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Controllable dynamics 
of a dissipative two‑level system
Wei Wu* & Ze‑Zhou Zhang 

We propose a strategy to modulate the decoherence dynamics of a two‑level system, which interacts 
with a dissipative bosonic environment, by introducing an ancillary degree of freedom. It is revealed 
that the decay rate of the two‑level system can be significantly suppressed under suitable steers of the 
assisted degree of freedom. Our result provides an alternative way to fight against decoherence and 
realize a controllable quantum dissipative dynamics.

A microscopic quantum system inevitably interacts with its surrounding environment, which generally results 
in  decoherence1–3. Such decoherence process is responsible for the deterioration of quantumness and is com-
monly accompanied by energy or information dissipation. In this sense, how to prevent or avoid decoherence 
is of importance for any practical and actual quantum technology aimed at manipulating, communicating, or 
storing information. Furthermore, understanding decoherence in itself is one of the most fundamental issues in 
quantum mechanics, since it is closely associated with the quantum–classical  transition4.

Up to now, various strategies have been proposed to suppress decoherence. For example, (1) the theory 
of decoherence-free  subspace5–7, in which the quantum system undergoes a unitary evolution irrespective of 
environment’s influence; (2) dynamical decoupling pulse  technique8–10, which aims at eliminating the unwanted 
system-environment coupling by a train of instantaneous pulses; (3) quantum Zeno  effect11–13, which can inhibit 
the decay of a unstable quantum state by repetitive measurements; and (4) the bound-state-based mechanism 
 scheme14–17, which can completely suppress decoherence and generate a dissipationless dynamics in the long-
time regime. Each method has its own merit and corresponding weakness. For example, one needs to optimize 
the shapes and the intervals of pulses when using the dynamical decoupling pulse technique. Such optimization 
requires an elaborate operation as well as a great deal of experience. Here, we propose a simple scheme, which 
is more practical than the above methods. We believe that any alternative approach would be beneficial for us 
to achieve a reliable quantum processing in a noisy environment.

In this paper, we propose an efficient scheme to obtain a controllable dynamics of a two-level system (TLS), 
which interacts with a dissipative bosonic environment. An ancillary single-mode harmonic oscillator (HO), 
which acts as a steerable degree of freedom, is coupled to the TLS to modulate its decoherence  dynamics18–21. We 
find the decay of the TLS can be suppressed via adjusting the parameters of the assisted HO. We also demonstrate 
the single-mode HO can be equivalently replaced by a periodic driving field or a multi-mode bosonic reservoir, 
which can likewise achieve the effect of decoherence-suppression. Moreover, we numerically confirm our steer 
scheme can be generalized to a more general quantum dissipative system, in which the TLS-environment cou-
pling is strong and the so-called counter-rotating-wave terms are included.

Results
Controllable dissipative dynamics. Let us consider a TLS interacts with a dissipative bosonic environ-
ment. To achieve a tunable reduced dynamics of the TLS, we add an ancillary single-mode HO, which serves 
as a controllable degree of freedom to modulate the dynamical behaviour of the TLS. The whole system can be 
described as follows (throughout the paper, we set � = kB = c = 1)18–21

where σ± ≡ 1
2 (σx ± iσy) with σx,y,z being the standard Pauli operators, ǫ is the transition frequency of the TLS, 

a† and a are creation and annihilation operators of the assisted HO with frequency ω0 , and the parameter g0 
quantifies the coupling strength between the TLS and the HO. b†k and bk are creation and annihilation operators 
of the kth environmental mode with frequency ωk , respectively, and the TLS-environment coupling strengthes 
are denoted by gk . The rotating wave approximation has already been made in the TLS-environment interac-
tion term. Generally, it is very convenient to encode the frequency dependence of the interaction strengths in 
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the spectral density J(ω) , which is defined by J(ω) ≡
∑

k g
2
k δ(ω − ωk) . By doing so, the characteristic of the 

environment is now completely determined by J(ω) . In this work, the spectral density is characterized by the 
following Lorentzian form

where α is a coupling constant, and ωc is a cutoff frequency. Instead of identifying the values of gk and ωk , we 
indicate the values of α and ωc when dealing with the dissipative dynamics.

To obtain the dynamics of the dissipative TLS in an analytical form, we first apply a polaron  transformation22,23 
to the original Hamiltonian H as H̃ = eSHe−S , where the generator S is defined by S =

g0
2ω0

σz(a
† − a) . The 

transformed Hamiltonian can be expressed as

where H.c. denotes Hermitian conjugate and ζ ≡
g0
ω0
(a† − a) . One can see the last term in the above expression 

is just a constant, which just induces a trivial dynamical phase and would not influence the reduced dynamical 
behaviour of the TLS. Thus, we will drop it from now on.

We employ the quantum master equation approach to investigate the reduced dynamics of the TLS. In the 
polaron representation, the second-order approximate quantum master equation  reads24

where ρ̃I
s(t) ≡ eitH̃s ρ̃s(t)e

−itH̃s with H̃s ≡
1
2 ǫσz  is  the reduced density operator in interac-

tion picture, H̃i(t) ≡ eitH̃0 H̃ie
−itH̃0 with H̃0 ≡ H̃s + H̃a + H̃b ,  H̃a ≡ ω0a

†a ,  H̃b ≡
∑

k ωkb
†
kbk  and 

H̃i ≡
∑

k gk(σ−b
†
ke

−ζ +H.c.) is the interaction Hamiltonian in interaction picture. If both the TLS-HO and TLS-
environment couplings are weak, one can safely adopt the Born approximation ρ̃I

tot(τ ) ≃ ρ̃I
s(τ )⊗ ρ̃a(0)⊗ ρ̃b(0) . 

In this paper, we assume ρ̃a(0) = |0a��0a| and ρ̃b(0) =
⊗

k |0
k
b��0

k
b| , where |0a� ( |0kb� ) is the Fock vacuum state of 

the single-mode HO (k-th bosonic environmental mode). The effect of non-Markovianity has been incorporated 
into the convolution terms. Such convolution terms mean the evolution of ρs(t) depends on ρs(τ ) at all the earlier 
times 0 < τ < t , implying the memory effect from the environment has been considered. It should be empha-
sized that one can further use the Markov approximation by neglecting retardation in the integration of Eq. (4), 
namely ρ̃I

s(τ ) is replaced by ρ̃I
s(t) . Our treatment is beyond such over-simplified Markovian approximation.

A f t e r  s o m e  t r i v i a l  a l g e b r a ,  w e  f i n d  t h e  e x p r e s s i o n  o f  H̃i(t) i s  g i v e n  by 
H̃i(t) =

∑

k gk[e
−it(ǫ−ωk)σ−b

†
ke

−ζ(t) +H.c.] , where ζ(t) ≡ eitω0a
†aζ e−itω0a

†a . Substituting this expression of 
H̃i(t) into the quantum master equation, namely Eq. (4), we have

where S(t − τ) ≡ �0a|e
ζ(t)e−ζ(τ )|0a� is a dynamical modulation function. The exact expression of S(t − τ) can 

be derived by making use of the technique of Feynman disentangling of  operators21,25. One can find

where � ≡ (g0/ω0)
2 is a steerable parameter completely determined by the ancillary HO. The dynamical modu-

lation function S(t − τ) fully characterizes the influence of the single-mode HO on the reduced dynamics of 
the dissipative TLS.

Non‑equilibrium dynamics of population difference. Starting from Eq. (5), one can extract the equa-
tion of motion for the matrix components of the TLS, i.e., ρ̃I

jj′(t) ≡ �j|ρ̃I
s(t)|j

′� with j, j′ = e, g , where |e� and 
|g� are the eigenstates of σz . Meanwhile, due to the fact that ρ̃I

ee(t) = ρ̃ee(t) , we derived the following integro-
differential equation for ρ̃ee(t) in Schrödinger picture

where C.c. denotes complex conjugate. With the help of spectral density, one can replace the discrete summa-
tion in the above equation by a continuous integrand, i.e., 

∑

k g
2
k e

−iωkt →
∫∞
0 dωJ(ω)e−iωt . For the Lorentzian 

spectral density considered in this paper, the integrand can be greatly simplified by extending the integration 
range of ω from [0,+∞) to (−∞,+∞) . Such approximation has been widely employed in several previous 
 studies1,15,26 and is acceptable when the bound state effect can be neglected in the weak TLS-environment cou-
pling  regime15. Then, we have
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We shall solve the integro-differential equation in Eq.  (8) by making use of Laplace transforma-
tion, which is defined by f (z) = L [f (t)] ≡

∫∞
0 dte−zt f (t) . After the Laplace transformation, we find 

ρ̃ee(z)/ρ̃ee(0) = [z + µ(z)]−1 , where the Laplace-transformed kernel µ(z) is given by

Thus, the expression of population difference in the polaron representation can be obtained via 
P̃(t) ≡ Trs[σz ρ̃s(t)] = 2ρ̃ee(t)− 1 . Next, we need to transform P̃(t) back to the original representation. Thanks 
to the fact [σz , S] = 0 , the expression of population difference does not change by the polaron transformation, 
i.e., P(t) = P̃(t) . Finally, we arrive at

where L−1 denotes inverse Laplace transformation, i.e. L−1[f (z)] ≡ 1
2π i

∫ ς+i∞
ς−i∞ dtezt f (z) . As long as the ini-

tial state is given, the dynamics of P(t) can be fully determined by Eq. (10). In this paper, the inverse Laplace 
transformation is numerically performed by making use of the Zakian  method27, which uses a series of weight 
functions to approximate an arbitrary function’s inverse Laplace transform in time domain. It should be stressed 
that Eq. (10) only works in the regime where both α and � are small, namely α/ωc ≪ 1 and � ≪ 1 , due to the 
Born and the second-order master equation approximations.

On the other hand, the sum of l in the expressions of µ(z) in Eq. (9) can be exactly worked out

where F[{x1, x2, . . . , xm}, {y1, y2, . . . , yn}, z] is the generalized hypergeometric  function28. If the TLS and the sin-
gle-mode HO is completely decoupled, using Eq. (11), one can easily demonstrate lim�→0 µ(z) = 2α/(z + ωc) . 
In this special case, the inverse Laplace transformation in Eq. (10) can be analytically done and the expression 
of P(t) is then given by

where � =
√

ω2
c − 8α . This result reproduces the Eq. (10.51) in Ref.1.

Decoherence time. In an approximate treatment, the density matrix components of the TLS commonly 
exhibit exponential decays, which are governed by the relaxation time T1 and the dephasing time T2 describing 
the evolution of ρee(t) and ρeg(t) , respectively. Thus, the decoherence time T1,2 roughly reflects the characteristic 
of dissipative  dynamics29. Here, we would like to evaluate the expression of the relaxation time T1 and explore the 
influence of the assisted HO on the decoherence time.

Starting from Eq. (7), one can find

where

Strictly speaking, the integration in Eq. (13) should be performed with the Bromwich path. However, in an 
approximate treatment, the Bromwich path can be changed to that on the real axis −∞ < ̟ < ∞ by a transform 
z = i̟ + 0+25,30–32, where 0+ denotes a positive infinitesimal. Under such treatment, we find

Using the Sokhotski–Plemelj theorem

we have iµ±(i̟ + 0+) = �±(̟)− iŴ±(̟) , where
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Thus, we finally arrive at

The pole of the above integrand can be approximately viewed as ̟ 0 + iŴ+(̟0)+ iŴ−(̟0) , where ̟ 0 is deter-
mined by ̟ 0 −�+(̟0)−�−(̟0) = 0 . Then, the integration can be worked out by using the residue theorem 
and the result is ρ̃ee(t) ≃ ρ̃ee(0)e

i̟0t e−[Ŵ+(̟0)+Ŵ−(̟0)]t . In the weak-coupling regime, one can neglect the level 
shift induced by �±(̟)30–32, which results in ̟ 0 ≃ 0 . Finally, the expression of T1 can be further simplified to

where G(x, y1, y2) is the generalized incomplete gamma  function28. Accordingly, the approximate expression of 
population difference is P (t) ≃ 2 exp(−t/T1)− 1 . One can see lim�→0 T

−1
1 = 2π J(ǫ) , which reproduces the 

well-known Wigner-Weisskopf decay rate without invoking the assisted  HO24.
In Fig. 1, we plot the dynamics of δP(t) ≡ P(t)− P0(t) , which can be regarded as a witness to the effective-

ness of our scheme. If δP(t) > 0 , i.e., P(t) > P0(t) , one can conclude that the decay of the population difference 
is slowed down when turning on the coupling between the TLS and the assisted HO. From Fig. 1, one can see 
δP(t) can be increased by enhancing � , which means the coherent dynamics of P(t) becomes more and more 
robust as � becomes larger. In this sense, by adjusting the parameters of the ancillary degree of freedom, we can 
achieve a controllable quantum dissipative dynamics. As comparisons, we also display P (t)− P0(t) . One can 
see from Fig. 1a that the results from the two different methods are in good agreement for the Markovian regime 
α/ωc → 0 . However, in non-Markovian regime (see Fig. 1b), a deviation is found. We believe such deviation is 
induced by the non-Markovianity incorporated in our approach. These results demonstrate our steer scheme 
works well in both Markovian and non-Markovian cases. Moreover, in Fig. 1a, one can observe that the relaxa-
tion time can be effectively prolonged by increasing the value of � . This result is consistent with our previous 
numerical simulations. Using the same method, we also find T−1

2 = 1
2T

−1
1  , which means the dephasing time can 

be lengthened by adjusting the parameter � as well. From the analytical expression of the decoherence time, we 
once again demonstrate the validity of our steer scheme.

Generalizations. Next, we would like to show that the single-mode HO can be equivalently replaced by 
a periodic driving field or a multi-mode bosonic reservoir. Though the physical properties of these assisted 
degrees of freedom are completely different, the effect of decoherence-suppression remains unchanged. Moreo-
ver, we extend the single-mode-HO-based steer scheme to a more general quantum dissipative system with 
hierarchical equations of motion (HEOM) approach, in which the counter-rotating-wave terms are included.
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Figure 1.  (a) δP(t) is plotted as the function of time with different steer parameters: � = 0.02 (yellow circles), 
� = 0.05 (magenta stars), � = 0.1 (blue diamonds) and � = 0.2 (red squares). The purple solid lines are 
obtained from the Wigner–Weisskopf approximate expression of P (t)− P0(t) . The insert curve shows the 
relation between T1 and � . The initial state of the TLS is |e��e| , other parameters are chosen as ω0 = 100 cm

−1 , 
ωc = 10 cm

−1 and α = 0.15 cm
−1 . (b) The same with (a), but ωc = 1.5 cm

−1.
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Periodic driving field case. The assisted degree of freedom can be replaced by a periodic driving along the z 
direction. We can construct the following time-dependent Hamiltonian in which the TLS is engineered by a 
cosine driving term,

where A is the driving amplitude and � is the driving frequency. The dynamics of the whole system is governed by 
the Schrödinger equation ∂t |ψ(t)� = −iH(t)|ψ(t)� . To handle the time-dependent term in the above Schrödinger 
equation, we apply a time-dependent transformation to |ψ(t)� as |ψ̃(t)� = eSt |ψ(t)� , where the time-dependent 
generator is given by St = i A

2� sin(�t)σz
33,34. Then, in the transformed representation, the dynamics of |ψ̃(t)� is 

governed by ∂t |ψ̃(t)� = −iH̃(t)|ψ̃(t)� , where

with φ(t) = A
�
sin(�t) . If the driving frequency is sufficiently high, the time-dependent Hamiltonian H̃(t) can 

be approximately replaced a much simpler, undriven effective  Hamiltonian33,34. To be more specific, using the 
Jacobi–Anger identity

where Jn(x) are Bessel functions of the first  kind28, one can only retain the lowest order term and neglect all the 
other higher-order terms in e±iφ(t) , namely,

Then, one can obtain an effective interaction Hamiltonian Heff
i (t) =

∑

k ǧk(σ−e
−iǫtb†ke

iωkt +H.c.) , where the 
renormalized coupling strength is defined by ǧk = J0(A/�)gk . Compared with that of the undriven case, 
one can see the periodic driving field actually renormalizes the coupling constant α in the spectral density, i.e., 
α → α̌ = J0(A/�)2α . Considering the fact that 0 ≤ J0(A/�)2 ≤ 1 , then α̌ ≤ α . This result is quite similar 
to the HO assisted case in which the coupling strengthes are renormalized as g2k → g2kS(t − τ) (see Eq. 5). 
Thus, the periodic driving field is able to facilitate a robust coherent dynamics as well. More importantly, due to 
the fact that the periodic driving technique has been widely used in the experiments of cold atom systems, it is 
more friendly from experimental perspective. In fact, a similar periodic driving field has been used to control 
the dynamics of quantum circuits in the recent  experiment34.

Multi‑mode bosonic reservoir case. Our scheme can be also generalized to the case where the assisted degree 
of freedom is a multi-mode bosonic reservoir. The whole Hamiltonian of the modulated system in this situation 
is given by

where a†j  and aj are creation and annihilation operators of the jth assisted bosonic mode with frequency νj , 
respectively, the coupling strengths between the TLS and assisted reservoir are characterized by κj . The spectral 
density of the assisted reservoir is then defined by ̺ (ν) ≡

∑

j κ
2
j δ(ν − νj) . Similar to the single-mode HO case, 

we apply a polaron transformation to Eq. (24) as H̃ = eGHe−G , where the generator G is given by

Then, the transformed Hamiltonian H̃ is given by

where ξ =
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⊗

j |0
j
a��0

j
a| , ρ̃b(0) =

⊗

k |0
k
b��0

k
b| 

and using the same quantum master equation approach displayed in single-mode HO case, one can find

where the dynamical modulation function is given by
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Assuming ̺ (ν) has a super-Ohmic spectral density with a Lorentz-type cutoff form, i.e.,

where χ is the coupling constant and η is the cutoff frequency. Then, G(t) has a very simple expression

where � = χ/η . Compared with that of Eq. (6), one can see � plays the same role with that of � . Following the 
same process exhibited in single-mode case, one can find the expression of population difference P(t) is almost 
the same with Eq. (10), the only difference is the expression of µ(z) should be replaced by

In Fig. 2, we display the dynamics of δP(t) in the case where the assisted degree of freedom is a multi-mode 
bosonic reservoir. One can see the decay of P(t) can be inhibited due to the interplay between the TLS and the 
additional degrees of freedom. Similar to single-mode HO case, the decay rate can be further reduced by increas-
ing the value of � . Our result is in agreement with that of Ref.35 in which authors use a stochastic dephasing 
fluctuation to suppress the relaxation processes of two-level and three-level atomic systems. The physical picture 
behind this phenomenon is the ancillary degree of freedom effectively modifies the property of original environ-
ment acting on the TLS, which gives rise to this decoherence-suppression effect. Similar results have been also 
reported in several previous  studies21,36–38.

HEOM treatment. We have demonstrated that the decoherence of the TLS can be effectively suppressed by 
introducing an auxiliary single-mode HO. However, this conclusion is obtained under the weak-coupling and 
rotating-wave approximations. Going beyond these limitations, we next consider a more general quantum dis-
sipative system

Compared with Eq. (1), the counter-rotating-wave terms have been incorporated in the above Hamiltonian.
To handle the reduced dynamics without the rotating-wave approximation, we employ a purely numerical 

method, the HEOM  approach39–43, to obtain the exact reduced dynamics of the TLS. The HEOM can be viewed as 
a bridge connecting the standard Schrödinger equation, which is exact but commonly hard to solve directly, and a 
set of ordinary differential equations, which can be treated numerically by using the well-developed Runge–Kutta 
algorithm. Without invoking the Born, weak-coupling and rotating-wave approximations, the HEOM can provide 
a rigorous numerical result as long as the initial state of the whole system is a system-environment separable state. 
To realize the traditional HEOM algorithm, it is necessary that the zero-temperature environmental correlation 
function C(t) =

∫

dωJ(ω)e−iωt can be (or at least approximately) written as a finite sum of  exponentials43,44. 
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Figure 2.  δP(t) is plotted as the function of time with different steer parameters: � = 0.02 (yellow circles), 
� = 0.05 (magenta stars), � = 0.1 (blue diamonds) and � = 0.2 (red squares). The initial state of the TLS is 
|e��e| , other parameters are chosen as η = 30 cm

−1 , ωc = 5 cm
−1 and α = 0.1 cm

−1.
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Fortunately, one can easily demonstrate that C(t) = αe−(ωc+iǫ)t for the Lorentzian spectral density considered 
in this paper. Then, following the procedure shown in Refs.43,44, one can obtain the following hierarchy equations

where ρ�ℓ=�0(t) is the reduced density operator of the TLS plus the HO, ρ�ℓ�=�0(t) are auxiliary operators introduced 
in HEOM algorithm,

�ℓ = (ℓ1, ℓ2) is a two-dimensional index, �e1 = (1, 0) , �e2 = (0, 1) , and �υ = (ωc − iǫ,ωc + iǫ) are two-dimensional 
vectors, two superoperators � and �p are defined by

where σσσ x = σx ⊗ 1a with 1a being an identity operator of the HO, [X,Y ] ≡ XY − YX and {X,Y} ≡ XY + YX.
The initial-state conditions of the auxiliary operators are given by ρ�ℓ=�0(0) = ρsa(0) and ρ�ℓ�=�0(0) = 0 , where 

�0 = (0, 0) is a two-dimensional zero vector. For numerical simulations, we need to truncate the number of 
hierarchical equations for a sufficiently large integer ℓc , which can guarantee the numerical convergence. All 
the terms of ρ�ℓ(t) with ℓ1 + ℓ2 > ℓc are set to be zero, and the terms of ρ�ℓ(t) with ℓ1 + ℓ2 ≤ ℓc form a closed 
set of differential equations. Technically speaking, the single-mode HO is a ∞-dimensional matrix in its Fock 
state basis {|0a�, |1a�, |2a�, ...} . Thus, the size of HO should be truncated in practical simulations. In this paper, 
we approximately regard the HO as a 10× 10 matrix due to the limitation of our computation resource, and we 
have checked that the reduced dynamics of the TLS remains unchanged by further increasing the size of the 
assisted degree of freedom.

Assuming ρsa(0) = |e��e| ⊗ e−S|0a��0a|e
S , the reduced density operator of the TLS is obtained by partially 

tracing out of the degree of freedom of the HO from ρ�ℓ=�0(t) , i.e. ρs(t) = Tra[ρEℓ=E0(t)] . Figure 3 shows our 
numerical results obtained by the HEOM approach. It is found that the result from Eq. (10) is in qualitative agree-
ment with those of the numerical HEOM method in weak-coupling regime. However, when coupling becomes 
strong, the counter-rotating-wave terms lead to a deviation. This result is physically understandable, because the 
the counter-rotating-wave terms are neglectable in weak-coupling case. Moreover, one can clearly see the decay 
of P(t) is suppressed by switching on the TLS-HO coupling. As � increases, the effect of coherence-preservation 
becomes more noticeable. This result indicates that our steer scheme can be generalized to the non-rotating-wave 
approximation case, which greatly extends the scope of validity of our steer scheme.

Discussion
In our theoretical scheme, the inclusion of the single-mode HO can considerably protect the quantum coherence, 
and the value of � plays a crucial role in our recipe. How to obtain a relatively large value of � is the main diffi-
culty in realizing our control scheme from an experimental perspective. Fortunately, the research of light-matter 
interaction has made a great progress in experiment. Nowadays, researchers are able to simulate the quantum 
Rabi model, whose Hamiltonian is described by HRabi = − 1

2 (�σx + ǫσz)+ ωo(a
†a+ 1

2 )+ gσz(a
† + a) , in the 

ultra-strong-coupling and the deep-strong-coupling regimes. For example, by making use of a superconducting 
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Figure 3.  (a) P(t) with different coupling constants: α = 0.0025 cm
−1 (purple solid line is the numerical 

result from HEOM method, purple diamonds are analytical results from Eq. (10)), α = 0.005 cm
−1 (blue 

dashed line is the numerical result from HEOM method, blue squares are analytical results from Eq. (10)) 
and α = 0.025 cm

−1 (red dotdashed line is the numerical result from HEOM method, red circles are 
analytical results from Eq. (10)). Other parameters are chosen as ǫ = 1.5 cm

−1 , � = 0.05 , ω0 = 5 cm
−1 and 

ωc = 0.5 cm
−1 . (b) The dynamics P(t) from the HEOM method with different tunable parameters: � = 0 

(purple solid line), � = 0.15 (magenta dotdashed line), � = 0.25 (blue dashed line) and � = 1 (red dotted line). 
Other parameters are chosen as α = 0.025 cm

−1 , ǫ = 1.5 cm
−1 , ω0 = 2.5 cm

−1 and ωc = 0.35 cm
−1.
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flux qubit and an LC oscillator via Josephson junctions, Yoshihara et al. have experimentally realized a super-
conducting circuits with the value of � ranging from 0.72 to 1.34 and g/� ≫ 145. These experimental progresses 
can provide a strong support to our steer scheme in realistic physical systems.

In conclusion, we propose a strategy to realize a controllable dynamics of a dissipative TLS with the help 
of an assisted degrees of freedom, which can be a single-mode HO, a periodic driving field or a multi-mode 
bosonic reservoir. Via adjusting the parameters of the assisted degree of freedom, we find the decoherence rate 
of the TLS can be significantly suppressed regardless of whether the counter-rotating-wave terms are taken into 
account. The physical picture behind this phenomenon is because the decays induced by parallel interaction 
(caused by the assisted degrees of freedom) and perpendicular interaction (intrinsically appeared in the original 
Hamiltonian) compete with each other, which effectively modifies the decoherence induced by the perpendicu-
lar interaction and gives rise to this coherence-preserve effect. Though our results are achieved in a Lorentzian 
environment at zero temperature, it would be very interesting to generalize our steer scheme to some more 
general situations by using the HEOM method, which has been extended to explore the dissipative dynamics in 
finite-temperature environment described by an arbitrary spectral density  function43,44,46–48. Finally, due to the 
generality of the dissipative TLS model, we expect our result to be of interest for some applications in quantum 
optics and quantum information.
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