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Transcriptome analysis 
of the procession from chronic 
pancreatitis to pancreatic cancer 
and metastatic pancreatic cancer
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Meiying Li1* & Lisha Li1*

Exploring the underlying mechanisms of cancer development is useful for cancer treatment. In 
this paper, we analyzed the transcriptome profiles from the human normal pancreas, pancreatitis, 
pancreatic cancer and metastatic pancreatic cancer to study the intricate associations among 
pancreatic cancer progression. We clustered the transcriptome data, and analyzed the differential 
expressed genes. WGCNA was applied to construct co-expression networks and detect important 
modules. Importantly we selected the module in a different way. As the pancreatic disease 
deteriorates, the number of differentially expressed genes increases. The gene networks of T cells 
and interferon are upregulated in stages. In conclusion, the network-based study provides gradually 
activated gene networks in the disease progression of pancreatitis, pancreatic cancer, and metastatic 
pancreatic cancer. It may contribute to the rational design of anti-cancer drugs.

Abbreviations
DEGs	� Differentially expressed genes
EMT	� Epithelial-mesenchymal-transition
GO	� Gene ontology
IPMA	� Intraductal papillary-mucinous adenoma
IPMC	� Intraductal papillary-mucinous carcinoma
IPMN	� Intraductal papillary-mucinous neoplasm
MDSCs	� Myeloid-derived suppressor cells
PanIN	� Pancreatic intraepithelial neoplasia
PDAC	� Pancreatic ductal adenocarcinoma
SAM	� Significance analysis of microarrays
TME	� Tumor microenvironment
Tregs	� Regulatory T cells
WGCNA	� Weighted gene co-expression network analysis

Pancreatic cancer, comprising mostly pancreatic ductal adenocarcinoma (PDAC), is an extremely lethal disease. 
The disease frequently causes few symptoms before it develops to the advanced stage. Those who do develop 
symptoms often have non-specific complaints1,2. Multidetector CT angiography, MRI and Endoscopic ultra-
sound are the recommended initial imaging technique for accurate and timely diagnosis3–5. CA19-9, a validated 
serum biomarker, maintains a sensitivity of 79–81% and specificity of 82–90% for the diagnosis of the PDAC 
in symptomatic patients6. Patients who can undergo surgical resection had 5-year survival rates of 10–25%. For 
patients who cannot be surgically removed, effective systemic treatment provides a median overall survival of 
18.8 months7. The current standard of care for advanced or metastatic PDAC provides only months of overall 
survival benefit8. For patients with PDAC, more effective therapy is urgently needed.
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The gene networks of pancreatic cancer are very complex, such as KRAS and KRAS downstream effectors9, 
Yap-Myc-Sox2-p53 regulatory network10, miR-665/TGFBR1-TGFBR2/SMAD2/3 pathway11, and highly dynamic 
tumor microenvironment (TME)12. The non-cancer cell compartment of a tumor including a variety of resident 
and infiltrating host cells, secreted factors and extracellular matrix proteins, is collectively known as the TME. In 
pancreatic cancer, TME is highly immunosuppressive and fibrotic13 and composed largely of regulatory T-cells 
(Tregs), myeloid-derived suppressor cells (MDSCs), and other immunosuppressive cells8. Most cellular compo-
nents exert their functions through complicated biological networks14. The study of gene networks can give us 
an understanding of complex systems15,16. Gene co-expression network analysis reveals the typical characteristics 
of prognostic genes. Prognostic genes were enriched in modules17.

A lot of research has analyzed the difference between pancreatic cancer and normal state, but little research 
has yet shown the progress of pancreatic disease. Most work makes simple comparisons between the two groups 
or picks the module with the highest correlation coefficient with cancer. Here we put the normal, chronic pan-
creatitis, PDAC and metastatic disease groups together in the WGCNA analysis. Moreover, we selected modules 
with changing correlation coefficients in the four states. This is a unique aspect of this research. Here we consider 
the different stages of pancreatic disease as different traits and assume that these four traits are continuous. Then 
calculate the correlation between the module and these traits. If some genes are gradually upregulated among the 
normal pancreas, pancreatitis, pancreatic cancer and metastatic pancreatic cancer, they are likely to be classified 
in the same module. These specific modules will show a gradually increasing correlation of traits from nega-
tive to positive. Therefore, we constructed pancreatic disease progression networks at the transcriptional level.

Methods
Gene expression data and data analysis.  Gene expression profiling data E-EMBL-6 were obtained 
from the European Bioinformatics Institute database. We list the detailed information of the samples (www.
ebi.ac.uk/array​expre​ss, Table  S1). Gene expression profiling data E-EMBL-6 contains the stages of the nor-
mal state, chronic pancreatitis, pancreatic cancer, and metastatic pancreatic cancer, each with nine samples18. 
Nine chronic pancreatic tissue samples were obtained from two female and seven male patients (median age 
52 years; range 42–62 years). Nine pancreatic cancer tissue samples were obtained from seven male and two 
female patients (median age 63 years; range 53–77 years). Nine metastatic pancreatic cancer tissue samples were 
obtained from four female and five male patients (median age 58.5 years; range 58–78 years). All individuals had 
histologically confirmed pancreatic ductal adenocarcinoma. In addition, normal human tissue samples were 
obtained through an organ donor program from nine previously healthy individuals (five male donors, four 
female donors; median age 55 years; range 21–73 years). Freshly removed tissue samples were snap-frozen in 
liquid nitrogen immediately on surgical removal and maintained at − 80 °C until use. Data annotation is based 
on the Unigene Build #172 (www.ncbi.nlm.nih.gov/entre​z/query​.fcgi?db=UniGe​ne). To analyze the expression 
signature, multiple supervised and nonsupervised clustering, as well as statistic methods, were applied by the 
open-source Java-based software package Multiexperiment Viewer version 4.9.0 (MeV, https​://sourc​eforg​e.net/
proje​cts/mev-tm4/files​/mev-tm4/). All clustering methods included hierarchical clustering, K-Means cluster-
ing, and Self-organizing maps. Based on these data, significance analysis of microarrays (SAM) was performed 
to select the inversely regulated genes. Differentially expressed genes (DEGs) were obtained by fold change. The 
|log2FoldChange| > 1 was set as the cutoff criterion.

FunRich site for expression analysis of DEGs.  FunRich is stand-alone software used primarily for 
functional enrichment and interaction network analysis of genes and proteins. FunRich is designed to handle a 
variety of gene/protein data sets irrespective of the organism. Additionally, users have more than 13,320 differ-
ent background database options. DEGs were enriched by biological processes, cellular components, molecular 
function, biological pathway and the site of expression analysis of the software, respectively. The top ten items 
of DEGs were ranked according to − log10 (P-value). The comparison between total upregulated and down-
regulated DEGs was done based on the percentage of DEGs. The test P-value of less than 0.05 was considered 
significant.

Weighted gene co‑expression network analysis.  Weighted gene co-expression network analysis 
(WGCNA) is a method to calculate correlated gene expression in the form of adjacency matrices (networks)19. 
We used WGCNA to analyze a total of 9046 gene expressions from EMBL-6. The modules were detected by 
hierarchical clustering. So, genes with similar expression patterns will be classified into the same module. The 
first principal components of each module were summarized as the module eigengene. Then the associations 
between the modules or rather the module eigengene and the pancreatic pathological process can be estimated. 
In the sample phenotypic data, we set a total of four columns, which are normal tissue, chronic pancreatitis, pan-
creatic cancer, and metastatic pancreatic cancer, corresponding to four types of samples. From this, we convert 
the sample phenotypic data into a 0–1 matrix. Then, calculate the correlation coefficients between the module 
eigengenes and the traits. Among these modules, some showed a negative correlation with normal pancreatic 
tissue and a larger and larger correlation with the three kinds of diseased tissue. Such modules are considered 
closely related to pathological processes, and so do the genes in the modules. We tested these genes for enrich-
ment in Gene Ontology (GO) biological processes with functions implemented in clusterProfiler R package20. 
In WGCNA, the degree to which the expression of one gene change with the expression of another gene is 
quantified as connectivity. It constructs a scale-free network so almost all the connectivity will be kept. The dif-
ference between the connectivity can be amplified by power operations. After multiple power operations, the 
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connectivity with a lower value will approach 0, and the connectivity with a higher value will receive less impact. 
WGCNA calculate the connectivity between each gene and the module eigengenes. From each of the concerned 
modules, we select twenty genes with the highest weighted-connectivity. Then we analysis them with the infor-
matic tool STRING, a database of known and predicted protein–protein interactions21 and tool COEXPEDIA 
which explores biomedical hypotheses via co-expression associated with medical subject headings22. The result 
is represented by a graph drawn by Cytoscape23. We used GSE15471, GSE62452, GSE56560, GSE42952, TCGA-
PAAD, TCGA-LUAD, The Human Protein Atlas (HPA), and R package hpar24,25 to validate our results.

Ethical approval.  This article does not contain any studies with human participants or animals performed 
by any of the authors.

Result
Chronic pancreatitis, pancreatic cancer, and metastatic pancreatic cancer have distinct gene 
signatures.  A total of 9046 gene expressions were obtained, and all the samples were clustered according 
to the gene expression value (Fig. 1, Table S2). Chronic pancreatitis and pancreatic cancer could not be distin-
guished very well in the cluster map. Probably pancreatitis shares some common gene expression characteristics 
with pancreatic cancer. By significance analysis of microarrays provided by MeV, 302 statistically significant 
DEGs were identified (Fig. 2). 

There are 965 DEGs in chronic pancreatitis (Table S3), 2060 DEGs in pancreatic cancer (Table S4) and 2517 
DEGs in metastatic pancreatic cancer (Table S5) with |log2FoldChange| > 1 set as the cutoff criterion. As pan-
creatic cancer progress, more and more genes are differentially expressed. The number of DEGs was the largest 
in metastatic pancreatic cancer. There are 302 DEGs by SAM method (Table S6).

GO term enrichment analysis.  Cell growth and maintenance change in all the pancreatic cancer progres-
sion. Immune response changes in pancreatic cancer and metastatic cancer. The GO biological process analysis 
of chronic pancreatitis DEGs was enriched in cell growth and maintenance (Fig. 3, Table S3); the pancreatic 
cancer DEGs were enriched in immune response, cell growth and maintenance, protein metabolism, etc. (Fig. 3, 

Figure 1.   The cluster of all the genes in 36 samples including normal state, chronic pancreatitis, pancreatic 
cancer, and metastatic pancreatic cancer, each with nine samples.
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Table S4); the metastatic pancreatic cancer DEGs were enriched in immune response, metabolism, energy path-
way, protein metabolism and cell growth and maintenance (Fig. 3, Table S5). The SAM DEGs were enriched in 
lymphocyte activation, lymphocyte proliferation, protein metabolism, energy pathway and metabolism (Fig. 3, 
Table S6). The GO cellular component analysis of DEGs in all the pancreatic cancer progression was significantly 
enriched in extracellular matrix/region/space, exosomes, and plasma membrane (Fig. 4, Tables S3, S4, and S5). 
The SAM DEGs were enriched in ribosome, cytosol, etc. (Fig. 4, Table S6). The GO molecular function analysis 
of DEGs in all the pancreatic cancer progression was significantly enriched in extracellular matrix structural 
constituent, MHC class I receptor activity, and MHC class II receptor activity (Fig. 5, Tables S3, S4, and S5). The 
SAM DEGs were enriched in the structural constituent of ribosome and lipase activity (Fig. 5, Table S6).

Site of expression analysis.  The site of expression of DEGs in all the pancreatic cancer progression was 
significantly enriched in fluid and urine (Fig. 6, Tables S3, S4, and S5). The site of expression was further ana-
lyzed in Fig. 6. We obtained the gene rankings based on the percentage of DEGs after FunRich software analysis 
and exported the top ten items. The output pictures were automatically ranked according to − log10 (P-value). 
Immune cells emerged in a multitude only in metastatic pancreatic cancer. The SAM DEGs were enriched in 
many immune cells, including CD4 T cells, CD8 T cells, monocyte, dendritic cells, B cell, etc. (Fig. 6, Table S6).

Biological pathway analysis.  The biological pathways of DEGs in all the stages of pancreatic cancer pro-
gression were significantly enriched in epithelial-to-mesenchymal transition and integrin family cell surface 
interaction (Fig. 7, Tables S3, S4, and S5). The DEGs of chronic pancreatitis were enriched in integrin family 
cell surface interaction (beta1, beta2, beta3) (Fig. 7, Table S3). The DEGs of pancreatic cancer were enriched in 
translational elongation and termination to support new protein synthesis (Fig. 7, Table S4). The SAM DEGs 
were enriched in all the levels of gene expression regulation, including mRNA, protein, etc. (Fig. 7, Table S6).

Weighted gene co‑expression network analysis.  After network construction, 19 gene co-expression 
modules were identified. The number of genes in the modules varies between 47 and 1233 (N = 9,046, 758 genes 
were “gray” genes, not assigned to a module) (Table S7). We selected the best soft-thresholding β = 6 to ensure 
a scale-free network. Other details of the WGCNA analysis were reported in the supplement (Supplementary 
Figs. S1, S2, S3 and S4).

We selected modules significant for association with the pancreatic pathological process and performed 
further analysis (Fig. 8). In the module-trait relationship obtained, several modules got raising correlation coef-
ficients from the normal state to metastatic pancreatic cancer (Fig. 8a). The correlation coefficients of these 
modules vary from negative to positive. They are red, salmon, tan, and black modules. GO biological process 
analysis shows genes in the red module most enriched in T-cell activation, in lipopolysaccharide and interferon 
in the salmon module, in protein process and gene silencing in the black module, in vesicle and synaptic process 
in the tan module (Table S8). We took red, salmon, tan, and black modules to further analysis, and it is worth 
noticing that genes of the red module have been enriched in immune response, similar to the previous GO bio-
logical processes analysis of the DEGs of chronic pancreatitis, pancreatic cancer, and metastatic pancreatic cancer.

The top20 genes in salmon and red modules significantly overlap with DEGs. The correlation between each 
gene in a module and the module eigengene defined the eigengene-based connectivity. Since genes with high 
eigengene-based connectivity can be inferred as playing important roles in this module, we select respectively the 

Figure 2.   The expression graph of significant DEGs by SAM.
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top20 genes in four concerned modules to further analysis. We screened the genes from the previous differential 
analysis. We found that 546 genes were differentially expressed in all three groups: normal-pancreatitis, normal-
pancreatic cancer, and normal-metastatic pancreatic cancer. We found that 19 out of 80 genes in four modules 
overlapped with these 546 genes. There are IFI30, FCER1G, FOLR2, HLA-A, PSMB8, BST2, TNFAIP2, TYROBP, 
LST1 in the salmon module, CD52, HCLS1, LCK, RAC2, CD27, CD37, CD74 in the red module, HSPA1A, and 
CLDN5 in the tan module, and FSCN1 in the black module. The heatmap of the expression of these genes shows 
that their expression does indeed gradually increase in the course of the disease (Fig. 8c).

Most of the top20 genes in the red module showed strong co-expression characteristics, and in the salmon 
module, PSMB8, PSMB9, PSME2, UBE2L6 do the same. In STRING, the top20 genes in the salmon, red, black, 
and tan modules respectively get a PPI enrichment P-value of 1.0e − 16, 1.0e − 16, 2.3e − 05, and 0.0494. Since 
the top20 genes in salmon and red modules showed more correlation than the other two, we verified their co-
expression characteristics in STRING and coexpedia (Fig. 8b). The verification result is represented by a graph 
drawn by Cytoscape.

We checked the consistency of the analysis results in other data sets. Other data sets proved that the genes 
in red and salmon modules are upregulated in the pancreatic disease course. We test the top20 genes in the four 
modules in TCGA. In project TCGA-PAAD, six genes showed survival correlation (Fig. 9a–f). They are PPP1CA 
and GAPDH in the black module, ATP6V0E2, RRAS, UBE2L6, and CA11 in the salmon module. We also tested 
our results on data sets containing normal and cancer groups. When adjust P-value of less than 0.05 was con-
sidered significant, a total of 40 genes of the red and salmon module showed 29, 20, 27 upregulation, and 1, 0, 1 
downregulation in GSE15471, GSE62452, GSE56560, respectively (Fig. 10). It is showed as logFC. Some genes 

Figure 3.   GO biological process for DEGs of chronic pancreatitis, pancreatic cancer, metastatic pancreatic 
cancer, and SAM, respectively.
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were not defined as differential expression genes in these data sets. Their regulation is valued as 0. Most of the 
top20 genes in the salmon module showed upregulated in all three external data sets. In the red module, RAC2, 
LPXN, CD74, CD52, PTPN6, these five genes showed upregulated in all three external data set. In the control of 
pancreatic cancer and metastatic pancreatic cancer, we did not find a significant difference. We analyzed several 
data sets GSE42952, TCGA-PAAD, TCGA-LUAD by gene expression differential analysis, and none of them 
showed upregulation of the gene network. In fact, there were almost no DEGs between cancer and metastatic 
cancer. We validated these genes at the protein level by HPA database and R package hpar. Expression of these 
genes in normal tissues is generally lower than that in cancer tissues (Tables S9, 10).

Discussion
The data set was derived from the entire tissue rather than individual cancer cells. The gene expression of can-
cer cells and their surrounding environment are included. TME plays an important role in tumor growth and 
inhibition. Here we find that the gene networks of T cells and interferon are upregulated in stages in the process 
of pancreatic disease. This is reflected in the red and salmon modules (Fig. 8a, Table S8). And we identified the 
hub genes of the two gene networks.

The gene network of T cells is upregulated (Fig. 8b). PDAC development is intertwined with multiple types of 
immunosuppressive cells, including Tregs and MDSCs8. Also, PDAC development intertwined with biochemical 
and physical barriers to T cell infiltration from the surrounding stroma. T cells can have divergent effects on 
PDAC either by combating cancer growth or by promoting tumor progression via the active induction of immune 
suppression26. In response to this, the red modules identified by WGCNA showed a high correlation with T cells 
(Table S8). The same goes for the top20 genes in the red module (Fig. 8b). Among these top20 genes CD74, CD27, 
LCK, CD3D, and CORO1A were proved T cell relatively. CD74 is known as a type II transmembrane glycoprotein 
that is associated with the major histocompatibility complex class II alpha and beta chains. It is discovered to 
mediate immune escape27. The overexpression of CD74 is a key factor associated with perineural invasion28–30. 

Figure 4.   GO cell component for DEGs of chronic pancreatitis, pancreatic cancer, metastatic pancreatic cancer, 
and SAM, respectively.
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Also, CD74 showed significantly increased expression in a large group of clinical pancreatic adenocarcinomas 
but were negative in all normal pancreas samples27. In glioblastoma, migration inhibitory factor (MIF)-CD74 
interaction inhibitor reduced MDSC function and enhanced CD8 T cell activity in the syngeneic mouse model 
of glioma31. Recently antigen-delivery through CD74 was verified as boosting CD8 and CD4 T cell immunity32. 
Activation of the CD27/CD70 axis might have immune suppressive effects. CD27 enhanced survival signal in 
Tregs and induction of apoptosis of effector T cells33. And other genes are thought to be closely related to pancre-
atic cancer, such as LCK34. LCK is critical for T cell development and activation, as it is the first kinase to divert 
TCR signalling35. What’s more, LCK, CD247, CD27, CD3D, and CD74 were mentioned as upregulated genes in 
anti-PDL1 treated mice and downregulated genes in inflammatory breast cancer with PDL1 overexpression36,37. 
RAC is often referred to as the Ras proto-oncogene superfamily38. Rac1 and Rac2 control the formation of den-
drites in mature dendritic cells. Rac1 and Rac2 control dendritic cells polarized short-range migration toward 
T cells, and T cell priming39. Coronin-1A (CORO1A) is a regulator of actin dynamics important for T cell 
homeostasis40. CORO1A expression in T cells is essential for the activation of autoantigen-specific T cells41.

The gene network of the interferon pathway is upregulated (Fig. 8b). Activation of the stimulator of interferon 
within the tumor microenvironment has been shown to generate an antitumor response. The salmon modules 
identified by WGCNA relative to type I interferon (Table S8). PSMB8 and PSMB9 can be the alternative subunits 
to help the constructive proteasome transform to the immune proteasome induced by interferon γ42. PSMB8, 
PSMB9 were identified as potential targets for the diagnosis and therapy of cutaneous squamous-cell carcinoma 
and melanoma42,43.

The regulation of T cells was also detected in pancreatic intraepithelial neoplasia (PanIN), and T cells can 
promote tumor development through immunosuppression and epithelial-mesenchymal-transition (EMT). In 
this study, we focused on the progression of pancreatic cancer induced by chronic pancreatitis. There are other 

Figure 5.   GO molecule function for DEGs of chronic pancreatitis, pancreatic cancer, metastatic pancreatic 
cancer, and SAM, respectively.
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diseases that may develop into pancreatic cancer. PanIN is considered a precancerous lesion of pancreatic can-
cer. PanIN formation is accompanied by a variety of changes to the immune milieu of the pancreas, includ-
ing an influx of tumor-associated macrophages, MDSCs, and CD4+ Tregs. These changes persist and intensify 
upon progression to malignancy44,45. Chronic pancreatitis promotes induction of EMT in premalignant cells of 
PanIN leading to their dissemination before the detection of a primary PDAC in endogenous mouse model46. 
CD4+CD25− T-effector cells and Tregs also contribute to the EMT and invasive phenotype. Elevated levels of 
TNF-α and IL-6 secreted by T-effector cells account for that47. PanIN is an important part of the malignant 
transformation of pancreatic diseases. In this work, PanIN should be compared with normal state, pancrea-
titis, pancreatic cancer and metastatic cancer. However, there is no suitable data set for the time being. Data 
set GSE19650 collects the mRNA expression of the epithelial cells from normal pancreatic ducts, intraductal 
papillary-mucinous adenoma (IPMA), intraductal papillary-mucinous carcinoma (IPMC), and invasion cancer 
originating in intraductal papillary-mucinous neoplasm (IPMN). The gene network of T cell regulation men-
tioned above did not show significant differential expression among IPMA, IPMC and IPMN in GSE19650. We 
believe that different sample sources have led to this result. Because at least the upregulation of the network of 
T cell regulation in pancreatic cancer tissues is proved in more other data sets and databases. This difference 
suggested that the regulation of the network of T cell regulation mainly occurs in the TME and has little to do 
with tumor cells.

We performed WGCNA and other analyses using relatively conventional methods. But we chose the module 
from a unique perspective. We chose those modules with continuous changes in correlation coefficients, instead 
of the modules with the highest correlation. This is a unique part of our research. In fact, if the four consecutive 

Figure 6.   FunRich site of expression analysis for DEGs of chronic pancreatitis, pancreatic cancer, metastatic 
pancreatic cancer, and SAM, respectively.
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traits of normal, pancreatitis, pancreatic cancer, and metastatic pancreatic cancer are represented by 0, 1, 2, and 
3. It is used to represent the gradual high expression of the gene network in the course of the disease. Then the 
red and salmon modules also have a high correlation with the disease process (Supplementary Fig. S5).

The WGCNA analysis in other studies showed different results. The hub genes of some studies are mostly 
classified as blue modules48. Some are primarily classified in blue modules49 or turquoise module18,50. And some 
are scattered in different modules with no obvious slant51. This may be due to the differences in samples and 
analysis focus.

We conducted external verification of our proposed gene network, including RNA level and protein level. 
In normal and pancreatic cancer controls, the upregulation of our gene network was confirmed. In the control 
of pancreatic cancer and metastatic pancreatic cancer, we did not find a significant difference. It is possible that 
when pancreatic cancer transforms into metastatic cancer, it cannot be detected by gene expression differential 
analysis. The uploaders of the data sets did not provide enough detailed information about the sampling location, 
so it may also be caused by different sampling locations.

In summary, we studied the transcriptome analysis of pancreatic disease and as a subset of analyses, normal 
to chronic pancreatitis to PDAC to metastatic disease. The relationship in the immune response and transcrip-
tion profiles among two different types of pancreatic disease and more specifically in a minor component of 
pancreatic cancer progression was identified. The network analysis helps to find key genes in pancreatic disease, 
but we still need experimentally evaluate the function of these genes.

Figure 7.   Biological pathway analysis for DEGs of chronic pancreatitis, pancreatic cancer, metastatic pancreatic 
cancer, and SAM, respectively.
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Figure 8.   Potential pancreatic disease-related genes selected by WGCNA and further analysis. (a) Modules 
correlated with normal and diseased pancreatic tissue. (b) The verification of co-expression of the top20 genes in 
red and salmon modules in STRING and coexpedia. The verification result is represented by a graph drawn by 
Cytoscape. The dark lines show the co-expression in this research. The pink lines show the co-expression verified by 
STRING or coexpedia at the same time. The red line shows the co-expression verified by STRING and coexpedia. (c) 
The heatmap of top20 genes in red and salmon module. The expression has been converted by log2 (x + 1).

Figure 9.   The survival correlation of predicted genes. (a) GAPDH; (b) PPP1CA; (c) CA11; (d) ATP6V0E2; (e) 
RRAS; (f) UBE2L6.
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