimated through the proposed model 
(lines) and FDTD (circles). (b) Axial component of the SAM in the focal plane for a SGFZP (continuous line 
and filled circles) and a LGFZP (dashed line and unfilled circles) with focal length of 7 � estimated through the 
proposed model (lines) and FDTD (circles).

Figure 5.   Evolution of SAM and OAM in the focal plane generated by SGFZP and LGFZP as a function of the 
focal length of the zone plate (points indicate the results of FDTD).
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characteristic that the conversion factor is greater for higher focal distances, while the conversion for the other 
focusing systems vanishes.

Conclusions
We have studied the ability of modified binary Fresnel zone plates to change the electromagnetic properties of 
the incident fields, including an extraordinary spin to orbital angular momentum conversion. This change in 
the electromagnetic properties was analyzed with FDTD methods and an analytical model was developed using 
a combination of guided mode theory for the transmittance of the GFZP as a function of the width and depth 
of the rings, and Stratton–Chu diffraction theory for the free space propagation after the structure. The results 
show that with the adequate selection of the dimensions great changes in the electromagnetic properties can be 
obtained. Thus a total inversion of the helicity of fields can be observed, along with SAM to OAM conversion 
ratios over 150% for high numerical aperture, greater than the conversion factor of 50% observed for other 
focusing systems. Moreover, the conversion factor for the designed structure reaches values near 200% for higher 
values of focal distances, which implies conversion efficiencies over 98%, while the standard focusing systems 
shows very low conversion levels.
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