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Oscillatory pattern of glycemic 
control in patients with diabetes 
mellitus
Manuel Vasquez‑Muñoz1,2,12, Alexis Arce‑Alvarez3,12, Magdalena von Igel4, 
Carlos Veliz4, Gonzalo Ruiz‑Esquide1, Rodrigo Ramirez‑Campillo4,5, Cristian Alvarez5, 
Robinson Ramirez‑Velez2,6, Fernando A. Crespo7, Mikel Izquierdo2,6, Rodrigo Del Rio8,9,10 & 
David C. Andrade4,8,11*

Daily glucose variability is higher in diabetic mellitus (DM) patients which has been related to 
the severity of the disease. However, it is unclear whether glycemic variability displays a specific 
pattern oscillation or if it is completely random. Thus, to determine glycemic variability pattern, 
we measured and analyzed continuous glucose monitoring (CGM) data, in control subjects and 
patients with DM type‑1 (T1D). CGM data was assessed for 6 days (day: 08:00–20:00‑h; and night: 
20:00–08:00‑h). Participants (n = 172; age = 18–80 years) were assigned to T1D (n = 144, females = 65) 
and Control (i.e., healthy; n = 28, females = 22) groups. Anthropometry, pharmacologic treatments, 
glycosylated hemoglobin (HbA1c) and years of evolution were determined. T1D females displayed 
a higher glycemia at 10:00–14:00‑h vs. T1D males and Control females. DM patients displays mainly 
stationary oscillations (deterministic), with circadian rhythm characteristics. The glycemia oscillated 
between 2 and 6 days. The predictive model of glycemia showed that it is possible to predict hyper and 
hypoglycemia  (R2 = 0.94 and 0.98, respectively) in DM patients independent of their etiology. Our data 
showed that glycemic variability had a specific oscillation pattern with circadian characteristics, with 
episodes of hypoglycemia and hyperglycemia at day phases, which could help therapeutic action for 
this population.

Diabetes mellitus (DM) is a significant public health problem, affecting 415 million adults, in addition to 318 
million  prediabetics1. Importantly, public spending associated with DM reached US$237 billion in 2017 in the 
 US2. Moreover, DM is a significant cause of blindness, kidney failure, heart attacks, strokes, and lower limb 
 amputation3,4. Considering the prevalence, poor prognosis and hazards associated with DM, it is essential to 
monitor, control, and stabilize the glycemia in this population. Along with this, it has been proposed that gly-
cosylated hemoglobin (HbA1c) could predict the risk of long-term diabetes  complications3–6. However, HbA1c 
allows only long-term metrics, limiting personalized therapy, particularly in DM type 1 patients (T1D). Com-
pared to HbA1c, continuous glucose monitoring (CGM) allows real-time measurements of glucose, although 
it is feasible to assess hypoglycemia/hyperglycemia episodes and consequently glycemia variability over several 
days, weeks or even  months7,8 However, whether the dynamic of glycemic fluctuation is exclusively represented 
by a specific pattern variability (stationary) or random oscillation (non-stationary) has not been completely 
explored. In fact, Kovatchev et al. (2016, 2017)9,10 indicated that the dynamic of glycemic fluctuation is more 

OPEN

1Clínica Santa María, Santiago, Chile. 2Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad 
Pública de Navarra (UPNA), IdiSNA, Pamplona, Navarra, Spain. 3Escuela de Kinesiología, Facultad de Salud, 
Universidad Católica Silva Henríquez, Santiago, Chile. 4Centro de Investigación en Fisiología del Ejercicio, Facultad 
de Ciencias, Universidad Mayor, Santiago, Chile. 5Human Performance Laboratory, Quality of Life and Wellness 
Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile. 6CIBER of 
Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain. 7DAiTA Lab, Facultad de Estudios 
Interdisciplinarios, Universidad Mayor, Santiago, Chile. 8Laboratory of Cardiorespiratory Control, Department of 
Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. 9Centro de Envejecimiento Y Regeneración 
(CARE), Pontificia Universidad Católica de Chile, Santiago, Chile. 10Centro de Excelencia en Biomedicina de 
Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. 11Centro de Investigación en Fisiología 
Y Medicina de Altura (MedAlt), Facultad de Ciencias de la Salud, Universidad de Antofagasta, Av. Universidad de 
Antofagasta #02800, Antofagasta, Chile. 12These authors contributed equally: Manuel Vasquez-Muñoz and Alexis 
Arce-Alvarez. *email: dcandrade@uc.cl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-84822-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5789  | https://doi.org/10.1038/s41598-021-84822-5

www.nature.com/scientificreports/

related to stationary signals rather than to random oscillation; however, it is no clear if a different pattern of 
oscillation occurs between patients, which could be relevant to different therapies applied in DM population.

Along to the aforementioned, glucose variability is of such relevance due that vascular complications occur-
rences in DM patients have been attributed to hyperglycemias and dysglycemias (higher and lower levels of 
glycemia during the day and night phases)  events9–12. Additionally, despite that robust information exists regard-
ing CGM  data7,8, today there are no predictive models to extrapolate the moment and magnitude of hyper and 
hypoglycemia in DM patients. This is extremely relevant, considering that severe cardiovascular complications 
are related to dysglycemic  events11,12. Thus, glycemia variability and its patterns may be considered a health issue; 
however, (i) whether a given specific pattern wavering represents glycemia oscillation and (ii) if it is possible, to 
predict severe glycemic events, is yet to be determined. Therefore, we hypothesized that glycemia control during 
the day and night phases accomplish a stationary pattern with characteristics of circadian rhythm oscillation, 
which is possible to modulate by a mathematical function.

Results
Baseline characteristics of T1D and control participants. Baseline characteristics are described 
in Table 1 and Supplementary Table S1. Age, HbA1c, body mass index (BMI), period of euglycemia, period 
of hyperglycemia episodes, and standard deviation (SD) of glucose were significantly different between Con-
trol compared to T1D patients (Supplementary Table S1, all p < 0.01). Females with T1D showed a significant 
decrease in body weight and height compared to their Control group (Table 1). Euglycemia and hyperglycemia 
period in females and males with T1D were significantly lower (p < 0.05) and higher (p < 0.05), respectively, com-
pared to their sex-matched Control group (Fig. 1). The average daily units of ultra-rapid insulin were calculated 
for each group and there was no difference between groups (Male vs. female; from T1D group; Table1). 

Glycemic status and stationary/non‑stationary glycemia variability pattern in females and 
males with T1D and controls. The HbA1c, calculated from CGM data, revealed that females and males 
with T1D displayed a significant increase of HbA1c compared to their respective sex-matched Control group 
(Fig. 2A, all p < 0.01). Regarding glucose variability data, the SD of glucose was significantly higher in males and 
females with T1D, compared to their respective sex-matched Control group (Fig. 2B, all p < 0.05). Females and 
males with T1D showed a significant increase in the coefficient of variation (CV) of glucose compared to their 
respective sex-matched Control group (Fig. 2C, p < 0.01).

To determine if glycemic variability accomplishes a deterministic or random oscillation, we evaluated if the 
signal displayed a stationary (deterministic) and non-stationary (random) behavior through the Dickey–Fuller 
test. Our analysis reveals that 91.7% and 86.1% of females and males with T1D, respectively, displayed a stationary 
glucose oscillatory pattern (Fig. 2D). In addition, 77.3% and 50.0% of Control females and males, respectively, 
showed a stationary pattern (Fig. 2D). These data suggests that participants accomplish for the most part station-
ary glycemia oscillatory pattern and not a random oscillation one.

Table 1.  Baseline characteristics of subjects with T1D and control groups, with subgroups of females and 
males. Data are showed as mean ± standard deviation (SD). SD of glucose: standard deviation of glucose. %CV 
for glucose: percentage coefficient of 2 variation for glucose. Two ways ANOVA, following Holm-Sidak post 
hoc. Units of insulin per day (mean ± SD). *p < 0.005, Males T1D versus Males Control. † p < 0.005, Females 
T1D versus Females Control.

Control T1D

p value Distribution F (DFn, DFd)Females (n = 22; 78.57%) Males (n = 6; 21.43%) Females (n = 65; 45.14%) Males (n = 79; 54.86%)

Age (years) 40.17 ± 18.12 47.33 ± 19.58 34.68 ± 15.42 30.72 ± 14.41* < 0.0001 (2, 181) = 62.33

Weight (kg) 71.04 ± 7.38 68.50 ± 7.01 63.49 ± 6.71† 69.54 ± 13.29 0.1785 (2, 181) = 1.740

Height (m) 169.09 ± 8.95 170.50 ± 8.57 157 ±  22† 170 ± 14 0.2723 (2, 181) = 1.310

BMI (kg/m2) 24.86 ± 2.00 24.23 ± 1.42 24.24 ± 2.48 23.74 ± 3.72 < 0.0001 (2, 181) = 21.70

Duration of diabetes (years) – – 29.48 ± 12.60 23.43 ± 11.10 0.0267 (1, 154) = 5.004

Treatment (%)

 Units of insulin per day 
(U/ml) – – 5.0 ± 1.51 5.2 ± 1.9 0.36

Rapid acting insulin

 Aspart – – n = 21 (33.82%) n = 24 (30.30%)

 Lispro – – n = 31 (47.06%) n = 34(42.42%)

Long-acting insulin

 Lantus – – n = 47 (73.53%) n = 55 (69.70%)

 Tresiba – – n = 3 (4.41%) n = 4 (4.55%)

 Toujeo – – n = 1 (1.47%) n = 1 (1.52%)

 Levemir – – n = 11 (16.18%) n = 25 (31.82%)
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Glycemic oscillatory frequency in females and males with T1D. Females and males control group 
did not show significant differences during day and night phases (Fig. 3A). The CGM revealed that between 
10:00–14:00  h, the female T1D patients displayed an increase of glycemia compared to T1D male patients 
(Fig. 3B, all p < 0.05).

Figure 1.  Prevalence of time spent in different glycemic states (hyperglycemic, hypoglycemic and euglycemic 
period). In females and males with diagnosis of T1D and Control group. One-way ANOVA, following Holm-
Sidak posthoc.

Figure 2.  Glycosylated hemoglobin  (HbA1c), glucose variability and prevalence of stationary and non-
stationary glycemic oscillatory pattern in females and males with T1D and control participants. (A)  HbA1c is 
increased in T1D patients independent of sex. Indeed, T1D females and male patients showed a significant 
increase of  HbA1c compared to her/his matched Control group (Two ways ANOVA, following Holm-Sidak 
posthoc; F (DFn: 2, DFd: 181) = 32.43; p < 0.0001). (B) T1D females and males patients display an increase of 
standard deviation (SD) of glycemia compared to her/his matched Control group (Two ways ANOVA, following 
Holm-Sidak posthoc; F (DFn: 2, DFd: 180) = 35.30; p < 0.0001). (C) Compared to her matched Control group, 
T1D female subjects showed a significant increase of coefficient of variation (CV) of glycemia (Two ways 
ANOVA, following Holm-Sidak posthoc; F (DFn: 2, DFd: 180) = 15.89; p < 0.0001). Male with T1D showed a 
significant difference compared to his control group (Two ways ANOVA, following Holm-Sidak posthoc; F 
(DFn: 2, DFd: 180) = 15.89; p < 0.0001). (D) Left panel showed an example of stationary and non-stationary 
oscillatory signal. Stationary signal is characterized by a constant variance, and contrarily, non-stationary 
signal did not display a constant variance. Right panel showed the prevalence of stationary and non-stationary 
glycemic oscillatory pattern for 6 days of analysis. Stationary and non-stationary signals were analyzed by R 
Core Team (2020)39.
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Figure 3.  Circadian rhythm and oscillatory pattern of glycemia in patients T1D and control participant. (A) 
Females and males Control participant did not show significant difference on circadian rhythm of glycemia. 
(B) During day phase, females with T1D showed a significant difference compared to males with T1D patients 
between 10:00 to 15:00, without differences during night phases (Two ways ANOVA, following Fisher posthoc; 
F (DFn: 1, DFd: 133) = 3.51; p = 0.049). (C) Representative reconstruction from inverse Fast Fourier Transform 
(iFFT) of maximum energy glycemic oscillation and real oscillation of glycamia at 2, 3, 4 ,5 and 6 days. (D) 
Total power is increased in T1D patients independent of sex. Indeed, T1D females and males patients showed a 
significant increase of total power compared to her/his matched Control group (Two ways ANOVA, following 
Holm-Sidak posthoc; F (DFn: 2, DFd: 181) = 32.43; p < 0.0001). (E) Prevalence of maximum energy oscillation of 
glycemia in all experimental conditions. Note that in T1D patients (females and males) the maximum oscillation 
mainly is related to 2 to 3 days.
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The Fast Fourier Transform (FFT) approximation to determine the glycemic oscillatory pattern in DM 
patients showed that the total power of glycemia was significantly increased in T1D patients compared to the 
Control condition, regardless of sex (Fig. 3D; all p < 0.01). Moreover, the maximum glycemia oscillation varies 
from 2 to > 6 days (Fig. 3C,E). Female T1D patients displayed a prevalence for glycemia oscillation of 43.0%, 
18.1%, 6.9%, 5.6%, and 26.4% on > 2 to < 3, > 3 to < 4, > 4 to < 5, > 5 to < 6, and > 6 days, respectively (Fig. 3F). Male 
T1D patients displayed a prevalence of 36.1%, 19.4%, 6.9%, 11.1%, and 26.4% on > 2 to < 3, > 3 to < 4, > 4 to < 5, > 5 
to < 6, and > 6 days of glycemia oscillation, respectively (Fig. 3E).

Between 10:00–14:00 h, the female T1D patients displayed an increase of glycemia compared to the female 
Control group (4A, all p < 0.05). Males with T1D between 02:00–10:00 h, showed an increase of glycemia level 
compared to Control male participants (Fig. 5A; all p < 0.05).

The interindividual variability of glycemia (hyperglycemia and euglycemia, from cut off: 180 mg/dL, accord-
ingly to Miranda-Massari et al. 2016)13 during the day and night phases, revealed no significant differences 
between females Control and T1D participants (Fig. 4B,C). Regarding to males, T1D patients showed a significant 
difference in hyperglycemia magnitude between day and night phases (Fig. 5C; p < 0.05). Control participants 
didn´t show significant differences in interindividual variability during the whole experiment (Fig. 5B).

The predictive model of hyperglycemia and hypoglycemia in DM patients.. The CGM data was 
used to create a predictive model to estimate hyperglycemia and hypoglycemia and additionally, to determine 

Figure 4.  Circadian rhythm of glycemia and magnitude of hyperglycemia and euglycemia events during day 
and night phases in females T1D and control participant. (A) During day phase, females with T1D showed a 
significant difference compared to their matched control group between 10:00 to 15:00. (Two ways ANOVA, 
following Fisher posthoc; F (DFn: 2, DFd: 119) = 3.91; p = 0.022). (B,C) magnitude of hyperglycemias and 
euglycemia’s during day and night phases, in Control and T1D female patients, respectively. There are no 
significant differences between all groups.
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the exact time at which the hyperglycemia and hypoglycemia in DM patients was observed. Our data showed 
that it is possible to predict hyperglycemia’s  (R2 = 0.92;  F90,40 = 4.557; p < 0.001) and hypoglycemia’s in DM 
patients  (R2 = 0.98;  F56,84 = 63.31; p < 0.001) (Fig. 6A), which was independent of age. The error of our predictive 
model accomplished a normal distribution to hyperglycemia (W = 0.98; p = 0.35) and hypoglycemia (W = 0.98; 
p = 0.08) events (Fig. 6A). Along with these results, we found that it is possible to predict the time in which the 
hyperglycemia  (R2 = 0.99;  F86,54 = 243.1; p < 0.001) and hypoglycemia  (R2 = 0.99;  F88,52 = 61.58; p < 0.001) events 
occur (Fig. 6B). Regarding to the error of the model, our data revealed that the error to predict the time at which 
the events of hyperglycemia and hypoglycemia occurred, showed a normal distribution (W = 0.99; p = 0.706; and 
W = 0.99; p = 0.19, for hyperglycemia and hypoglycemia events, respectively) (Fig. 6B).

To evaluate the accuracy of our model, the recording of one patient was assessed (Fig. 6C). The data revealed 
that the real hyperglycemia was 395.9 mg/dL compared to the prediction, which was 388.3 mg/dL (Fig. 6C). 
Along with this, the real hypoglycemia was 70.16 mg/dL, and the predicted hypoglycemia was 68.0 mg/dL 
(Fig. 6C). On the other hand, the real hour at which hyperglycemia and hypoglycemia events were 28:13 and 
08:22 h, respectively, compared to the predicted time of 27:38 and 08:01 h, hyperglycemia and hypoglycemia, 
respectively (Fig. 6C).

Figure 5.  Circadian rhythm of glycemia and magnitude of hyperglycemia and euglycemia events during day 
and night phases in males T1D and control participant. (A) During day phase, T1D male patients showed a 
significant difference compared to their matched control group between 09:00 to 10:00. During night phases, 
males with T1D patients showed a significant difference compared to their matched control group between 
21:00 to 08:00 (Two ways ANOVA, following Fisher posthoc; F (DFn: 2, DFd: 85) = 4.42; p = 0.015). (B,C) 
Magnitude of hyperglycemias and euglycemia’s during day and night phases, in Control and T1D males’ 
patients, respectively. Note that T1D male patients display a significant difference on hyperglycemias during day 
and night phases (Wilcoxon rank test, p = 0.048).
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Discussion
The main findings of the present study were: CGM data showed that (i) HbA1c and SD of glycemia were increased 
in DM patients in a sex-independent manner; (ii) glycemia variability displays a predominant stationary pattern 
(deterministic) in DM patients; (iii) half of the patients displayed a circadian rhythm of glycemia; (iv) regard-
less of sex, maximum oscillation was increased compared to control subjects (healthy); (v) females with T1D 
showed a specific rhythm pattern oscillation of glycemia, which was different between females and males; and 
(vi) CGM data allowed to construct a predictive model to determine the magnitude and time of hyperglycemia 
and hypoglycemia events. The results obtained could contribute to elaborate better control treatments and to 
prevent diabetes progression, which is characterized by dysglycemia events. The predictive model will allow to 
predict severe events related to hyper and hypoglycemia in DM patients.

Our data revealed that HbA1c was increased in T1D, independent of sex, which was similar to previous 
 reports14,15. However, HbA1c only allowed the identification of sustained hyperglycemia but not completely 
related to dysglycemic events, which are related to the evolution of DM (i.e. long-standing patients) (SD of 
glycemia)14–16. Moreover, dysglycemia has been related to vascular complications and poor prognosis in DM 
 patients14–16. Therefore, despite that HbA1c could be associated to the glycemic status in DM, it is not a robust 
measure to determine glycemic variability or the glycemic oscillatory  pattern16. Nevertheless, it has been shown 
that, concomitant to an increase of HbA1c exists an enhanced SD of glycemia in T1D  patients15. Our data dem-
onstrates that SD and CV (glycemic variability estimators) were increased in DM patients, along with an increase 
of HbA1c, suggesting that HbA1c could be related to glycemic variability in DM patients. Notwithstanding, our 
data revealed that glycemic variability is mainly associated to a deterministic oscillation pattern rather than 

Figure 6.  Predictive model of maximum and minimum glycemia and hour of maximum and minimum 
glycemia status in T1D patients. (A) (left panel) Scatterplot between real maximum glycemia and predicted 
maximum glycemia and between real minimum glycemia and predicted minimum glycemia. (right panel) 
Distribution of error of the model to maximum and minimum glycemia. The error was normal to maximum 
and minimum glycemia status. (B) (left panel) Hour of maximum and minimum predicted glycemia. (right 
panel) Distribution of error of the model to hour of maximum and minimum glycemia. The error was normal 
to both models. (C) Representative recoding of CGM and mean, minimum and maximum predicted glycemia 
of one DM patient. Horizontal segmented line represents minimum and maximum predicted glycemia. Vertical 
segmented line showed time of minimum  (tmin) and maximum  (tmax) real and predicted glycemia. Note that real 
and predicted glycemia are closely related.
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stochastic oscillations, suggesting that patients displayed a specific oscillatory arrangement and not a random 
oscillation, which is similar to previously  described9,10,17 In addition, our data revealed that not all patients dis-
played the same oscillatory pattern. Indeed, our current results showed that DM patients could oscillate in phase 
(360°) between 2 and 6 days, which demonstrates that glycemic variability could oscillate outside of circadian 
rhythm. Therefore, our mathematical analysis based on FFT discriminates between circadian and non-circadian 
oscillators. However, our model is a closed loop, which could limit the extrapolation of our data. Similarly, the 
UVA/Padova  system17, despite using machine learning and artificial intelligence, has reported similar limita-
tions, associated to the long-term extrapolation of results. Consequently, future research should include longer 
follow-up periods and improve the current and future artificial pancreas  system17 In addition, our data does not 
discard the possibility that glycemic oscillatory patterns could be secondary to poor glycemic control (increase of 
HbA1c). Therefore, patients with glycemic oscillatory patter should be the focus for future studies and determine 
if the glycemic control could contribute to generate a disruption of the circadian rhythm glycemic oscillation.

It has been demonstrated that blood glucose variability is an important marker related to disease  severity18. 
However, if glycemic variability displays a stationary or non-stationary oscillatory pattern is under  discussion9,10. 
A stationary oscillation is a signal characterized by stability over time, being shown a constant  variance19. Our 
data demonstrates that DM patients displayed a predominantly stationary oscillation pattern of glycemic variabil-
ity, determined through Dickey–Fuller  test20, suggesting an interdependency between all data points. However, 
despite that Dickey–Fuller test showed that glycemic variability could be related to a stationary pattern (~ 90%), 
not all patients displayed this pattern. In fact, DM patients showed a little part of the population that showed a 
stochastic pattern (8.3 and 13.9%, Females and male T1D patients, respectively). Moreover, despite that ~ 90% 
of DM patients displayed stationary pattern, only ~ 30% displayed a circadian oscillation, which suggests that 
in these patients the possible therapies against decreasing glycemic variability, associated to circadian rhythm 
would not be very efficient.

It has been proposed that glycemic control could be related to hormone  status21 as well as to carbohydrates 
 intake22, which could modify the glycemic control in DM patients. Indeed, it has been found an association 
between age and the risk of suffering DM, concluding that late menopause reduces the risk of DM compared 
to early menopausal  women21–23. Contrarily, a survey conducted in postmenopausal women showed that there 
exists a considerable increase in the risk of DM in over 50 years old non-obese  women24. Despite that we could 
propose that carbohydrates intake could alter the circadian  rhythm25,26 and consequently glycemic control. In 
our study the insulin administration was calculated in relation to g of carbohydrates intake and body weight (see 
Table 1 and Supplementary Table S1). Therefore, the non-stationary signal of DM patient is not related to carbo-
hydrates intake. However, we cannot rule out the hormonal status, which should be resolved in future research.

On the other hand, a difference of diurnal hyperglycemia during day phase between female compared to male 
and their matched control group was found. This observation could be related to a reduced metabolic control in 
our  patients13–27. Nevertheless, despite that, we determine the type, dose, and inoculation via of insulin that was 
delivered to the patients. It is essential to emphasize that we did not evaluate if patients consume glucocorticoids, 
which have hyperglycemic  effects28,29. Thus, our data strongly suggests that these hours are pivotal in the glycemic 
control in female DM patients, which may improve future therapies in the DM population.

It has been described that not all patients display the same glycemic control during different states and treat-
ments, which is called interindividual  variability30. Accordingly, in the present study, we determined hypergly-
cemia’s (> 50% of 24 h, clinical cut-off > 180 mg/dL)31 and euglycemia’s during the day and night phases, between 
females and males with T1D. We did not find significant differences in inter individual variability between 
experimental groups, except in male T1D patients. Indeed, we found that hyperglycemia was more pronounced 
during the night phase compared to the day phase, which could be related to other pre-existing conditions in 
T1D male patients.

Considering that our data strongly suggest that glycemic variability displays a specific oscillation pattern, 
we tested a predictive model to determine hyper and hypoglycemia and the hour at which the events of hyper 
and hypoglycemia occurred. Our data reveals that we can predict these possible severe events in DM patients. 
Along with our data, it has been proposed that it is possible to predict hypoglycemia events and insulin doses 
delivered to DM  patients32,33. It has also been shown that it is possible to predict the severity of the  disease34. 
However, similar limitations were displayed in all predictive model, which are related to long-term (extrapola-
tion)  prediction17. Our model is no foreigner to this problem; therefore, even though we can predict hyper and 
hypoglycemia events, we cannot generate extrapolations for more than 6 days. In addition, our results could 
contribute to improve the automated insulin given system, adding new oscillatory pattern, possibly contribut-
ing to determine the hour and magnitude of hypo and hyperglycemia events in DM patients. The latter may 
help clinicians to determine and/or support medical decision based on CGM. Nevertheless, the possible role of 
oscillatory pattern on glycemic status (and vice versa), as well as the possible contribution to improve the current 
insulin deliver system should be addressed in future research.

Strengths and limitations
From our perspective the greatest strength from our work was that glycemia signal displayed a stationary pattern 
(~ 90% total DM patients), but only ~ 30% accomplish a circadian rhythm oscillation. Also, we examined and 
compared characteristics of circadian rhythm pattern variability of glycemia in female and male patients with 
T1D. Finally, we created a new predictive model to determine hyper and hypoglycemia and the time when these 
events occur in T1D patients. Thus, our results could contribute to improve the current therapies and predictive 
models, which are based on machine learning and artificial  intelligence17. In addition, our results could also 
contribute to improve the automated insulin deliver system, adding new oscillatory pattern. Also, our work 
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could contribute to optimize public spending associated with this pathophysiological condition, since there are 
critical hours where hyperglycemia occurs.

As our study does not cover all the characteristics of the patients, it is essential to analyze in future research 
if this circadian oscillation pattern described by our study could be related to different medications, insulin 
treatments and planned physical exercise. Also, it is essential to emphasize that our study used a vast range of 
age in the experimental groups (18 to 80 years) which partially masked our results. Nevertheless, considering 
the complexity of the sample and the study aim (focusing on the glycemic variability, showing oscillation by 
circadian rhythm in control and type I DM patients), future research needs to elucidate this phenomenon in a 
more homogeneous sample.

Also, another limitation related to our study is the sample size in Control conditions, which contributed 
negatively to the interpretation of the data. However, despite that it is essential to stand out the number of par-
ticipants, it is also relevant to emphasize that the CGM was developed for T1D patients, and a large part of the 
studies are developed for this group. Our study used a sample of 144 T1D participants; therefore, despite that 
sample size is an important limitation, our research applies a significant T1D participant.

Conclusion
This study shows that through CGM data, patients with T1D exhibited mainly a glycemic variability with a 
specific oscillatory pattern that has specific circadian characteristics for each patient. Therefore, it is possible 
that the oscillatory pattern reveals sensitive time range, which could help the current system based on machine 
learning and/or artificial intelligence, including new oscillatory frequencies, which in turn could contribute to 
improve the automated insulin deliver system in this critical population.

Materials and methods
Patient population and ethical approved. Participants between 18 and 80 years of age were recruited 
either with diagnosis of T1D or healthy participants (Control). Those with DM had regular medical check-
ups, and their treatments were fully described in clinical files. Patients were recruited from an Endocrinology 
and Diabetology service from Clínica Santa Maria, Santiago, Chile, between January 2015 and June 2019 (Sup-
plementary Figure  S1). Participants were excluded whether they had (i) gestational diabetes; (ii) < 6  days of 
continuous blood glucose monitoring; (iii) < 18 years-old; and (iv) female participants should not be in the first 
seven days of the follicular phase v) no clinical records. Patients were divided into two groups: T1D (n = 144, 
females = 65) and Control (healthy; n = 28, females = 22) group (Supplementary Table S1).

All methods and experimental protocols were carried out in accordance with the American Diabetes Asso-
ciation and in accordance with the Declaration of Helsinki (2013). In addition, all methods and experimental 
protocols were reviewed and approved by the Ethical Committee from Clínica Santa Maria, Santiago, Chile 
(approved #14). Written informed consent was obtained from each participant according to CIOMS Guideline # 
4. All subjects were over 18 years old; therefore, the informed assent signed by a legal guardian was not necessary.

CGM method and outcomes. During six consecutive days, a retrospective CGM system (Medtronic 
Inc., Northridge, CA) for subcutaneous interstitial glucose monitoring was used. This electronic device was 
inserted subcutaneously in the non-dominant arm, and removed after six days, under sterile conditions. All 
CGM recordings were performed blind with the Medtronic MiniMed iPro2 (iPro2 digital recorder) with an 
Enlite sensor (Medtronic Inc., Northridge, CA). Data was manually registered to calibrate the sensor data. The 
sample rate of the sensor was 0.003 Hz (one point every 5 min, 288 daily measurements). When a sensor failed, 
the missed data from recording was not replaced by interpolation or mean calculation. However, for analyses 
purposes, measurements obtained after each hour were averaged, generating 24 data points every day, for six 
days. In addition, to fast Fourier transform analysis, the missed data was replaced by the minimum energy 
oscillation reconstruction, as previously  described35. The reports were analyzed individually to find calibration 
errors. Finally, the data was exported in CSV format. The CGM system determines interstitial glucose using a 
sensor with glucose oxidase, an enzyme that catalyzes the electrochemical reaction between glucose and oxygen, 
obtaining an electric current in nanoamps, wirelessly transmitted to the CGM  receiver36. A calibration algorithm 
was used for the CGM system according to the manufacturer instructions. From continuous recordings, the 
HbA1c was determined according to the following formula: HbA1c % = (Avg glucose + 46.7)/28.7; after HbA1c 
mmol/mol = (10.93 × HbA1c %) − 23.536. Where Avg glucose is the arithmetic mean calculated from all data 
points from CGM. All these calculations were performed with CareLink iPro software (version 2.2.005, North-
ridge CA, USA). Glycemia was reported as mg/dL.

After six days of CGM, glucose variability parameters were calculated. SD and CV were used as glucose vari-
ability  outcomes37. To determine CV, the SD (from 6 days) was divided by the arithmetic mean (from 6 days) 
of the corresponding glucose reading. Written instructions regarding food consumption hours were provided. 
Food consumption times included breakfast (07:00–10:00 h), lunch (12:30–15:00 h), dinner (19:00–22:00 h) 
and post-dinner (22:30–00:00 h). The suggested caloric intake for patients with DM was prescribed according 
to the American Association of Clinical Endocrinologists and the American Diabetes Association recommen-
dations. Carbohydrates, protein, and fat represented between 45–65%, 15–20% and < 30% of total daily energy 
intake, respectively. Fiber intake between 25–50 g/day was included. This recommendation was given to each 
patient advised by a certified  nutritionist38. To determine the possible effects of pharmacological treatments in 
all experimental groups, we assessed the prevalence of the main medications that each patient received, taking 
into consideration that patients follow a scheme delivered by the diabetes unit. The DM patients administrated 
standard insulin before breakfast and the ultrafast insulin before every food intake. Patient education was con-
ducted by qualified diabetes nurse educators and nutritionists from the Diabetologia Clinica Santa Maria team.
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The treatment was divided into three groups: rapid-acting insulin and long-acting insulin, represented with 
“n” and % in each experimental group the patients did not receive any other medications that could affect gly-
cemic control (See Table 1 and Supplementary Table S1). The insulin was administrated by a calculated bolus 
(relative to g of consumed carbohydrates and body mass) before each meal. The dosage is showed in Table 1 and 
Supplementary Table S1. The subjects were strongly advised to not engage or perform any physical exercise, other 
than their regular daily work-home activities; however, the daily activities were not restricted.

Anthropometric variables and medical history. Every patient, who was adherent to the present 
research, underwent a physical examination that include determination of age (years), body mass (kg), height 
(m) and body mass index (BMI; kg·m-2). After that, their medical history was assessed, including treatment type 
and years with diabetes. The prevalence of euglycemia, hyperglycemia and hypoglycemia were determined in all 
experimental groups, through CGM.

Stationary/non‑stationary CGM analysis. To determine the stationary and non-stationary pattern of 
glucose variability from the time series provided by the CGM system, the Dickey–Fuller test was used as previ-
ously  described20. The Dickey–Fuller test, which is a nonlinear estimation, assumes that the data has interde-
pendency with the previous data point (delay time). To determine the stationary and non-stationary pattern, the 
following formula was used: yt = pyt − 1 + ut. Where y is glucose data, t is the time, and p is a constant coefficient 
related to autoregressive  analysis20. A stationary variable was defined as a variable without a significant (p > 0.05) 
change in variance across all time. Contrarily, a non-stationary variable was defined as a variable with a signifi-
cant (p < 0.05) change in variance across time. The analysis was performed using R Core Team (2020)39.

Glycemic oscillatory pattern. The circadian rhythm was determined in all patients through the Fast Fou-
rier Transform (FFT) algorithm, according to previous  research40. For the current data structure, every glycemic 
signal corresponded to 1,440 data points, and missing data in the signal was replaced by the minimum energy 
oscillation  reconstruction35. To obtain different frequencies of the cycles, the FFT algorithm was  applied41, using 
the functions available from the FFT module in the NUMPY package (Python Anaconda 3.6.6, 64 bits ver-
sion)42. From different frequencies, function pondered, and the power spectral densities of each pondered were 
obtained. Afterwards, the inverse FFT (iFFT) pondered was used to verify the quality of the estimation. Then, 
the frequencies with the highest power were selected (over 15,000 a.u.) according to energy weight  signal35. The 
total power of the signal and the frequency at maximum power spectral density (PSD) were plotted. To deter-
mine the prevalence of different oscillatory pattern in all patients, the data was divided on > 2 to < 3; > 3 to < 4; > 4 
to < 5; > 5 to < 6; and > 6 days to maximum oscillation. This analysis was performed using Python Anaconda 3.6.6, 
64 bits version (Python Software Foundation, Amsterdam, Netherlands)42.

The predictive model of glycemia. Our predictive model was the convergence of several successive steps 
to find the best linear models which display a higher and robust  adjustment42,43. Thus, our algorithm was applied 
as follow: (i) natural logarithm transformed was applied to the time of the minimum and maximum glycemia; 
(ii) correlations were made between the variables of minimum and maximum glycemia and minimum and max-
imum glycemic time with all FFT weights (see “Glycemic oscillatory pattern” section). Where the first 140 data, 
for adjustment, are chosen at random. The operation was repeated at least 40 times per model to identify points 
which could generate problems in more than one adjustment model. Thirty-three data points that had difficul-
ties in their adjustment behavior were taken from the total data, probably due to missing data points. With the 
remaining data, the final model was calculated. The Akaike criterion was applied to select the best model. Then 
the non-significant variables were eliminated, one by one, leaving only those variables that were significant for a 
level < 0.05 and with the adjusted models we proceeded to see in one case. This analysis was performed using the 
Python software version 3.8.1 (Python Software Foundation, Amsterdam, Netherlands).

Statistical analyses. Data is expressed as mean ± SD or 95% confidence interval (glycemic oscillatory pat-
tern data). All data was subjected to normality (Shapiro–Wilk) and homoscedasticity (Levene) testing. Data 
was evaluated using a 2 (control and T1D) × 2 (female-male) analysis of variance (ANOVA two way), followed 
by Holm-Sidak posthoc analysis according to the data structure. Non-parametric variables were evaluated 
using Kruskal–Wallis analysis followed by Dunn´s posthoc test. To determine the magnitude of hyperglycemia 
(clinical cut-off > 180 mg/dL)31 and euglycemia between female and male, during the day and night phases, the 
Mann–Whitney test was used. p < 0.05 was considered statistically significant. All analyses were performed with 
GraphPad Prism 9.0.1 (La Jolla, CA, USA) and R Core Team (2020)39.
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