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Large‑scale nonlinear 
Granger causality for inferring 
directed dependence 
from short multivariate time‑series 
data
Axel Wismüller1,2,3,4,5, Adora M. Dsouza2,5*, M. Ali Vosoughi2 & Anas Abidin3 

A key challenge to gaining insight into complex systems is inferring nonlinear causal directional 
relations from observational time-series data. Specifically, estimating causal relationships between 
interacting components in large systems with only short recordings over few temporal observations 
remains an important, yet unresolved problem. Here, we introduce large-scale nonlinear Granger 
causality (lsNGC) which facilitates conditional Granger causality between two multivariate time series 
conditioned on a large number of confounding time series with a small number of observations. By 
modeling interactions with nonlinear state-space transformations from limited observational data, 
lsNGC identifies casual relations with no explicit a priori assumptions on functional interdependence 
between component time series in a computationally efficient manner. Additionally, our method 
provides a mathematical formulation revealing statistical significance of inferred causal relations. 
We extensively study the ability of lsNGC in inferring directed relations from two-node to thirty-four 
node chaotic time-series systems. Our results suggest that lsNGC captures meaningful interactions 
from limited observational data, where it performs favorably when compared to traditionally used 
methods. Finally, we demonstrate the applicability of lsNGC to estimating causality in large, real-
world systems by inferring directional nonlinear, causal relationships among a large number of 
relatively short time series acquired from functional Magnetic Resonance Imaging (fMRI) data of the 
human brain.

Identifying nonlinear and directed relations between components of a complex system, especially from simul-
taneously observed time series, is an actively growing area of research1–5. Systems with interacting components 
are ubiquitous in nature. A few examples of such systems are interactions between individual neurons, regions 
in the brain, protein interaction, climatological data, and genetic networks. However, the underlying interac-
tions between various components of these systems are hidden, therefore, to understand their dynamics and 
glean more information about how various components interact or influence one another we must infer causal 
relations from the available observational data. For instance, analyzing signals recorded from the brain activity 
of healthy subjects and patients with some form of neurodegeneration can reveal vital information useful for 
diagnosis and treatment.

One of the most widely used approaches for estimating causal relations from time-series data is Granger 
causality analysis6. It estimates causal influence from one time series to another, if the prediction quality of the 
influenced time series improves when the past of an influencer time series is used, as compared to its predic-
tion quality when the past of the influencer is not used. GC was initially formulated for linear models but later 
was extended to nonlinear systems in7 and has shown promising results. Among the alternative methods for 
nonlinear causal discovery, transfer entropy (TE) was introduced in8, which was later found to be equivalent to 
GC for linear Gaussian processes9.
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In systems containing more than two time series, a bivariate analysis - i.e., considering pairs of time series 
solely at a time without considering the effects of confounder variables - may result in spurious causalities as a 
consequence of indirect connections10, while multivariate analysis conditioned on other variables distinguishes 
direct from indirect influences11. While GC is a multivariate analysis approach with both linear and nonlinear 
variants, its extension to large-scale systems, where the number of time series is much larger than the number 
of temporal observations, is challenging3, since the vector autoregressive models may involve solving inverse 
problems with redundant variables12. Various studies have proposed addressing the ill-posedness problem by 
dimensionality reduction or compressed sensing techniques13,14. Besides, most systems in nature exhibit complex 
dynamics that cannot be captured by linear approaches15–17. Nonlinear approaches may discover nonlinear rela-
tions at the cost of increased computation time and a possible increase in several parameters to be estimated.

Hence, an approach that can capture nonlinear interactions in large multivariate systems is desired. In sum-
mary, an approach that estimates interactions in multivariate systems while conditioning on all variables in the 
system, reducing redundancy, and being computationally feasible would be desired. Consequently, a causality 
analysis method should 1) be able to estimate causal interactions in multivariate systems, conditioned on all 
time series in the system, 2) be able to capture nonlinear dependencies, 3) work for systems with a large number 
of variables, and 4) be data-driven18. Although nonlinear extensions of GC have been proposed in7, and kernel-
based nonlinear GC approaches in19–21, such approaches require a large number of observations to estimate 
causal relations effectively. Possible reasons for these restrictions are: besides the computational expense, the 
extendibility to multivariate analysis of high-dimensional dynamical systems based on a low number of temporal 
observations is non-trivial and involves parameter optimization of complex nonlinear time-series models on 
limited data. In more recent literature, methods such as multivariate transfer entropy (TE)8 and multivariate 
mutual information (MI), with nonlinear estimators such as the Kraskov-Stoegbauer-Grassberger estimator22, 
and PC-momentary conditional independence (PCMCI)18,23 have been developed to improve estimation of 
directed interactions from large-scale data. In this paper, we put forth the large-scale Nonlinear Granger Cau-
sality (lsNGC) approach to estimate the underlying directed relations between time-series. By introducing a 
nonlinear dimension reduction step, lsNGC aims at estimating such interactions from large complex systems, 
while reducing redundancies and conditioning on other variables in the system. LsNGC in addition to being a 
nonlinear, multivariate method, also provides control over the number of parameters to be estimated and derives 
significant connections in the systems. As such, lsNGC can effectively estimate interactions in large systems with 
short time-series data, without being computationally intensive. Besides presenting results of extensive computer 
simulations on synthetic networks, we also demonstrate the applicability of lsNGC on estimating connectivity 
from resting-state functional MRI. However, lsNGC may be useful for other domains as well, given that the data 
is represented as simultaneously acquired signals.

In the following sections we discuss the lsNGC algorithm and the various networks we investigate. We evalu-
ate lsNGC against Kernel Granger causality20, mutual nonlinear cross-mapping methods15 using local models 
(LM), transfer entropy (TE)8,22, and Peter-Clark momentary conditional independence (PCMCI)18,23. We test the 
performance of simulated data with known ground truth of connections. Additionally, we demonstrate applying 
the proposed lsNGC approach on real time-series data recorded using functional Magnetic Resonance Imaging 
(fMRI) from subjects presenting with symptoms of HIV associated neurocognitive disorder (HAND) and healthy 
controls. If lsNGC measures can characterize brain connectivity well, it should be useful in distinguishing the 
two subject groups.

Methods
Large‑scale nonlinear Granger causality.  Large-scale nonlinear Granger causality adopts theoretical 
concepts from Granger causality analysis. Granger causality (GC) is based on the concept of time series prec-
edence and predictability; here, the improvement in the prediction quality of a time series in the presence of 
the past of another time series is quantified. This reveals if the predicted time series was influenced by the time 
series whose past was used in the prediction, uncovering the causal relationship between the two series6 under 
investigation. The supplementary material (section 1) details the theoretical concepts involved in Granger cau-
sality analysis.

LsNGC estimates causal relationships by first creating a nonlinear transformation of the state-space represen-
tation of the time series, whose influence on others is to be measured, and another representation of the rest of 
the time series in the system. Consider a system with N time series, each with T temporal samples. Let the time-
series ensemble X ∈ R

N×T be X = (x1, x2, ..., xN )
T , where xn ∈ R

T , n ∈ {1, 2, ...,N} , xn = (xn(1), xn(2), ..., xn(T)) . 
The time-series ensemble X can also be represented as X = (x(1), x(2), ..., x(T)) , where x(t) ∈ R

N×1 , 
t ∈ {1, 2, ...,T}, x(t) = (x1(t), x2(t), x3(t), ..., xN (t))

T . Let’s say that we are interested to learn if xs influences xr . 
We first construct the phase space representation of xs with embedding dimension d, as W s . The state at time 
t is ws(t) = [xs(t − (d − 1)), ..., xs(t − 1), xs(t)] , and t ∈ d, ...,T − 1 . Say we are interested in quantifying the 
influence of xs on xr in the presence of all confounding variables and also by modeling nonlinearities present 
in the data. Confounding variables can be accounted for by performing a multivariate analysis. Additionally, 
we account for nonlinear interactions among time series by transforming the original space using a nonlinear 
transformation function.

To perform a multivariate analysis, it is desirable to have a phase space reconstruction, where prediction 
is performed using all the time series, apart from xs whose influence is to be quantified. From the time-series 
ensemble X\xs we construct the phase space reconstruction Zs . The state of this multivariate system at a given 
time-point is
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It should be noted that Zs does not contain any terms from xs.
In brief, we have constructed two systems represented by phase states W s and Zs . W s represents the states of 

only the time series whose influence we want to quantify, i.e xs , and Zs represents the multivariate phase space 
incorporating all time series but xs.

Coming back to Granger causality (GC), GC works on the principle that if the prediction quality of a time 
series xr improves in the presence of xs as compared to its prediction quality in the absence of xs , having consid-
ered the rest of the time series in both models, then xs Granger causes xr . It quantifies boost in the prediction 
quality, by comparing two models, one that uses information from the states of xs and the other that does not. 
Let f  and g represent two nonlinear functions. The two estimates of xr are given by:

In the above equations, a and b are the weights or model parameters, obtained by minimizing the mean 
squared errors in the estimate of xr . The quantities x̂r,s and x̃r,s are the estimates of xr calculated by the two 
models. The subscript (r, s) denotes that these models were constructed to investigate the influence of xs on xr . 
In this study, we use the generalized radial basis function (GRBF) as nonlinear transformations f  and g . In brief, 
representative clusters of the state space Zs and W s are obtained using clustering methods, such as k-means 
clustering, where k can be seen as the number of hidden neurons in a GRBF neural network. Let cf  and cg be the 
number of hidden layer neurons in the GRBF networks f  and g , respectively.

The f-statistic can be obtained by recognizing that the two models, equations (1) and (2), can be character-
ized as the unrestricted model and the restricted model, respectively. Residual sum of squares (RSS) of the 
restricted model, RSSR , and residual sum of squares of the unrestricted model, RSSU , are obtained. Since we are 
interested in testing the explanatory power of lagged values of xs in the regression, we test the null hypothesis 
H0 : a12 = 0 against the alternate hypothesis Ha : a12 is non-zero. This hypothesis test is performed by comput-
ing the f-statistic.

A measure of lsNGC can be obtained using the f-statistic, given by:

Here, n = (T − (d − 1)) is the number of time-delayed vectors, pU and pR are the number of parameters to 
be estimated for the unrestricted and restricted model, respectively. For equations (1) and (2), pU = cf + cg and 
pR = cf  , respectively. Fxs→xr quantifies the influence of xs on xr , by testing the equality of variances of errors in 
prediction of the xr by both the models i.e. equations (1) and (2). If the variance of the error in predicting xr is 
lower when xs is used, then xs is said to Granger cause xr . The measure Fxs→xr is stored in the affinity matrix S 
at position (S)s,r , where S is an N × N matrix of lsNGC indices. Each lsNGC measure in the affinity matrix can 
be represented as a directed edge connecting the sth node to the rth node in a network graph. Implementation 
specifics that make lsNGC computationally efficient and various parameter information are provided in the 
supplementary material, section 2.

Nonlinear transformation using generalized radial basis function.  In this work we adopt the Gen-
eralized Radial Basis Functions (GRBF) neural network, originally described by24, with the nonlinear transfor-
mations f  and g . Cluster centers VT ∈ R

cg×d are calculated for the state space W s , where cg is the number of 
clusters obtained with k-means clustering. Activation function g in (5) is calculated as follows:

where, i ∈ {1, 2 ... cg } and σ is the kernel width, set to the average spacing between the centers25. Analogously, 
cluster centers UT

s ∈ R
cf×(N−1)d are calculated for the state space Zs , where cf  is the number of clusters obtained 

with k-means clustering. Activation function f  in (5) and (6) is calculated as follows:

where, i ∈ {1, 2 ... cf  }. The embedding dimension d is chosen using Cao’s method described in26. In this study, cf  
= 25 and cg = 5 is chosen empirically from preliminary analysis.

zs(t) =



















x1(t − (d − 1)), ..., x1(t − 1), x1(t), ...
x2(t − (d − 1)), ..., x2(t − 1), x2(t), ...
.

.

xN−1(t − (d − 1)), ..., xN−1(t − 1), xN−1(t)

(1)x̂r,s =a11f(Zs)+ a12g(W s)

(2)x̃r,s =b1f(Zs)

(3)Fxs→xr =
(RSSR − RSSU )/(pU − pR)

(RSSU )/(n− pU − 1)

(4)gi(ws(t)) =
e−||ws(t)−v(i)||2/σ 2

∑cg
j=1e

−||ws(t)−v(j)||2/σ 2

(5)fi(zs(t)) =
e−||zs(t)−us(i)||

2/σ 2

∑cf
j=1e

−||zs(t)−us(j)||
2/σ 2
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Results
To evaluate the approach, several benchmark simulations are considered and performance is compared to four 
state-of-the-art approaches, mutual nonlinear cross-mapping methods15 using local models (LM), PC-momen-
tary conditional independence (PCMCI)18, multivariate transfer entropy (TE)8 with the Kraskov-Stögbauer-
Grassberger nonlinear estimators22 using the IDTxL toolbox27, and Kernel Granger Causality (KGC)20. These 
approaches are discussed briefly in the supplementary material, section 5. Note that various software imple-
mentations of TE are currently available in different toolboxes28–30. We chose IDTxL27, since it is the most 
recently developed software in this regard, providing automatic parameter selection, controlling false positives 
and requiring only minimal user specification.

Simulated data network models.  We begin by creating benchmark simulations. Fifty different sets of 
each type of simulation were created, which is useful for estimating the consistency of the method. All the simu-
lations were generated to have 500 time-points.

Two species logistic model Before investigating empirical data or systems with a large number of time series, 
it is imperative to test performance on a simple network structure with directed interaction. To this end, the 
two species logistic model which is one of the commonly studied31 chaotic time-series systems is considered:

where r1 = 3.7 , r2 = 3.8 , and γ1,2 and γ2,1 are the coupling constants. We adopt all values used from15,31. For 
the unidirectional case, the coupling constants take the values γ2,1 = 0.32 , and γ1,2 = 0 . Uniformly distributed 
random numbers between [0, 1] are used as initial conditions and the first 50 time points are discarded. In our 
results, we refer to this network as 2-logistic (Fig. 1). All the lsNGC scores are estimated using eq. 3. Figure 2 is a 
histogram of the lsNGC scores (normalized between 0 and 1 using min-max normalization for display purposes), 
assigned to x1 → x2 and x2 → x1 over the 50 different sets of the simulation. LsNGC is able to capture directed 
connections from x1 → x2 well which is evident from Fig. 2 by the high scores assigned to x1 → x2 compared 
to x2 → x1 . Detailed comparative quantitative results for the performance of various algorithms on all simulated 
networks shown in Fig. 1 are presented in Figs. 4, 5 and 6 .

Complex system with three nodes Following this, we consider a three node complex system. See supplemen-
tary section 3 for equations. In the fan-out case, nodes x2 and x3 are both driven by a common source, node 

(6)
x1(t + 1) = x1(t)[r1 − r1x1(t)− γ1,2x2(t)]

x2(t + 1) = x2(t)[r2 − r2x2(t)− γ2,1x1(t)]

Figure 1.   Different network structures and their corresponding adjacency matrices. Going from left to 
right from the first column to the seventh, we have the 2-species, 3-fan out, 3-fan in, 5-linear, 5-nonlinear, 
34-Zachary1 and 34-Zachary2 networks. Generated with MATLAB R2016a40.

Node 1Node 1

0 0.5 1
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20

40
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Figure 2.   Histogram of lsNGC scores (normalized between 0 and 1) for the 2-logistic network over 50 different 
sets of the simulation. The influence of x1 on x2 is captured quite well across the 50 simulations. Generated with 
MATLAB R2016a40.
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x1 , hence the dynamics of the two driven nodes contain information from x1 . Thus, although x2 and x3 do not 
causally influence each other, they may be correlated. Such motifs can be challenging and an approach that is 
able to characterize these connections well is desirable. LsNGC is able to capture the connections well and is able 
to recover the fan-out structure (Fig. 3a). Figure 3a, clearly demonstrates that the scores assigned across all 50 
simulations by lsNGC for x1 → x2 and x1 → x3 are much higher than any of the other connections. Addition-
ally, no spurious connection is estimated between x2 and x3 . The challenge faced when estimating connections 
with fan-in motifs is that since x3 is influenced by x1 and x2 , detected relationships are generally weak, since the 
dynamics of x3 is affected by two time series. From Fig. 3b, we observe that the highest strengths of connection 
across all 50 simulations is rightly assigned to x1 → x3 and x2 → x3 . However, we do observe lsNGC assigns 
relatively high strengths ( ∼0.5) to x1 → x2 and x2 → x1 for a few of the 50 simulations. We suspect this hap-
pens as a consequence of a multivariate model, since the v-structure32 ( x1 → x3 ← x2 ) gets activated when x3 is 
observed and information about x2 (x1) is gleaned from x1 (x2) if x3 is observed. Nevertheless, true connection 
scores are higher than those the spurious connections (Fig. 3).

Five node nonlinear network We also generate time-series data similar to that described in33 using the KGC 
toolb​ox. This toolbox contains both linear and non-linear implementations of interactions between time series. 
Equations governing the non-linear 5-node network (5-nonlinear) and the linear system 5-node network (5-lin-
ear) are provided in the supplementary material (section 3). Results estimating direction of connection are 
provided in the supplementary material (section 4).

34 node Zachary network Systems in nature involve of a number of interacting factors. Hence, it is important 
to evaluate systems with a considerably large number of interacting time series. To test lsNGC on networks with 
a large number of nodes, we consider the Zachary dataset34 consisting of 34 nodes. The nodal interactions is as 
follows and adopted from20:

Here, a = 1.8, s = 0.01, c = 0.05, where ci,j represents the influence j has on i, and τ is Gaussian noise with unit 
variance and zero mean. These quantities were adopted from20, where, the authors construct directed networks 
by assigning an edge, with equal probability of being in either direction. Apart from the directed connections, 
we randomly select 5 edges to be bidirectional. We construct 50 such networks and obtain 50-sets of time-series 
data from the corresponding network (34-Zachary2). One of the 50 networks used is shown in Fig. 1. From 
the generated time-series data we estimate the underlying network structure of the 50 different networks. We 
also construct another 50 sets of time series using the original undirected Zachary network with c = 0.025 in 
equation (7) (34-Zachary1).

Evaluating estimation of causal relations in simulations.  LsNGC derives measures of nonlinear 
connectivity scores represented as edges in a network graph. These are non-binary scores, from which we obtain 
a measure of the Area Under the receiver operating characteristic Curve (AUC). However, before deriving AUC 
measures, the connectivity matrix is log transformed to reduce the skew in the f-statistic measures. The Receiver 
Operating Characteristic (ROC) plots the true positive rate (TPR) versus the false positive rate (FPR). Ideally, 
TPR = 1 and FPR = 0 at any one threshold applied on the connectivity graphs, i.e. affinity matrix, for the AUC 
to equal 1. An AUC of 0.5 represents assignment of random connections, analogous to guessing the absence or 
presence of connections. Since the AUC quantifies both, the strength of connections and the direction of infor-
mation flow, it is used to evaluate performance in estimating the network structure. The AUC derives evaluation 

(7)xi(t) =
(

1−

n
∑

j=1

ci,j

)

(1− ax2i (t − 1))+

n
∑

j=1

ci,j(1− ax2j (t − 1))+ sτi(t); i = 1, 2, ..., 34

Figure 3.   Histogram of lsNGC scores (normalized between 0 and 1) for the (a) 3-fan out, (b) 3-fan in networks 
over 50 different sets of the simulation. (a) The influence of x1 on x2 and x3 is captured quite well across the 50 
simulations. (b) The influence of x1 and x2 on x3 is captured quite well across the 50 simulations. Generated with 
MATLAB R2016a40.

https://github.com/danielemarinazzo/KernelGrangerCausality
https://github.com/danielemarinazzo/KernelGrangerCausality
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measures from the non-binarized connectivity matrix. However, it is also important to evaluate the true links 
obtained by significance testing of connections in the graph. The lsNGC measures of connectivity, expressed 
as f-statistic values, can be used to derive p-values for connections. Significant connections are obtained after 
multiple comparisons correction using False Discovery Rate (FDR) method at p < 0.05 . From the thresholded 
affinity matrix, measures of sensitivity and specificity are derived.

Here, we present quantitative results on the recovered graph for the various simulations. For every network 
investigated in this study, 50 different sets of time series were simulated. Results are summarized as boxplots 
(example: Figs. 4, 5). The circle with a dot inside the box represents the distribution median. The box spans the 
first quartile to the third quartile which is its interquartile range (IQR). The vertical extensions from the box, 
whiskers, have a maximum length of 1.5 times the IQR. The median of the AUC, sensitivity and specificity are 
represented as ˜AUCmethod , ˜sensmethod and ˜specmethod , respectively, where method refers to the analysis method, 
i.e., lsNGC, LM, PCMCI, TE or KGC.

Results in Fig. 4 were obtained for all network structures in Fig. 1 generated with 500 time-points. In this 
figure, red, blue, green, orange and grey correspond to lsNGC, LM, PCMCI, TE and KGC respectively. All the 
approaches work very well for the smaller networks i.e. 2-logistic, 3-Fan out and 3-Fan-in networks, other than 
˜AUCTE = 0.93 for the 3-fan out network. However, KGC’s and LM’s performance drops when using the linear 

system with 5 nodes, with a ˜AUCKGC = 0.82 and ˜AUCLM = 0.87 , compared to ˜AUClsNGC = 1 , ˜AUCPCMCI = 1 
and ˜AUCTE = 1 . Additionally, LM performs poorly for the nonlinear 5 node network ˜AUCLM = 0.62 , followed 
by PCMCI, ˜AUCLM = 0.8 , while lsNGC, TE and KGC perform comparably. For both, directed and undirected 
34-node Zachary networks, performance of all methods drop compared to their performance for smaller net-
works. However, lsNGC, LM and PCMCI show superior performance compared against TE and KGC with KGC 
showing poorest performance. KGC performs poorly, with most recovered networks being random at medians 
of 0.52 and 0.51 for the networks. These results demonstrate that KGC cannot capture right connections for 
a relatively large network with just few time-points. In their original paper20, the authors tested the Zachary 
network, but with 10,000 time-points; which is an unrealistic scenario for most practical applications. Refer to 
Table 1 in supplementary material for detailed AUC values.

Given, the f-statistic for the lsNGC measure, we obtain significant connections amongst the lsNGC derived 
estimates as described in “Large-scale nonlinear Granger causality” section. Figure 5 plots the sensitivity, specific-
ity and a combination of the two. Here, we observe that for small networks with 2-3 nodes, all approaches perform 
well with the exception of KGC for the fan-out network. TE shows the best performance for small networks. For 
the 5-node networks, LM performs quite poorly, whereas overall, TE does well closely followed by lsNGC. Large 
networks, such as the Zachary network with 34 nodes, are generally difficult to recover since the total number of 
possible connections grows as a function of N(N − 1) . Here, we observe that KGC is the poorest of the methods 
tested, followed by TE and PCMCI. LM and lsNGC are comparable. From Figs. 4 and 5 , we observe that lsNGC 
performs consistently well for the various networks topologies. Additionally, it should be stressed that significant 
connections should be estimated to obtain a thresholded network graph. As we demonstrated in equation 3, 
this is straightforward to calculate with the lsNGC formulation. However, obtaining significant connections for 
LM, and TE, is computationally expensive since it requires the calculation of surrogate time series, followed by 
obtaining a null distribution using the various methods. For more details refer to the supplementary material 
section 6. Next we evaluate the effect of time-series length on network graph estimation.

Due to various constraints, such as cost, sensor limitations, manpower, time, etc., it is not always feasible to 
collect a large number of observations (time-points) for the factors under investigation. Thus, it is also essential 
to test the performance of lsNGC for a lower number of observations. To this end, the time-series length is varied 
from 500 to 50 time-points. Figure 6 compares AUC results across methods for decreasing number of time-points. 
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Figure 4.   AUC results for the various networks comparing different methods, visualized as boxplots. Figure 
generated with MATLAB R2016a40. The bottom end of the box represents the first quartile and the top of the 
box represents the third quartile. The circle with a dot in the box represents the distribution median. A general 
trend that is noticeable here is that the performance drops for all approaches as the number of nodes increases. 
Note that lsNGC performs competitively for all networks.
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Comparing performance across methods for all the networks, we see that lsNGC consistently performs well. For 
small networks, having 2-3 nodes, all methods perform comparably; however, a sudden drop in performance of 
KGC occurs when the time-series length reduces to 50 time-points for the 3 node networks. TE performs the 
worst in for the fan-out motif. We also observe a gradual drop in PCMCI performance with decreasing time-
series length for the fan-in motif. For the 5-node networks, it is interesting to note that the sudden drop in KGC’s 
performance is observed much earlier, at 200 time-points, for the 5-node network, while for the 34-node Zachary 
network, its performance oscillates across a median AUC of 0.5, indicating detection of random connections for 
500 to 50 time-points. LsNGC, PCMCI, and TE have comparable performance for the 5-linear network. However, 
PCMCI shows a drop in performance for the 5-nonlinear network. TE struggles with reaching good performance 
for the 34 node network, while PCMCI, although quite comparable to lsNGC, shows a steeper drop in perfor-
mance with a reduction in time-series length. LsNGC and LM perform equally well for the networks with 2-3 
nodes across different time-series lengths. For the 5-node network, results indicate that LM reaches a bottleneck 
in performance, and is not able to improve as much as lsNGC, PCMCI and TE with increased time-series length. 
Nevertheless, it is important to note that graph structure recovered with LM does not degrade with decreasing 
time-series lengths. LM does not perform well for the 5-node nonlinear network. Additionally, we investigate 
both undirected (34-Zachary1) and directed networks (34-Zachary2). The drop in performance of lsNGC is 
markedly steeper than that of LM with decreasing time-series lengths. However, its performance is comparable 
to LM at T > 200 . Additional experiments (results not included) when multivariate mutual information with 
the Kraskov algorithm22, showed that the method performed poorly when compared to TE.

Functional magnetic resonance imaging data.  LsNGC showed promising results on the simulations. 
Nevertheless, its performance on real data can give more insight into its usability for various applications involv-
ing estimation of underlying interactions from signals. In this work, we analyze its performance on functional 
Magnetic Resonance Imaging (fMRI) data. It has been demonstrated that individuals presenting with symptoms 
of HAND have quantifiable differences in connectivity35,36 from controls. We hypothesize that if lsNGC can 
capture brain connectivity from fMRI data for the subjects well, differences in connectivity between subjects 
with HAND and controls should be observed. Hence, we tested how well a classifier was able to discriminate the 
two subject groups. The classifier was able to learn relevant differences from the two groups using connectivity 
derived with lsNGC (AUC = 0.88 and accuracy = 0.77), suggesting that lsNGC was able to characterize the inter-
actions well. More details on the data and analysis approach can be found in supplementary material section 7.

lsNGC LM PCMCI TE Kraskov KGC

2-Logistic 3-Fan Out 3-Fan In 5-Linear 5-Nonlinear 34-Zachary1 34-Zachary2
0

0.2

0.4

0.6

0.8

1

Sensitivity

2-Logistic 3-Fan Out 3-Fan In 5-Linear 5-Nonlinear 34-Zachary1 34-Zachary2
0

0.2

0.4

0.6

0.8

1

Specificity

2-Logistic 3-Fan Out 3-Fan In 5-Linear 5-Nonlinear 34-Zachary1 34-Zachary2
0

0.2

0.4

0.6

0.8

1

(Sensitivity x Specificity)1/2

Figure 5.   Sensitivity and specificity results for the three approaches across all networks, visualized as boxplots. 
Figure generated with MATLAB R2016a40. The bottom end of the box represents the first quartile and the top 
of the box represents the third quartile. The circle with a dot in the box represents the distribution median. We 
also plot a measure combining the two measure to estimate overall performance. In general, we observe lsNGC 
works consistently well for all networks.
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Discussion
The paper puts forth a novel approach called large-scale nonlinear Granger causality (lsNGC). The lsNGC unveils 
the underlying nonlinear interactions among multivariate and large-scale time series. We demonstrate its appli-
cability on the real and synthetic data and its advantages for systems with large nodal and short temporal meas-
urements. A common trend across all investigated methods, i.e. lsNGC, LM, PCMCI, TE and KGC is the decline 
in performance with an increasing number of nodes, for a given number of temporal observations. However, 
performance may be improved by increasing the number of observations. We observe that lsNGC outperforms 
other approaches in most cases. Furthermore, KGC and TE are markedly more susceptible to poor performance 
with increased number of nodes (time series, Fig. 6) compared to lsNGC. When increasing the number of nodes 
in the network, the number of time-points has to be significantly increased to produce meaningful results with 
KGC. Although, lsNGC’s performance gradually drops with decreasing number of time-points, for all practical 
lengths of the time-series data, it outperforms KGC and TE, making lsNGC more reliable for larger systems with 
fewer time-points. Comparing lsNGC with LM, it is seen that the directed interactions recovered with LM does 
not degrade as rapidly with decreasing time-series lengths. This can be attributed to the lower complexity of LM, 
hence fewer parameters to be estimated compared to lsNGC. As such, given very short time series, LM may be 
able to outperform lsNGC. However, the low complexity of LM results in models with high bias. Such high bias 
comes at the price of its significant performance drop as seen in the 5-node nonlinear network. To put it simply, 
LM is a low variance, high bias model, whereas lsNGC is a higher variance, lower bias model. This becomes 
more evident when analyzing the network with 34 nodes. The drop in performance of lsNGC is markedly steeper 
than that of LM with decreasing time-series lengths. However, its performance is comparable to LM at T > 200 . 
Compared with PCMCI, lsNGC performs better for systems with a large number of nodes and is not as strongly 
affected by reduction in the number of time points as PCMCI. A possible reason could be that, although PCMCI 
has been proposed to analyze large-scale multivariate time series, during the two-stage process of the algorithm, 
if any of the PC-stage or MCI-stage fault, the results may be changed, which may be more evident for short time 
series with a large number of variables. Additionally, in our simulations, we use the partial correlation for the 
PC-stage’s independence tests, where it is noteworthy that partial correlation is still vulnerable to confounding 
variables of third and beyond momentum. TE also performs very poorly in large systems as seen from the results 
on 34-node Zachary networks. TE with the Kraskov estimator approximates the probability distribution based 
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on the k-nearest neighbors27. The Kraskov method is a non-parametric approach for density estimation, which 
approximates the probability distribution based on the k-nearest neighbors and has been used to obtain TE in27. 
However, for enhancing accuracy in large-scale multivariate time series, one needs to increase the number of 
nearest neighbors, which enforces a tradeoff between computational cost and accuracy for density estimation. 
Newer parametric estimators, such as the Mutual Information Neural Estimator (MINE)37, that rely on the 
characterizing the mutual information as the Kullback-Leibler divergence, may improve the performance of TE 
and possibly lsNGC (here we use GRBF as a density estimator). However, such an estimator requires training a 
generative model without any explicit assumptions about the underlying data distribution. While this estimator 
is promising, we anticipate it to be quite computationally intensive. With lsNGC, we focus on an approach that 
can estimate density using a closed form solution in the OLS formulation, unlike MINE, which requires learning 
of a representation using an iterative/gradient descent learning.

The success of lsNGC on simulated data motivated us to test its performance on real data. To this end, we 
evaluated the connectivity matrices derived using lsNGC on real fMRI data from healthy controls and subjects 
with HIV associated neurocognitive disorder (HAND). The connectivity measures used as features in a classifier 
were highly discriminative. This suggests that lsNGC is able to capture relevant information regarding interaction 
between different regions in the human brain.

LsNGC is formulated as a multiple regression problem with nonlinear basis transformation using GRBF with 
(T − (d − 1)) samples in the regression task. Evidently, the larger the number of samples, higher the power of the 
hypothesis tests. An advantage of lsNGC’s formulation is that it allows for control over the number of predictors 
regardless of the number of nodes in a network, by adjusting the number of cluster centers, cf  and cg parameters, 
which determine the number of predictors for the regression task. Moreover, the formulation of lsNGC can be 
directly used to estimate significant connections, using the f-statistic, without creating a null distribution from 
surrogate time series as is commonly done. Furthermore, using the f-statistic, our results on sensitivity and speci-
ficity demonstrate that lsNGC performs very well compared to other methods. Obtaining relevant connections 
after creating a null distribution with surrogate time series is possible with lsNGC; however, it will significantly 
increase the computational cost. The flexibility of estimating significant connections with lsNGC is a significant 
advantage over traditional approaches for detecting causality. Nevertheless, it is understandable to err on the 
side of caution, since estimating measures of significance with the f-statistic requires conditions of independence 
between delay embeddings to be met. Granger causality assumes that time series influence each other only d 
points in the past. Poor estimation of the order ’d’ can result in erroneous values of significance. This is especially 
relevant when time series in the system are themselves dependent (temporal autocorrelation), as is commonly 
the case with fMRI data. Recent work propose hypothesis tests under autocorrelation38,39. Experimental evidence 
in39 demonstrates that commonly used hypothesis tests may result in type I or type II errors if autocorrelations 
exist among the various components in a system. This an important problem to consider and it is worth inves-
tigating the effect of autocorrelated time series on the lsNGC derived f-statistic measure, in a subsequent study.

Although, lsNGC shows promising performance for real world data and simulations, one of its shortcom-
ings is that its formulation only allows for additive relationship between the time series whose influence is to be 
estimated and every other time series. In brief, lsNGC is additive in the functions f  and g . An additional term 
accounting multiplicative relationships will address this drawback, while potentially increasing the complexity of 
the model. In the future, we plan to investigate the effect of such a term on inferring directed dependence. In this 
study, we selected a fixed number of hidden neurons for all the analysis. However, these parameters can be modi-
fied without significant changes to performance, as long as they are large enough to represent the system well and 
small enough such that the complexity of the predictor is not increased compared to the number of time-points.

In summary, lsNGC is robust in inferring causal, nonlinear interactions across different network topologies. 
Like all investigated methods, underlying network size does affect its performance; however, it significantly 
outperforms conventionally used methods for practical time-series lengths (Fig. 6). LsNGC benefits from being 
a nonlinear, multivariate method, whose formulation provides control over the number of estimated param-
eters and derives significant connections in networks. As such, lsNGC can effectively infer measures of directed 
dependence from large systems of short multivariate time series without being computationally intensive.

Conclusion
In this work, we propose a nonlinear method for large-scale multivariate time series, named large-scale nonlin-
ear Granger causality (lsNGC), to infer underlying directed interactions from time-series data. The number of 
temporal observations limit most approaches proposed in the literature and imposes a challenge for performing 
multivariate, nonlinear causality analysis to reveal the underlying interactions of large systems. We investigated 
some of the existing nonlinear causal inference methods’ advantages and limitations through experimentation 
and analysis with different network structures. We demonstrated the advantage of lsNGC over current state-of-
the-art multivariate and bivariate approaches. The high AUC, good sensitivity and specificity results for various 
lengths of time-series data demonstrate its potential and applicability to real world data. Furthermore, lsNGC’s 
formulation allows obtaining binary interactions without creating a null distribution from surrogate time series, 
which is computationally expensive, especially for large networks. Finally, we have demonstrated the applicabil-
ity of lsNGC in inferring interactions among different regions of the brain from brain activity data obtained 
using functional magnetic resonance imaging (fMRI). Besides clinical applications for diagnosing neurological 
disorders, such an approach may reveal valuable insights about directed interactions in the brain.
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