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Improved sensitivity 
of microperimetric outcomes 
for clinical studies in age‑related 
macular degeneration
Yaniv Barkana1,2*, Susanne G. Pondorfer3, Steffen Schmitz‑Valckenberg4, Hermann Russ1 & 
Robert P. Finger3

To investigate sensitive outcome measures based exclusively on abnormal points in microperimetry 
testing of eyes with intermediate age‑related macular degeneration (iAMD). 25 eyes of 25 subjects 
with iAMD had undergone 2 successive tests of mesopic microperimetry with the Macular Integrity 
Assessment Microperimeter (MAIA), using a custom grid of 33 points spanning the central 14 degrees 
of the macula. Each point was defined as abnormal if its threshold sensitivity was lower than 1.65 
standard deviations (SD) (5%) or 2 SD (2.5%) than the expected threshold in healthy eyes according 
to the MAIA internal database. Among the 25 eyes there were 11.8 ± 9 and 8.4 ± 8.2 abnormal points 
at < 5% and < 2.5%, with mean deviation of thresholds from normal − 4.9 ± 1.2 dB and − 5.8 ± 1.5 dB, 
respectively. These deviations were greater, and their SD smaller, compared with the complete 
microperimetry grid, − 2.3 ± 2.0 dB. The 95% limits of agreement for average threshold between the 
2 successive tests were smaller when only abnormal points were included. Analyzing only abnormal 
grid points yields an outcome parameter with a greater deviation from normal, a more homogenous 
dataset, and better test–retest variability, compared with analysis of all grid points. This parameter 
may thus be more sensitive to change, while moderately limiting the number of potential recruits. The 
proposed outcome measures should be further investigated as potential endpoints in clinical trials in 
iAMD.

Age-related macular degeneration (AMD) is the leading cause of blindness in the industrialized world, and 
remains an important unmet medical  need1. Currently there is no approved treatment that can halt the progres-
sion of AMD from the early or intermediate (iAMD) forms to the advanced, visually-devastating forms. Clini-
cal trials of novel interventions to stop or delay the progression of AMD are dependent on the use of sensitive 
outcomes to demonstrate efficacy. Accepted and validated functional endpoints are currently not available. The 
commonly used parameter of best corrected visual acuity is inadequate for trials of early or iAMD since it is 
affected only late in the disease spectrum, often only after progression to advanced AMD has  occurred2.

Microperimetry using the Macular Integrity Assessment microperimeter (MAIA; CenterVue, Padova, Italy, 
now distributed by Icare, Finland) can be used to measure the threshold of differential light sensitivity in differ-
ent locations in the macula, with the machine projecting the light stimulus directly on the retina while tracking 
the fundus using a scanning laser  ophthalmoscope3. Such testing provides a wealth of data compared with the 
single-point assessment of foveal visual acuity or contrast sensitivity. Several reports have documented reduced 
microperimetry retinal sensitivity in eyes with iAMD despite preserved visual  acuity4–9.

Some clinical trials in iAMD have a main goal of demonstrating improved vision, theorizing that removing 
the source of disease or providing “neuroenhancing” treatment may not only slow long-term neural degenera-
tion, but also enhance function of sick retinal cells in the short-term, as has been suggested in a few early-phase 
clinical  trials10–12. Of note, this concept of neuronal functional improvement is established in neurology, with 
several approved drugs in use that improve reduced function, e.g. cognitive improvement in Alzheimer or motor 
improvement in Parkinson’s  disease13.
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Investigators using MAIA have mostly used the parameter of mean sensitivity of all points in the testing grid 
to assess the degree of retinal  function4,5,7. However, in eyes with iAMD, this parameter is depressed only slightly 
compared with normal eyes, and so may not be sensitive enough to show improvement with a therapeutic inter-
vention. Moreover, a typical perimetric examination includes points that have “normal” sensitivity that is unlikely 
to improve in a clinical trial with any intervention. The inclusion of these points in the outcome measure may 
lead to “dilution” of the intervention’s effect on diseased points, thereby reducing the sensitivity of the outcome 
measure and ultimately potentially decreasing the chance of success of the clinical trial. On the other hand, it is 
conceivable that a parameter that is based on fewer points may be less repeatable, negating the advantages listed 
above. Thus, we investigated whether the sensitivity of microperimetric outcomes can be improved by using only 
those points that are defined as abnormal in the testing grid and thereby providing a potentially more sensitive 
outcome measure in clinical trials of visual function improvement in AMD.

Methods
Clinical data. This was a retrospective analysis of data obtained during a cross-sectional study at the Depart-
ment of Ophthalmology, University of Bonn, Bonn, Germany, which has been reported  previously7. The study 
was approved by the Institutional Review Board of the University Bonn. Written informed consent was obtained 
from all participants following an explanation of all tests involved. The protocol followed the tenets of the Dec-
laration of Helsinki.

Twenty-five eyes of 25 patients (age 67.7 ± 7.1) were included with iAMD defined as having drusen greater 
than 125 microns and/or any AMD pigmentary abnormalities without the presence of choroidal neovasculari-
zation (CNV) or geographic atrophy. In addition, 22 eyes of 22 controls in good retinal health (age 62.2 ± 4.4) 
were included. In the original study subjects had undergone two mesopic and two dark-adapted microperimetric 
examinations using the S-MAIA device with small breaks (maximum 5 min) between the examinations. In the 
present analysis only data from the mesopic exams were analyzed. A customized stimulus grid was used that 
consisted of 33 points located at 0°, 1°, 3°, 5°, and 7° from fixation (Fig. 1A). The rate of false-positive responses 
had to be less than 33%.

Selection of testing grid points. We followed the rationale of looking at pointwise deviations from age-
expected normal values rather than raw threshold sensitivity, as is customary in perimetric research in glau-
coma. Ideally, for determining abnormality, a multi-center clinical study should employ a standard normative 
database, rather than each site separately defining a small normal population. Centervue, the manufacturer of 
MAIA, has incorporated an FDA-approved database in the machine’s software, derived from analysis of 494 
healthy eyes in 270 subjects aged 21–86 (average 42.9), 17% of which were older than 60 years, using a 61-point 
grid covering the central ten degrees of the macula (i.e. test points up to a radius of five degrees eccentricity, 
MAIA operating manual, available at https ://drive .googl e.com/file/d/1ldLy T7H0A ADTsd YP1Sy Epep1 EbmCh 
DsV/view, Fig. 1B). It calculates the expected normal threshold in dB = 32.3 − 0.06 * age, with the threshold being 
independent of location within the tested central 5 degrees; the standard deviation (SD) is 1.78 dB for all points, 
regardless of age or location (personal communication, Luca Zalunardo, Centervue Inc, USA). Against this 
background, the formula is also applicable to our data which include test points at seven degree excentricity from 
the fovea. We used this reference to calculate the amount of deviation from expected normal values in order to 
define individual perimetric points as abnormal. We observed that the average sensitivity of the healthy controls 
in the original study was 25.9 dB, which is 2.67 dB lower than predicted by the Maia normative formula cited 
above. Therefore, for the present analysis of deviation from normal, all measured sensitivity values in the iAMD 

Figure 1.  (A) Shows the layout of the study custom stimulus grid—33 points located at 0°, 1°, 3°, 5°, and 7° 
from fixation. (B) Shows (in larger magnification) the layout of the grid used by Centervue to create the Maia 
normative database—61 points located at 0°, 1°, 2°, 3°, 4°, 5° from fixation. It can be seen that the points overlap 
except at 7°.

https://drive.google.com/file/d/1ldLyT7H0AADTsdYP1SyEpep1EbmChDsV/view
https://drive.google.com/file/d/1ldLyT7H0AADTsdYP1SyEpep1EbmChDsV/view
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database were adjusted by adding 2.67 dB. The adjusted mean grid threshold in the cohort’s healthy eyes was 
28.5 ± 1.3 dB (range 25.6–30.8). In these eyes the SD of threshold values in each individual grid was, on average, 
1.8 ± 0.4 (range 1.3–2.6). This figure is very similar to the SD of normal threshold at each point provided by the 
Maia’s database, which as noted above is 1.78 dB.

We defined each point in the grid as abnormal if its threshold was lower than 1.65 SD from the expected age-
corrected normal threshold, i.e. 2.9 dB (1.78 dB × 1.65) lower. This means the measured value would be expected 
in less than 5% of points in healthy eyes, a commonly used clinical cutoff value when determining “normal” in 
 perimetry14. In addition, we also used a more strict definition of abnormality as lower than 2 SD from expected 
value, i.e. 3.6 dB, expected in less than 2.5% of measurements in healthy eyes.

Statistical analyses. Using descriptive statistics, we analyzed the potential use of these criteria in clinical 
trials of iAMD, if analysis of sensitivity is restricted to only those points in the grid that are abnormal. Specifically 
we described the number of abnormal points in each test, the mean sensitivity and deviation form presumed 
healthy thresholds of these points, and the number of eyes in the dataset that would qualify for a potential clini-
cal trial requiring at least 5 abnormal points in a test. We also compared the repeatability of test results using only 
abnormal points vs. all grid points using Bland–Altman 95% limits of  agreement15.

Results
All threshold values are presented after adjustment as explained above.

In eyes with iAMD (first of 2 tests) mean grid threshold was 25.9 ± 2.1 dB (range 19.6–28.7 dB). The SD of 
threshold values within each grid was 2.4 ± 0.8 dB (1.4–4.2 dB). The deviation of mean total-grid threshold from 
the MAIA-predicted age-corrected value was − 2.3 dB ± 2.0 dB. This demonstrates that indeed macular thresh-
old is decreased in eyes with iAMD in a non-homogenous way—in most tests threshold values span a range of 
roughly 10 dB, and there are many points with normal sensitivity.

Table 1 shows the number of abnormal points in the two successive mesopic exams using the two criteria 
of abnormality, together with the average threshold and deviation of these points. The number of abnormal 
points is also illustrated graphically in Fig. 2. The abnormal points were a minority, about a third (11.8 and 12.6 
of 33) when we used the less strict criterion, and a fourth (8.4 and 9) when using the more strict criterion for 

Table 1.  Number of abnormal points in 2 successive mesopic Maia exams in 25 iAMD eyes using 2 criteria 
for abnormality, and the average threshold and deviation of these points. 1 There was one eye with no abnormal 
points, so it was not included in this analysis. 2 –4There were 2 eyes with no abnormal points, so they were not 
included in this analysis.

Exam 1 Exam 2

# of points (range,%) Threshold (dB) Deviation (dB) # of points (range,%)
Threshold (dB) (p values vs Exam 
1) Deviation (dB)

Threshold lower than 1.65 SD 
(2.9 dB) of age-corrected normal

11.8 ± 9.12
(0–32)
38%

23.3 ± 1.351 − 4.9 ± 1.21
12.6 ± 9.6
(0–32)
40%

23.0 ± 1.342

(p = 0.26) − 5.2 ± 1.32

Threshold lower than 2.0 SD 
(3.6 dB) of age-corrected normal

8.4 ± 8.2
(0–30)
27%

22.4 ± 1.83 − 5.8 ± 1.53
9 ± 8.9
(0–29)
29%

22.2 ± 1.64

(p = 0.49) − 6.0 ± 1.34

Figure 2.  Boxplot showing the number of abnormal points in each microperimetry test in the study cohort of 
25 eyes. The 2 leftmost plots represent the first exam, and the rightmost pair the second exam. In each pair, the 
left plot was generated when a point was defined as “abnormal” if its threshold sensitivity was lower than 1.65 
SD (5%) of expected value in a healthy population; for the right plot abnormality was defined as < 2SD (2.5%) of 
normal. Each boxplot includes the maximum (upper whisker, excluding outliers), upper quartile (top of box), 
median (horizontal line in box), lower quartile (bottom of box), minimum (lower whisker, excluding outliers) 
and average (x) values. Outliers are represented by black dots.
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abnormality. It is apparent that the number of abnormal points varies widely among eyes with iAMD. At the 
same time, the variability of the latter points was smaller as compared to the variability of all points. Specifically, 
the SD of the average sensitivity of all points in each exam was 2.0 dB, while it was smaller for abnormal points 
only, at 1.35 or 1.34 dB for the less strict criterion, and 1.6 or 1.8 dB for more strict criterion.

Regarding the mean deviation of abnormal points compared to age-correct normal values, it was significantly 
greater in the two exams, − 4.9 or − 5.2 dB for the less strict criterion of abnormality and − 5.8 or − 6.0 dB for the 
more strict criterion, versus only − 2.3 dB for the total grid. The SD of the deviations was even smaller than the 
SD of the mean threshold sensitivities and ranged between 1.2 and 1.5 dB.

We computed Cohen’s d values (https ://lbeck er.uccs.edu/) for the average deviation of abnormal points, in 
both exams and according to both criteria of abnormality, with respect to the deviations in the 44 healthy eyes. 
The four values ranged between 3.94 and 4.5, indicating very high specificity.

To provide a clinically meaningful analysis, an outcome measure needs to be based on a certain minimal 
number of data points. Here we chose an arbitrary cutoff of 5 abnormal points that should be present in the 
exam. There were 19 eyes (76%) that matched this criterion using the less strict criterion of abnormality in both 
exams, and 14 (56%) or 16 (64%) with the more strict criterion, as shown in Table 2. These numbers decreased 
slightly if an eye had to match the criterion in both the first and second examinations.

Table 1 and Fig. 2 demonstrate that results were very similar between the two repeated tests. For this pair 
of tests in eyes with iAMD, the 95% limits of agreement for average threshold are shown in Fig. 3. These were 
4.2 dB when the total grid was included (Fig. 3a, n = 25 eyes). When the average threshold of only abnormal 
points (at < 1.65 SD) in eyes with at least 5 such points in both exams was compared between the two tests, the 
95% limits of agreement were smaller at 3.2 dB (Fig. 3b, n = 18 eyes), implying better repeatability.

Figure 4 shows the agreement between all individual tested points. Clearly, 95% limits of agreement here are 
much wider compared with those of the averages above, spanning 9.6 dB.

Discussion
The presented analysis highlights a number of potential advantages in using an outcome measure that is derived 
from abnormal points only rather than all the points of the MAIA microperimetry grid in eyes with iAMD. First, 
assuming that our cohort is typical of a population with iAMD, the abnormal points represent a minority in rela-
tion to all test points. Thus, using the average sensitivity of all grid points would clearly “dilute” an intervention’s 
effect on diseased retinal foci, thereby reducing the chance to observe a significant effect and thus the chance 
for a successful clinical trial. Second, there was a large variability of average total-grid threshold values among 
this cohort of eyes with iAMD that was reduced when the average threshold of only the abnormal points was 
considered; the variability was reduced further when the average deviation rather than the average threshold was 
considered. Third, the average deviation of abnormal points is, as expected, significantly larger than the average 
deviation of the total grid. Thus, by providing a study sample which is more homogenous and also has a greater 
initial deviation, these results suggest that based on the proposed approach of selecting only abnormal testing 
points for further analysis, sensitivity for change in outcome measure can be improved and future studies in 
iAMD may require smaller sample sizes and/or shorter follow-up.

As clinical studies involve repeated testing, better repeatability of the outcome measure is also helpful in 
reducing required sample size. The Bland–Altman analysis of the repeatability of measurements within the 
same subject showed a lower 95% LoA when only abnormal points were used. This is reassuring since averaging 
fewer points in the outcome measure may be theorized to result in more “noise” due to the inherent test–retest 
variability of subjective perimetry testing, especially in elderly subjects. This theory did indeed materialize when 
we tested the repeatability of pointwise (individual points) thresholds, as the variability was significantly higher 
compared with both averaged sensitivity of all or only abnormal points.

In the original report, the deviation of iAMD values from the average (not age-corrected) threshold in the 
study’s own control population was − 2.6 ± 2.1 dB which is very similar to the adjusted deviation of the MAIA’s 
internal normative database in this analysis (− 2.3 ± 2.0 dB)7. Considering that the study’s control population 
was slightly younger than the iAMD cohort, and so would be expected to have a slightly lower threshold had it 
been perfectly age-matched with subjects with iAMD, our observed data lend support to the validity of using the 
MAIA’s internal database. Moreover, these values are similar to average deviations in eyes with iAMD reported 
by others. Cocce et al. compared 47 eyes with iAMD defined as “AMD with the presence of drusen larger than 
63 um and pigmentary anomalies” (age 70.4 ± 6.9) with 21 healthy controls (age 71.7 ± 7.4) using a standard grid 
of 37 points within a 10 degree diameter, and reported a mean deviation of − 1.8 dB between the  groups4. The 
inclusion of eyes with smaller drusen, i.e. less severe disease, might partly explain the lower average deviation 
compared with our findings. Roh et al. compared 71 eyes with iAMD according to AREDS2 classification (age 

Table 2.  The number of iAMD eyes out of the cohort of 25 eyes with at least 5 abnormal points using 2 criteria 
for abnormality, and the average threshold and deviation of these points.

Exam 1 Exam 2 Both exams

# eyes (%) Threshold (dB) Deviation (dB) # eyes (%) Threshold (dB) Deviation (dB) # eyes (%) Threshold (dB) Deviation (dB)

Threshold lower than 
1.65 SD 19 (76%) 23.1 ± 1.4 − 5.1 ± 1.2 19 (76%) 23.0 ± 1.4 − 5.2 ± 1.3 18 (72%) 23.0 ± 1.4 − 5.2 ± 1.2

Threshold lower than 
2.0 SD 14 (56%) 22.2 ± 1.8 − 6.0 ± 1.4 16 (64%) 22.2 ± 1.8 − 6.1 ± 1.6 13 (52%) 22.3 ± 1.8 − 5.9 ± 1.5

https://lbecker.uccs.edu/
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69.7 ± 5.3) with 46 control eyes (age 65.4 ± 6.6.) using the same grid, with reported average deviation of − 2.7 dB 
between the  groups5.

Limiting study enrollment to eyes with a defined degree of dysfunction means that some potential subjects 
would be excluded, potentially complicating enrollment. In our cohort, 18 of 25 eyes met the criterion of at 
least 5 abnormal points in both tests, leading to 28% of potential study subjects being excluded. Targeting clini-
cally more advanced iAMD cases for enrolment might limit the amount of screen failures. For example, it has 
been shown that dark adaptation, another functional outcome measure in eyes with iAMD, was reported to be 
progressively worse when the fellow eye also had large drusen or advanced  AMD16. As another example, using 
MAIA to assess the 5 central points (central 1 degree) in a macular test, eyes with both drusen > 125 microns and 
pigmentary abnormalities had a lower sensitivity threshold compared with eyes with drusen  only6. Thus, retinal 
morphology might aid considerably in pre-selecting iAMD patients and reduce the number of screen failures 
on subsequent microperimetry testing.

So called normative databases integrated into functional testing devices by manufacturers may or may not 
reflect the actual “true normal”. Due to the discrepancy identified in our study we reviewed other published 
studies which used a MAIA device and reported average thresholds in healthy eyes. We identified three such 
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Figure 3.  Bland–Altman plots for the average sensitivity threshold in 2 successive mesopic microperimetry 
tests when all grid points were included (a, complete cohort of 25 eyes) and when only abnormal points at < 1.65 
SD (5%) were included (b, 18 eyes with at least 5 such points). The x-axis shows the mean of average sensitivity 
for each pair of repeated tests for each subject, the y-axis the difference between the average sensitivity in the 
two tests (first test–second test). The overall mean difference is represented by the central bold line, and the 95% 
Limits of agreement are marked by the upper and lower dashed lines.
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studies and calculated the predicted value according to the MAIA’s normative database by using the reported 
mean age of the healthy population. Based on this, the reported mean threshold sensitivity was within 1 dB of 
the calculated prediction for all studies, with − 1.02 dB4, + 0.9 dB6 (average sensitivity 29.3 dB; personal com-
munication Zhichao Wu), and + 0.3 dB5. This highlights that the database integrated in the MAIA device can be 
used albeit requires a certain caution and re-evaluation in each sample.

These results are based on repeated tests done within the same visit. Further study is needed to verify that our 
results are observed when inter-visit tests are compared. We note that while analyzing only abnormal points may 
increase endpoint sensitivity when seeking improved function or slowing deterioration in areas of retina that are 
dysfunctional at baseline, this methodology does not allow the detection of changes in areas that are normal at 
baseline. Therefore this approach might underestimate any effect related to slowing of progression rather than 
improving function by any tested intervention.

In conclusion, we propose a framework for the construction of an outcome measure for clinical trials of 
visual function improvement in iAMD that consists only of microperimetry points that are abnormal at base-
line. Despite limiting the analysis to a particular subset of points, most subjects in this iAMD cohort could be 
enrolled. Advantages include a greater average deviation allowing more ample opportunity for observable effect 
of any intervention, a more homogenous dataset, and excellent test–retest variability.
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