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On ab initio‑based, free 
and closed‑form expressions 
for gravitational waves
Manuel Tiglio1,2* & Aarón Villanueva1,2

We introduce a new approach for finding high accuracy, free and closed-form expressions for the 
gravitational waves emitted by binary black hole collisions from ab initio models. More precisely, 
our expressions are built from numerical surrogate models based on supercomputer simulations 
of the Einstein equations, which have been shown to be essentially indistinguishable from each 
other. Distinct aspects of our approach are that: (i) representations of the gravitational waves can 
be explicitly written in a few lines, (ii) these representations are free-form yet still fast to search 
for and validate and (iii) there are no underlying physical approximations in the underlying model. 
The key strategy is combining techniques from Artificial Intelligence and Reduced Order Modeling 
for parameterized systems. Namely, symbolic regression through genetic programming combined 
with sparse representations in parameter space and the time domain using Reduced Basis and the 
Empirical Interpolation Method enabling fast free-form symbolic searches and large-scale a posteriori 
validations. As a proof of concept we present our results for the collision of two black holes, initially 
without spin, and with an initial separation corresponding to 25–31 gravitational wave cycles before 
merger. The minimum overlap, compared to ground truth solutions, is 99%. That is, 1% difference 
between our closed-form expressions and supercomputer simulations; this is considered for 
gravitational (GW) science more than the minimum required due to experimental numerical errors 
which otherwise dominate. This paper aims to contribute to the field of GWs in particular and Artificial 
Intelligence in general.

The surge of direct detections of the gravitational waves (GWs) emitted by the collision of two black holes, 
neutron stars, and mixed pairs through laser interferometer laboratories1 stresses even more the need for fast 
evaluation of the GWs emitted by these processes, as predicted by Einstein’s theory of gravity (or alternative 
ones2). High accuracy numerical simulations of the Einstein equations are the gold standard for these predictions. 
The problem is that they are computationally very expensive. As an example, if one considers the case of two 
black holes, initially far away and in quasi-circular orbit, the usual rationale is that due to the no-hair theorem 
each black hole can be uniquely described by its mass and spin. Which results in eight degrees of freedom. The 
total time of computation (wall time) elapsed for each of these simulations depends, among other factors, on the 
initial separation of the two black holes, resolution, etc. For the sake of definiteness, let’s say that each simulation 
takes 10,000 hours of wall time, which is a lower bound for cases of interest. Assuming that one samples each 
parameter dimension with, say, 100 points, this gives 1016 years of computing time, which is orders of magnitude 
larger than the age of the universe. Even using the top 10 supercomputers3 this time would be reduced to ∼ 108 
years. Worse, for Bayesian parameter estimation, a catalog/bank of templates cannot be constructed a priori 
since each new waveform needs to be computed on demand without a priori knowledge of which ones those 
will be4. All these are consequences of the curse of dimensionality combined with an already computationally 
very expensive High Performance Computing problem (numerically solving the Einstein field equations) even 
for any fixed parameter tuple.

This bottleneck cannot be overcome through software optimization or specialized hardware (such as Graph-
ics Processing Units, for example), which gave rise to the introduction of Phenomenological5 and Effective 
One Body (EOB)6 models for the prediction of GWs. These do not correspond to solutions of the Einstein field 
equations but, instead, physically inspired fits and/or “stitches” of approximate models for binary systems. We 
will not review these approaches here—except some remarks in the final section—since our take is to represent 
the emitted GWs using Einstein’s theory of gravity without any physical approximation.
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The GWs emmitted by binary systems can be seen as a parameterized problem, the parameters being for 
example the masses and spins of the binary components, initial separation, equations of state in the case of 
neutron stars, and so on. For each value of the parameter tuple, the GW consists of two degrees of polarization 
which can be encapsulated in a single complex-valued time (or, equivalently, frequency) series.

Over the last decade surrogate models for GWs based on modern frameworks such as Reduced Basis (RB) 
and the Empirical Interpolation Method (EIM)7–9,9–16 have been developed. For a recent and detailed review and 
any doubts in what follows in this article regarding reduced order and surrogate modeling see Ref.17. The RB 
framework provides a sparse representation in the parameter domain while the EIM does so in the dual one, here 
being time. Both make use of the smooth dependence on parameter variation to achieve fast—usually exponential 
in the case of GWs—convergence of the representation with respect to the number of basis elements (which by 
construction equals the number of EIM time nodes). The resulting surrogate models predict GWs which are 
essentially indistinguishable from numerical relativity (NR) simulations, but with a speedup of evaluation of 
around eight orders of magnitude9, being evaluated in less than a second on a standard laptop instead of using 
supercomputers as in NR. A relatively small number of NR simulations are still needed in the offline (training) 
stage, though, but with a fast, highly accurate, surrogate, predictive model to evaluate for any parameter and time 
in the intervals considered in the online stage. This is referred to as an offline-online decomposition strategy.

In this article we build upon these efforts for what we consider a natural next step: a methodology for find-
ing high accuracy free and closed-form representations of GWs, as opposed to numerical surrogates. As a proof 
of concept we present our results for the collision of two black holes, initially without spin, and with an initial 
separation corresponding to about 25–31 GW cycles before merger. The minimum overlap obtained, compared 
to ground truth solutions, is 99%. That is, 1% difference between our closed-form expressions and supercom-
puter simulations.

Method
Reduced order and surrogate models.  In general, surrogate models for GWs have followed reduced 
order modeling (ROM) for parameterized systems and/or “standard” machine learning regression techniques18. 
Here we focus on the former, we will not delve into reviewing them but instead, as mentioned, refer to17. In this 
work we focus on RB19,20 and the EIM21–23. Briefly, RB collocates parameter points according to their relevance, 
which are used to build a hierarchical, nearly optimal basis in a rigorous mathematical sense with respect to 
the Kolmogorov n-width24,25. The framework of RB takes advantage of any regularity with respect to parameter 
variation to achieve fast convergence in the accuracy of the representation with the number of basis elements; it 
is usually referred to as an application-based spectral expansion. In fact, in the case of gravitational waves it can 
be easily argued that the parameter dependence is smooth ( C∞ ) and RB has been shown to achieve asymptotic 
exponential convergence7,8,10,13–15,26 in practice, as expected with any spectral-type method. Similarly, the EIM 
achieves a subsampling in the space dual to that one of parameters (time in the case here considered) which is 
also nearly optimal. For a detailed discussion on the optimality of the EIM see27 and references therein. On top of 
that, high accuracy predictive models (prediction as opposed to projection) can be built once one has a reduced 
basis and an empirical interpolant13. These predictive models are essentially indistinguishable from numerical 
relativity supercomputer simulations of the Einstein equations but can be evaluated in less than a second on a 
laptop. The availability of high accuracy, fast to evaluate, numerical predictive models and a sparse subsampling 
in time are key components upon we build on in the approach presented in this article for finding and validating 
ab initio symbolic expressions for GWs.

Symbolic regression using genetic programming.  Symbolic regression (SR) is the general procedure 
of finding closed-form expressions representing data. Unlike more conventional regression approaches, when 
SR is free-form it means precisely that: no specific form is specified. This eliminates any possible bias or human 
knowledge gap when postulating specific forms to fit for; it also contemplates completely data-driven cases, in 
which there is no underlying fundamental model or if there is one it is (still) unknown28.

Genetic programming (GP) is, in brief, an area of Artificial Intelligence (AI) whose goal is the evolution of 
programs or tasks through computer means. The techniques of GP emulate those of Nature; that is, algorithms 
are modeled following the process of natural evolution. A thorough book on GP is29, and a shorter field guide30.

Unlike perhaps more conventional Machine Learning (ML) deterministic regression approaches, GP-SR uses 
genetic algorithms to find free, closed-form expressions, either algebraic or differential. GP-SR can be described 
through the following general tree-structured algorithm tracing genetic programming principles: 

1. Create stochastically an initial population of programs (e.g. mathematical expressions and operations);

2. Repeat

3. Execute each program and compute their quality or fitness;

4. Select one or two programs from the population with a probability based on their fitness to participate in genetic operations;

5. Create new programs through the application of genetic operations (e.g. mutation or crossover);

6. Until an acceptable solution is found or some other stopping condition is met;

7. Return the best-so-far individual/s.

GP-SR algorithms do not find a unique representation of data but a number of them with different levels of 
complexity (roughly speaking and for simplicity, cost of evaluation) and fitness with respect to training and vali-
dation sets. So, depending on the criteria used to find expressions via SR, the final symbolic forms can be shorter 
or larger with variable accuracy. In this work we prioritize accuracy. We used Eureqa31 for GP-SR, although 
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there are open source alternatives such as gplearn32 and Glyph33. As a fitness criteria we used the Hybrid Correla-
tion and the R2-Goodness-of-fit metric errors to fit symbolic models for amplitude and phase, respectively. Our 
contribution is not actually on the area of GP-SR but on how to address its high computational cost by means of 
modern ROM and show that it actually works through the case study of the gravitational waves emitted by the 
collision of two black holes (a highly non-trivial system to model). For the details on the GP side of Eureqa see 
the original works of Lipson, Schmidt and Bongard28,34–39.

An example: a robot discovering Newton’s second law. As an example of the power of GP-SR we present 
results for the following system: the simple pendulum. In polar coordinates, Newton’s second law is

where � = g/l , g is the gravitational acceleration and l the length of the pendulum. The variable θ represents the 
angle with respect to the point of stable equilibrium (the pendulum at rest). We set � = 0.5s−2 and performed 
GP-SR on a dataset with initial conditions θ(t = 0) = π/2 and θ̇ (t = 0) = 0 . The time interval for the training 
set was set to be [0, 22] s with grid size �t = 0.1 s, which roughly corresponds to 2 cycles of the pendulum. That 
is, a single stream of data was used for training. We solved the above ordinary differential equation (ODE) with 
the integrate.odeint solver from the Scipy Python library40, and used the resulting data (with intrinsic 
noise, due to the numerical errors of the ODE solver) to find symbolic expressions for the underlying differential 
equation, searching for expressions of the form

The representation with highest fitness —found in the order of seconds— was exactly, not a numerical approxi-
mation of, Newton’s second law for this system, Eq. (1). Furthermore, for initial conditions close to the stable 
equilibrium state, one of the symbolic expressions found was exactly the harmonic oscillator equation.

Although the following conclusion could be somewhat debatable, the point is that a robot could find New-
ton’s fundamental second law in seconds. One could argue that this was for a particular system but, though not 
presented in these terms, this is the process of scientific induction. In data science (DS), ML or AI, this process 
is called validation, whereas in physics it is called verification (as in verifying Newton’s or Einstein’s theory of 
gravity). In fact, with more computational power, the authors of Eureqa remarkably rediscovered Newton’s second 
law for the double pendulum28, which is known in physics as a classical example of a chaotic system.

Complexity: searches and validations.  Genetic programming symbolic regression algorithms are 
known for their scalability issues with the amount and dimensionality of data41,42. Although it is not unusual for 
deterministic ML algorithms to suffer from the curse of dimensionality, scaling in GP-SR is nevertheless an issue. 
For our domain application, as described later on in this article, it resulted in no signs of convergence whatsoever 
after O(103 − 104) core hours (total number of hours with all cores running in parallel). The problem was not so 
much the number of hours but the lack of any progress in the fitness.

Our approach to overcome this problem is intuitive and conceptually simple: it uses a set of sparse data for 
fast training and later high-accuracy surrogate models for large scale validations. Here we use the RB and EIM 
frameworks combined with the surrogate approach developed in Ref.13. If, as in our case, the surrogate models 
are essentially indistinguishable from supercomputer simulations of the Einstein equations, they can be consid-
ered as ground truth solutions, with the advantage of very fast evaluations. The steps of validation for building 
surrogate models based on RB and the EIM are described in9, 10,13,15. So here we focus on the ones related to 
GP-SR. In this processes we used a fraction of our catalog for training and another one for validation so as to 
avoid overfitting; typically we used 50% for each (training and validation). We then compared the symbolic time 
series with the ground truth solutions using dense sampling in parameter and time. This validation instance was 
achieved by computing the overlap integral S(h1, h2)(q) between surrogate and symbolic normalized waveforms 
in the time domain, defined as

where

and h̄1 stands for the complex conjugate of h1 . The overlap S gives a measure of the match between two waveforms 
and is commonly used in GW science. For training issues we have normalized time by a factor of 1,000; this has 
to be taken account for.

Results
Gravitational waves setup.  As a proof of concept we tackled the problem of two black holes initially in 
quasi-circular orbit and without spin, for about 25–31 GW cycles before merger. More precisely, for the time 
interval t ∈ [−2, 750 : 100]M , where M is the total mass of the system and the waveforms are aligned so that 
t = 0 corresponds to the peak of their amplitudes, which is around the time the two black holes merge. Due to 
the scale invariance of General Relativity, the only free parameter then is the mass ratio

(1)θ̈ = −� sin(θ),

θ̈ = f (θ̇ , θ , t).

(2)S(h1, h2) := Re�h1|h2� = 1−
1

2
||h1 − h2||2,

�h1|h2� :=

∫ tmax

tmin

dt h̄1(t) h2(t),

(3)q := m1/m2,
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here chosen to be in the range q ∈ [1, 10] , with mi the mass of each black hole. Furthermore, for definiteness we 
restrict our discussion to the dominant multipolar mode, the ℓ = m = 2 one.

A surrogate for this problem was constructed in Ref.9, and is publicly available as part of the GWSurrogate 
Python package43. This surrogate model consists of only 22 basis elements and, by construction, only 22 EIM 
time nodes. These are the only pieces of information needed to predict with high accuracy any waveform in the 
parameter and time domains considered. The surrogate model can be considered —and we do— as ground truth 
solutions of the EE, since it was shown in9 that it is essentially indistinguishable from NR simulations up to the 
numerical errors of the latter, performed by SpEC44, the most accurate code in the NR community to date for 
modeling GWs from sources without shocks (such as binary black holes).

The two polarizations of GWs can be encoded in a single complex parameterized function,

where � represents a tuple in parameter dimension; here, it corresponds to the mass ratio q defined in Eq. (3). 
The waveforms for the collision of two black holes in initial quasi-circular orbit have an apparent complexity, but 
they are simply oscillatory functions with an increasing amplitude until the time of coalescence, followed by a 
damped exponentially decaying profile, the quasinormal modes of the final black hole. It is therefore convenient 
to consider the amplitude A(t, �) and phase φ(t, �) separately,

find closed-form expressions for them, later reconstruct the symbolic waves and compare them with their ground 
truth counterparts for a large number of validation cases.

For both amplitude and phase our symbolic expressions have an R2-goodness-of-fit of at least R2 ∼ 0.999 
with respect to the validation members of the catalog used in the symbolic regression searches. We discuss more 
thorough and large-scale validation results below.

For both phase and amplitude our dictionary is composed of the following functions and operations:

Amplitude.  In our experience, naively sampling both in parameter (mass ratio q) and physical dimension 
(time) resulted in days or weeks of no convergence while searching for symbolic expressions for the amplitude 
of the GWs. The reason for this is the need to resolve with high accuracy the region around the peak of the 
amplitude (see Fig. 1), for which we tried using a dense sampling in time, which led to substantial computation 
with no signs of convergence.

One could attempt to manually collocate time nodes where needed. This approach is not only tedious but also 
not guaranteed to work. Instead, here we resorted to subsampling in time using only the 22 EIM nodes, shown in 
Fig.1, and 90 equally spaced values in the mass ratio. The rationale for this approach is that the EIM time nodes 
are the only relevant ones for recovering the whole time series and thus the only representative ones; this intuition 
proved to be correct, as we discuss below. Using only the EIM nodes in a few minutes we were able to find the 
following closed-form expression for all q ∈ [1, 10] (we discuss validation using a dense set of time nodes below):

where gauss(x) := e−x2 , atan2(x, y) is the arctangent of two parameters and

h(t, �) := h+(t, �)+ i h×(t, �),

(4)h(t, �) := A(t, �)× eiφ(t,�),

Constant,Addition,Substraction,Multiplication,Division,

Sine,Cosine,Tangent,Exponential,

Natural Logarithmic,Power,Square Root,Gaussian Function,

Hyperbolic Tangent,Hyperbolic Sine,

Hyperbolic Cosine,Arcsine,Arccosine,

Arctangent,Two-Argument Arctangent,

Inverse Hyperbolic Sine,Inverse Hyperbolic Cosine,

Inverse Hyperbolic Tangent.

(5)
A(t, q) ={a1 gauss(atan2(t, a2 − t))}/{a3 + q− t − a4 gauss(atan2(a5, q)− a6 t)gauss(atan2(t, a7 − t − a8 t q))} − a9,

Figure 1.   Amplitude for the surrogate waveform q = 2 ; the red diamonds denote the EIM time nodes, which 
are by construction the same for all q ∈ [1, 10] . Their adaptive nature, leading to a resolution improvement 
around the peak of the amplitude, can be noticed.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5832  | https://doi.org/10.1038/s41598-021-85102-y

www.nature.com/scientificreports/

Figure 2 shows the symbolic amplitude (5) as a function of the mass ratio q and time. The ground truth values 
are not shown because they are indistinguishable by eye.

As a mode of illustration, we show in Fig. 3 the error curve as a function of time for the amplitude. Although 
the complete range of convergence included several hours, the plateau of the curve is achieved in the order of 
minutes, dedicating most of the time to fine tuning of parameters for improving the accuracy of the model. There 
are several reasons for the formation of this plateau, for example the finiteness of the dictionary, which serves as a 
constraint for the search space of functions; and the penalization for large formulas (high complexity) in the GP 
algorithm, which prevents from finding extremely high complex functions with little or no gain in accuracy. One 
could say that an important reason for the plateau is the stagnation in local optima, but actually the algorithm 
softens this problem by implementing a protocol that allows to promote population diversity in the evolutionary 
search without impacting the fitness performance. For details, see36,37.

Phase.  Although we were able to find high accuracy symbolic expressions for the phase in the considered 
interval of q ∈ [1, 10] (see Fig. 4 for a symbolic model that is continuous in the whole interval), they resulted in 
large propagation errors in the reconstruction of the waveforms. The reason is different from phase accumulation 
errors in numerical relativity, since here we are dealing with global optimization errors and is simply the follow-
ing: a change in phase φ → φ + δφ in (4) leads to an error in the waveforms of the form

so |δh|/A = δφ . In order to get a relative error of 1% at least, we must have an order of 0.01 in the phase error 
δφ . For the whole q ∈ [1, 10] phase symbolic model, in the results here obtained δφ is of order 1 (with a relative 
error less than 10−2 ), leading to large errors when reconstructing the waveforms.

A simple domain decomposition to solve this issue worked out for us: we subdivided the domain q ∈ [1, 10] 
into 9 equally spaced subdomains of the form

a1 = 1.37502533181183, a2 = 0.0409895367586908, a3 = 3.40043449934568, a4 = 1.86434379599601,

a5 = 1.1446516014466, a6 = 1.49686180948812, a7 = 0.0250835926883564, a8 = 0.108134472792241,

a9 = 0.00178301085458751.

h → h̃ := A× ei(φ+δφ) ≈ h (1+ iδφ),

q ∈ [1, 2], [2, 3], . . . , [8, 9], [9, 10],

Figure 2.   Symbolic amplitude (5) as a function of the mass ratio q = m1/m2 and time.

Figure 3.   Error curve in time for symbolic regression corresponding to the amplitude. Note the error in a few 
seconds reaches a plateau. We stopped our search when the symbolic waveforms reached a 99% overlap with 
respect to the surrogate model.
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We have not tried using a different number of domains, or of different relative sizes, since the point of this 
paper is to show how to build a sparse training set to avoid the high computational cost of symbolic regression 
through genetic programming, and that it works in practice in a highly non-trivial application.

For simplicity, we have not imposed boundary conditions between the subdomain boundaries, although this 
could in principle be done. Domain decompositions are standard when solving partial differential equations 
(PDEs). In fact, it is possible that in more complex scenarios or even in this case a more elaborate scheme such 
as an hp-greedy domain decomposition45–48 (where the hp term is actually borrowed from domain decomposi-
tion and refinement in finite elements when solving partial PDEs) might be more efficient in terms of decreasing 
the number of subdomains and improve our results. As an analogy, it is well known that when solving PDEs 
through a domain decomposition numerical solutions are not continuous across domain boundaries at fixed 
resolution (either in space, time, or both); this is usually addressed through weak enforcement of the solution 
across boundaries, usually in the form of penalty terms For a detailed discussion on these topics in the context 
of Einstein’s equations see, for example49–51. In this article we focus on showing that, as a proof of concept, 
closed- and free-form expressions can be obtained without resorting to physical approximations. It might be 
possible to obtain accurate symbolic expressions without a domain decomposition, for example by enriching 
the dictionary through physically inspired functions, but this is left for future work. Here we focus on the basic 
elements of eliminating the curse of dimensionality in symbolic regression using modern approaches to reduced 
order modeling for parametrized systems.

When searching for symbolic expressions for the phase we used 20 values in mass ratio and 285 time nodes 
for each domain, with all points equally spaced. Due to the simple structure of the phase (see. Fig. 4), subsam-
pling was not necessary.

Our highest accuracy results are the following:

Figure 4.   Symbolic phase as a function of the mass ratio q = m1/m2 and time.
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Validation and accuracy of symbolic waveforms.  From the symbolic amplitude and phases we recon-
structed the time series for the two polarizations of the GWs and compared them with the ground truth solu-

φ[1,2](t, q) = b1 atan2(b2, t) sinh
−1(b3 t)+

b4 t cosh(q) sinh
−1(b3 t)

atan2(b2, t)

− b5 − b6 t − b7 cosh(q)− b8 sinh
−1(t)− b9 sinh

−1(b3 t)

b1 = 16.9899198245249, b2 = 0.0307964991839896, b3 = 8.47135183989294, b4 = 0.517828856434813,

b5 = 155.336099835965, b6 = 23.6826537661638, b7 = 1.67469018319234, b8 = 26.3800439393647,

b9 = 64.7124400428524.

φ[2,3](t, q) = b1 t
2 + b2 t e

t − b3 − b4 q− b5 t − b6 q t − b7 sinh
−1(b8 t)− b9 t sinh

−1(b8 t),

b1 = 6.83585963818032, b2 = 29.2184323756819, b3 = 150.134280878147, b4 = 5.63837416811418,

b5 = 336.187115348329, b6 = 2.03916141015058, b7 = 0.462051355197209, b8 = 224.317310349048,

b9 = 42.1012107484649.

φ[3,4](t, q) = b1 − b2 q− b3 t − b4 sinh
−1(t)− b5 q t − b6 tan

−1(b7 t)− b8 tan
−1(b9 t) tan

−1(b10 t),

b1 = −150.779871664876, b2 = 5.48151705552273, b3 = 20.9244777358138, b4 = 40.725476363926,

b5 = 1.98410145646586, b6 = 58.0238952257731, b7 = 4.54076522147913, b8 = 27.5236418372851,

b9 = 27.0569353214333, b10 = 4.54076522147913.

φ[4,5](t, q) = b1 tanh(t)+ b2 t
2 + b3 q t tanh(t)− b4 − b5 q− b6 t − b7 sinh

−1(b8 t)− b9 t sinh
−1(b8 t),

b1 = 8.5721194612964, b2 = 4.77594286022371, b3 = 1.71392847899927, b4 = 153.735830018958,

b5 = 4.65044447419562, b6 = 301.17672677624, b7 = 0.401467421747743, b8 = 300.050625169173,

b9 = 34.6087658515619.

φ[5,6](t, q) = b1 atan2(b2, e
b3 t+(b3 t

2)b4 )− b5 − b6 q− b7 t − b8 e
t − b9 q t atan2(b10, e

b3 t+(b3 t
2)b4 ),

b1 = 34.9967402431729, b2 = 2.88396955316236, b3 = 18.5550015973867, b4 = 0.56242721246326,

b5 = 144.334463413931, b6 = 4.56653604042429 , b7 = 33.8215169236648, b8 = 53.5938957492291,

b9 = 1.05498674575652, b10 = 0.0457688186271425.

φ[6,7](t, q) = b1 t
2 + b2 sinh

−1(b3 t)+ b4 atan2(b5, b3 t)+ b6 t sinh
−1(b3 t)− b7 − b8 q− b9 t − b10 q t,

b1 = 1.16459728558136, b2 = 2.04818853464955, b3 = −3031.15606950987, b4 = 5.63150899599863,

b5 = 5.54505004946533, b6 = 19.5350382862564,

b7 = 164.847087315508, b8 = 4.24649927087975, b9 = 239.435021215528, b10 = 1.54209668558109.

φ[7,8](t, q) = b1 atan2(b2, t)− b3 − b4 q− b5 t − b6 t q− b7 sinh
−1(b8 t)− b9 tan

−1(b10 t) sinh
−1(b11 t),

b1 = 42.5234029423116, b2 = −0.454286929738614, b3 = 92.557645930759, b4 = 3.87693080235069,

b5 = 21.6846366746129, b6 = 1.40441380466267, b7 = 103.004616315544, b8 = 3.4964623078196,

b9 = 31.6037083633658, b10 = 19.0682642359228,

b11 = 3.4964623078196.

φ[8,9](t, q) = b1 t
2 + b2 e

b3 t + b4 t sinh
−1(sinh−1(b5 t))− b6 − b7 q− b8 t − b9 t q sinh

−1(sinh−1(b5 t)),

b1 = 0.223595449207837, b2 = 0.0228895534195837, b3 = 53.3803388021468, b4 = 108.64303226437,

b5 = −24.5987724166689, b6 = 162.16004867221, b7 = 3.50199154150564, b8 = 307.395374115204,

b9 = 0.565057456771371.

φ[9,10](t, q) = b1 atan2(t, b2)+ b3 q t
2 − b4 − b5 q− b6 t − b7 t sinh

−1(b8 t)− b9 q
2 sinh−1(b8 t),

b1 = 10.6554882562835, b2 = 0.561000822409326, b3 = 0.390622102213681, b4 = 164.868219149625,

b5 = 3.16971455362515, b6 = 293.785912743941, b7 = 33.3325708174699, b8 = 174.055527284276,

b9 = 0.00463931687452369.
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tions using 105 GWs per each subdomain [qi , qi+1] i = 1, . . . , 9 , and the whole 28, 501 time samples provided by 
GWSurrogate, leading to ∼ 106 validation waveforms.

The result is that the overlap S = S(q) (2) in our approach gives values above 99% for all cases. The main 
reason that we could do this a posteriori dense validation is due to the fact that ground truth solutions using 
surrogate models can be evaluated very quickly. The results are shown in Fig. 5. One should not reach any con-
clusion from the dependence of the overlap S as a function of the mass ratio q, since these are representations, 
much as in domain decomposition approaches in NR (though usually in physical space, not in parameters). For 
example, we could have chosen to show results for symbolic expressions with a more uniform error distribu-
tion, though it is worth emphasizing that the differences in the figure are in the order of 0.1%, which is below 
the accuracy required by Laser Interferometer GW detectors. Put differently, although not perhaps known for 
non-numerical relativists, this non-smooth behavior across boundaries is always present (though in a different 
sense) in numerical solutions to the Einstein equations when using state of the art domain decomposition or 
adaptive mesh refinement: continuity is only imposed within a given numerical resolution49. There are always 
“numerical jumps” and at any fixed resolution the numerical solution to Eintein’s equations is non-smooth; the 
idea is that these discontinuities are below an acceptable numerical error. The analogue in our approach is that 
across boundaries the symbolic phases are not smooth but they result in waveforms with overlaps with respect 
to the ground truth solutions which are below an acceptable error tolerance. As a remark, in GW science, this 
acceptable discrepancy is of 97%, while our results guarantee at least 99%.

As an example, in Fig. 6 we show the ground truth solution on top of its symbolic expression for h+ , corre-
sponding to the worst match in the validation space for the whole interval q ∈ [1, 10] . Results for h× are similar 
since both modes are related simply by a π/2 phase difference.

Figure 5.   Overlap S(q) for the symbolic waveforms vs the mass ratio q, when compared to ground truth 
solutions, using q ∼ 106 values. The minimum and maximum overlaps are S = 0.9905 and S = 0.9986 , 
respectively. The dotted lines delimit each subdomain [qi , qi+1] for i = 1 . . . 9.

Figure 6.   Symbolic and surrogate waveforms corresponding to the worst match in a posteriori validation 
with respect to the surrogate model. Top: the whole waveforms, with the vertical redline prior to merger, at 
t/M = −60 . Bottom: zoom in of the waveforms in the range t/M ∈ [−60, 100] . The differences near the merger 
are noticeable, but the overlap is still S = 0.9905.
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Discussion
In perspective, having high accuracy, closed-form (symbolic) expressions for the emitted gravitational waves as 
predicted by a theory as complex as Einstein’s one of gravity, for a process as complex as the collision of two black 
holes, without any simplification in the theory (thus the ab initio-based emphasis), in a completely autonomous 
way, cannot be overemphasized.

The standard procedure in GW phenomenological modeling is that one of “stitching” GWs from post-
Newtonian (PN) expansions or Effective One Body approximations, ringdown, and a merger regime in between 
from numerical relativity in some way (there are many of them) and in this sense they do carry physical approxi-
mations and therefore are not ab initio-based in the sense here used. Similarly with hybrid models, where early 
in the inspiral stage some physical approximant is stitched to a numerical relativity solution. Here we have 
concentrated for training data on a model that is completely indistinguishable from high accuracy numerical 
relativity supercomputer simulations of the full Einstein equations. In this sense our results can be considered 
truly ab initio-based, since in the absence of exact solutions (except for those with high degrees of symmetry) 
high accuracy NR simulations of the Einstein equations are considered the true gold-standard.

Another point to emphasize is that, unlike most —if not all— phenomenological models, our closed-form 
expressions do not distinguish between inspiral, merger and ringdown, but model all regimes at once. One could 
have chosen to find symbolic expressions for the different regimes just mentioned, but in order to show the 
power of our approach we have chosen to model the whole inspiral-merger-ringdown case at once. The domain 
decomposition here presented is very simple. Having different models in parameter space is not unusual. In fact, 
it has allowed (among many other ingredients) to find new signals from public LIGO data52.

Our approach is one of the many trends in the gravitational wave science community to incorporate tools 
from DS, ML and AI, but to our knowledge it is the first of its kind. Because of this, and because genetic pro-
gramming symbolic regression is meant to provide insights from data, it is difficult to anticipate the full impact 
and ramifications of our approach. It might be useful, for example, for other ones combining ROM with Deep 
Learning for GW inference53, which produce, and start from closed-form expressions.

We presented a proof of concept for a novel approach. A next natural, conceptually straightforward, step 
might be to apply it to the other multipole modes of9, and more complex systems such as the case of spinning, 
precessing black holes using, for example, the surrogate models of11,12,54. It is possible that for these cases, and 
higher dimensionality ones in parameter space in general, it would be beneficial when training GP-SR to use 
not only the EIM time nodes but also the greedy parameter values to increase sparseness and avoid the curse of 
dimensionality of SR searches. Another line of future research would be to use an hp-greedy refinement approach 
at the surrogate level to minimize the number of domains. The question of what is the optimal minimum number 
of subdomains and how it increases with parameter dimensionality is outside the scope of this work but remains 
as an interesting question. Making touch again with numerical relativity, the equivalent would be asking how 
the number of domains or levels of adaptive mesh refinement changes with resolution. Even in an established 
field such as NR, where there is little to no theory for equations as complicated as the Einstein ones, one usually 
proceeds through numerical experiments.

Even though here we have focused on symbolic expressions based on surrogates built from high accuracy 
numerical relativity simulations, our approach can be applied to other surrogates based on RB and the EIM, for 
example those based on EOB or PN ones13,55.

The sparse yet near-optimal subsampling in time using the EIM is a key ingredient in our approach for find-
ing closed-form expressions, so it is not clear that other surrogate models (say based on Gaussian regression, 
see, e.g. Ref.56) can do so. There might be potential in enriching the dictionary here used for GP-SR (composed 
of elementary functions and basic arithmetic operations) using phenomenological or other physically based 
symbolic models. In this sense, using GP-SR should outperform any other kind of physics-based fits by design 
being free-form. Also, any other fits can be used as a bootstrap to enrich the dictionary of GP-SR; this can also 
be done as more dimensions and physics complexity are added28.

Anyone willing to qualitatively reproduce or extend the results of this paper can apply for a free academic 
license of DataRobot57, an Automated Machine Learning framework, which integrates the GP algorithm used 
in this work. Our results can be easily accesible through a Jupyter notebook at https://github.com/aaronuv/
SymbolicGWs.

In general terms, our approach should be applicable to other disciplines beyond gravitational wave science 
since computational complexity is a common problem in genetic programming.

Received: 27 January 2020; Accepted: 11 February 2021

References
	 1.	 LIGO-detection-papers. https​://www.ligo.calte​ch.edu/page/detec​tion-compa​nion-paper​s.
	 2.	 Cornish, N., Sampson, L., Yunes, N. & Pretorius, F. Gravitational wave tests of general relativity with the parameterized post-

Einsteinian framework. Phys. Rev. D 84, 062003. https​://doi.org/10.1103/PhysR​evD.84.06200​3 (2011).
	 3.	 Top500 the list. https​://www.top50​0.org/lists​/2019/06/ (2019).
	 4.	 Smith, R. et al. Fast and accurate inference on gravitational waves from precessing compact binaries. Phys. Rev. D 94, 044031. https​

://doi.org/10.1103/PhysR​evD.94.04403​1 (2016).
	 5.	 Ajith, P. et al. Phenomenological template family for black-hole coalescence waveforms. Class. Quant. Grav. 24, S689–S700. https​

://doi.org/10.1088/0264-9381/24/19/S31 (2007).
	 6.	 Buonanno, A. & Damour, T. Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006. https​

://doi.org/10.1103/PhysR​evD.59.08400​6 (1999).
	 7.	 Rifat, N.-E.-M., Field, S., Khanna, G. & Varma, V. Surrogate model for gravitational wave signals from comparable and large-mass-

ratio black hole binaries. Phys. Rev. D.https​://doi.org/10.1103/PhysR​evD.101.08150​2 (2020).

https://www.ligo.caltech.edu/page/detection-companion-papers
https://doi.org/10.1103/PhysRevD.84.062003
https://www.top500.org/lists/2019/06/
https://doi.org/10.1103/PhysRevD.94.044031
https://doi.org/10.1103/PhysRevD.94.044031
https://doi.org/10.1088/0264-9381/24/19/S31
https://doi.org/10.1088/0264-9381/24/19/S31
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.101.081502


10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5832  | https://doi.org/10.1038/s41598-021-85102-y

www.nature.com/scientificreports/

	 8.	 Varma, V. et al. Surrogate model of hybridized numerical relativity binary black hole waveforms. Phys. Rev. D 99, 064045. https​://
doi.org/10.1103/PhysR​evD.99.06404​5 (2019).

	 9.	 Blackman, J. et al. Fast and accurate prediction of numerical relativity waveforms from binary black hole coalescences using sur-
rogate models. Phys. Rev. Lett. 115, 121102. https​://doi.org/10.1103/PhysR​evLet​t.115.12110​2 (2015).

	10.	 Caudill, S., Field, S. E., Galley, C. R., Herrmann, F. & Tiglio, M. Reduced basis representations of multi-mode black hole ringdown 
gravitational waves. Class. Quantum Gravity 29, 095016. https​://doi.org/10.1088/0264-9381/29/9/09501​6 (2012).

	11.	 Blackman, J. et al. A surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black 
hole mergers. Phys. Rev. D 95, 104023. https​://doi.org/10.1103/PhysR​evD.95.10402​3 (2017).

	12.	 Varma, V. et al. Surrogate models for precessing binary black hole simulations with unequal masses. Phys. Rev. Res. 1, 033015. 
https​://doi.org/10.1103/PhysR​evRes​earch​.1.03301​5 (2019).

	13.	 Field, S. E., Galley, C. R., Hesthaven, J. S., Kaye, J. & Tiglio, M. Fast prediction and evaluation of gravitational waveforms using 
surrogate models. Phys. Rev. X 4, 031006. https​://doi.org/10.1103/PhysR​evX.4.03100​6 (2014).

	14.	 Field, S. E., Galley, C. R. & Ochsner, E. Towards beating the curse of dimensionality for gravitational waves using reduced basis. 
Phys. Rev. D 86, 084046. https​://doi.org/10.1103/PhysR​evD.86.08404​6 (2012).

	15.	 Field, S. E. et al. Reduced basis catalogs for gravitational wave templates. Phys. Rev. Lett. 106, 221102. https​://doi.org/10.1103/
PhysR​evLet​t.106.22110​2 (2011).

	16.	 Canizares, P. et al. Accelerated gravitational-wave parameter estimation with reduced order modeling. Phys. Rev. Lett. 114, 071104. 
https​://doi.org/10.1103/PhysR​evLet​t.114.07110​4 (2015).

	17.	 Tiglio, M. & Villanueva, A. Reduced order and surrogate models for gravitational waves (2021). arXiv​:2101.11608​.
	18.	 Setyawati, Y. E., Puerrer, M. & Ohme, F. Regression methods in waveform modeling: a comparative study. Class. Quantum Grav-

ity. https​://doi.org/10.1088/1361-6382/ab693​b (2020).
	19.	 Hesthaven, J. S., Rozza, G. & Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations 1st edn. 

(Springer, Bern, 2015).
	20.	 Quarteroni, A., Manzoni, A. & Negri, F. Reduced Basis Methods for Partial Differential Equations: An Introduction (Springer Inter-

national Publishing, Berlin, 2015).
	21.	 Maday, Y., Nguyen, N. C., Patera, A. T. & Pau, S. H. A general multipurpose interpolation procedure: the magic points. Commun. 

Pure Appl. Anal. 8, 383–404. https​://doi.org/10.3934/cpaa.2009.8.383 (2009).
	22.	 Barrault, M., Maday, Y., Nguyen, N. C. & Patera, A. T. An ‘empirical interpolation’ method: application to efficient reduced-basis 

discretization of partial differential equations. C. R. Math. 339, 667–672 (2004).
	23.	 Chaturantabut, S. & Sorensen, C. D. Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 

2737–2764. https​://doi.org/10.1137/09076​6498 (2010).
	24.	 Pinkus, A. n-Widths in Approximation Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern 

Surveys in Mathematics (Book 7) (Springer, 1985).
	25.	 Binev, P. et al. Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011).
	26.	 Blackman, J., Szilagyi, B., Galley, C. R. & Tiglio, M. Sparse representations of gravitational waves from precessing compact binaries. 

Phys. Rev. Lett. 113, 021101. https​://doi.org/10.1103/PhysR​evLet​t.113.02110​1 (2014).
	27.	 Tiglio, M. & Villanueva, A. On the stability and accuracy of the empirical interpolation method and gravitational wave surrogates. 

arXiv​:2009.06151​ (2020).
	28.	 Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85. https​://doi.org/10.1126/

scien​ce.11658​93 (2009).
	29.	 Koza, J. R. Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992).
	30.	 RiccardoPoli, W. B. L. & Nicholas, F. M. A Field Guide to Genetic Programming (Lulu.com, London, 1992).
	31.	 Eureqa webpage. https​://www.nuton​ian.com/produ​cts/eureq​a/ (2009).
	32.	 gplearn webpage. https​://gplea​rn.readt​hedoc​s.io/en/stabl​e/.
	33.	 Quade, M., Gout, J. & Abel, M. Glyph: symbolic regression tools. J. Open Res. Softw.https​://doi.org/10.5334/jors.192 (2019).
	34.	 Bongard, J. C. & Lipson, H. Nonlinear system identification using coevolution of models and tests. IEEE Trans. Evol. Comput. 9, 

361–384. https​://doi.org/10.1109/TEVC.2005.85029​3 (2005).
	35.	 Bongard, J. & Lipson, H. Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 104, 9943–9948. 

https​://doi.org/10.1073/pnas.06094​76104​ (2007).
	36.	 Schmidt, M. & Lipson, H. Co-evolving fitness predictors for accelerating evaluations and reducing sampling. Genetic Programming 

Theory and Practice IV 5, (2006).
	37.	 Schmidt, M. D. & Lipson, H. Coevolution of fitness predictors. IEEE Trans. Evol. Comput. 12, 736–749. https​://doi.org/10.1109/

TEVC.2008.91900​6 (2008).
	38.	 Schmidt, M. & Lipson, H. Symbolic Regression of Implicit Equations 73–85 (Springer, Boston, 2010).
	39.	 Schmidt, M. & Lipson, H. Age-Fitness Pareto Optimization 129–146 (Springer, New York, 2011).
	40.	 Scipy webpage. https​://www.scipy​.org/.
	41.	 O’Neill, M., Vanneschi, L. & Gustafson, S. Open issues in genetic programming. Genet. Program. Evol. Mach. 11, 339–363. https​

://doi.org/10.1007/s1071​0-010-9113-2 (2010).
	42.	 Icke, I. & Bongard, J. C. Improving genetic programming based symbolic regression using deterministic machine learning. In 2013 

IEEE Congress on Evolutionary Computation, 1763–1770, https​://doi.org/10.1109/CEC.2013.65577​74 (2013).
	43.	 GWSurrogate 0.9.7 webpage. https​://pypi.org/proje​ct/gwsur​rogat​e/.
	44.	 Spectral Einstein Code webpage. https​://www.black​-holes​.org/code/SpEC.html.
	45.	 Eftang, J. L. & Stamm, B. Parameter multi-domain ‘hp’ empirical interpolation. Int. J. Numer. Methods Eng. 90, 412–428. https​://

doi.org/10.1002/nme.3327 (2012).
	46.	 Eftang, J. L., Patera, A. T. & Ronquist, E. M. An hp certified reduced basis method for parametrized elliptic partial differential 

equations. SIAM J. Sci. Comput. 32, 3170–3200 (2010).
	47.	 Eftang, J. L., Knezevic, D. J. & Patera, A. T. An HP certified reduced basis method for parametrized parabolic partial differential 

equations. Math. Comput. Model. Dyn. Syst. 17, 395–422. https​://doi.org/10.1080/13873​954.2011.54767​0 (2011).
	48.	 Eftang, J. L., Huynh, D. B., Knezevic, D. J. & Patera, A. T. A two-step certified reduced basis method. J. Sci. Comput. 51, 28–58. 

https​://doi.org/10.1007/s1091​5-011-9494-2 (2012).
	49.	 Sarbach, O. & Tiglio, M. Continuum and discrete initial-boundary value problems and einstein’s field equations. Living Reviews 

in Relativity15, 9. https​://doi.org/10.12942​/lrr-2012-9 (2012).
	50.	 Calabrese, G., Lehner, L., Reula, O., Sarbach, O. & Tiglio, M. Summation by parts and dissipation for domains with excised regions. 

Class. Quant. Grav. 21, 5735–5758. https​://doi.org/10.1088/0264-9381/21/24/004 (2004).
	51.	 Lehner, L., Reula, O. & Tiglio, M. Multi-block simulations in general relativity: high order discretizations, numerical stability, and 

applications. Class. Quant. Grav. 22, 5283–5322. https​://doi.org/10.1088/0264-9381/22/24/006 (2005).
	52.	 Venumadhav, T., Zackay, B., Roulet, J., Dai, L. & Zaldarriaga, M. New binary black hole mergers in the second observing run of 

Advanced LIGO and Advanced Virgo. Phys. Rev. D 101, 083030. https​://doi.org/10.1103/PhysR​evD.101.08303​0 (2020).
	53.	 Chua, A. J. K., Galley, C. R. & Vallisneri, M. Reduced-order modeling with artificial neurons for gravitational-wave inference. 

Phys. Rev. Lett. 122, 211101. https​://doi.org/10.1103/PhysR​evLet​t.122.21110​1 (2019).

https://doi.org/10.1103/PhysRevD.99.064045
https://doi.org/10.1103/PhysRevD.99.064045
https://doi.org/10.1103/PhysRevLett.115.121102
https://doi.org/10.1088/0264-9381/29/9/095016
https://doi.org/10.1103/PhysRevD.95.104023
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevX.4.031006
https://doi.org/10.1103/PhysRevD.86.084046
https://doi.org/10.1103/PhysRevLett.106.221102
https://doi.org/10.1103/PhysRevLett.106.221102
https://doi.org/10.1103/PhysRevLett.114.071104
http://arxiv.org/abs/2101.11608
https://doi.org/10.1088/1361-6382/ab693b
https://doi.org/10.3934/cpaa.2009.8.383
https://doi.org/10.1137/090766498
https://doi.org/10.1103/PhysRevLett.113.021101
http://arxiv.org/abs/2009.06151
https://doi.org/10.1126/science.1165893
https://doi.org/10.1126/science.1165893
https://www.nutonian.com/products/eureqa/
https://gplearn.readthedocs.io/en/stable/
https://doi.org/10.5334/jors.192
https://doi.org/10.1109/TEVC.2005.850293
https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1109/TEVC.2008.919006
https://doi.org/10.1109/TEVC.2008.919006
https://www.scipy.org/
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/10.1007/s10710-010-9113-2
https://doi.org/10.1109/CEC.2013.6557774
https://pypi.org/project/gwsurrogate/
https://www.black-holes.org/code/SpEC.html
https://doi.org/10.1002/nme.3327
https://doi.org/10.1002/nme.3327
https://doi.org/10.1080/13873954.2011.547670
https://doi.org/10.1007/s10915-011-9494-2
https://doi.org/10.12942/lrr-2012-9
https://doi.org/10.1088/0264-9381/21/24/004
https://doi.org/10.1088/0264-9381/22/24/006
https://doi.org/10.1103/PhysRevD.101.083030
https://doi.org/10.1103/PhysRevLett.122.211101


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:5832  | https://doi.org/10.1038/s41598-021-85102-y

www.nature.com/scientificreports/

	54.	 Lackey, B. D., Purrer, M., Taracchini, A. & Marsat, S. Surrogate model for an aligned-spin effective-one-body waveform model 
of binary neutron star inspirals using gaussian process regression. Phys. Rev. D 100, 024002. https​://doi.org/10.1103/PhysR​
evD.100.02400​2 (2019).

	55.	 Lackey, B. D., Bernuzzi, S., Galley, C. R., Meidam, J. & Van Den Broeck, C. Effective-one-body waveforms for binary neutron stars 
using surrogate models. Phys. Rev. D 95, 104036. https​://doi.org/10.1103/PhysR​evD.95.10403​6 (2017).

	56.	 Lackey, B. D., Pürrer, M., Taracchini, A. & Marsat, S. Surrogate model for an aligned-spin effective one body waveform model 
of binary neutron star inspirals using Gaussian process regression. Phys. Rev. D 100, 024002. https​://doi.org/10.1103/PhysR​
evD.100.02400​2 (2019).

	57.	 DataRobot webpage. https​://www.datar​obot.com/.

Acknowledgements
The main ideas of this project were initiated with Rory Smith, to whom we are extremely thankful, as well as 
Alan Weinstein and Yanbei Chen for hospitality at Caltech. We thank Hod Lipson for introducing us to symbolic 
regression, the team at Nutonian for academic licenses of Eureqa (now part of DataRobot) and a steep discount 
on their enterprise parallel version, and Jorge Pullin for comments on a previous draft of this paper. We also 
thank two anonymous referees for valuable comments and feedback on a previous version of this manuscript. 
This project was supported in part by CONICET (Argentina).

Author contributions
M.T. and A.V. contributed equally to the research leading to this paper, as well as its writing and review. The list 
of authors has been ordered alphabetically.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1103/PhysRevD.100.024002
https://doi.org/10.1103/PhysRevD.100.024002
https://doi.org/10.1103/PhysRevD.95.104036
https://doi.org/10.1103/PhysRevD.100.024002
https://doi.org/10.1103/PhysRevD.100.024002
https://www.datarobot.com/
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	On ab initio-based, free and closed-form expressions for gravitational waves
	Method
	Reduced order and surrogate models. 
	Symbolic regression using genetic programming. 
	Complexity: searches and validations. 

	Results
	Gravitational waves setup. 
	Amplitude. 
	Phase. 
	Validation and accuracy of symbolic waveforms. 

	Discussion
	References
	Acknowledgements


