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Thermal‑stress analysis 
of a damaged solid sphere using 
hyperbolic two‑temperature 
generalized thermoelasticity 
theory
Hamdy M. Youssef1,2*, Alaa A. El‑Bary3 & Eman A. N. Al‑Lehaibi4

This work aims to study the influence of the rotation on a thermoelastic solid sphere in the context 
of the hyperbolic two‑temperature generalized thermoelasticity theory based on the mechanical 
damage consideration. Therefore, a mathematical model of thermoelastic, homogenous, and 
isotropic solid sphere with a rotation based on the mechanical damage definition has been 
constructed. The governing equations have been written in the context of hyperbolic two‑temperature 
generalized thermoelasticity theory. The bounding surface of the sphere is thermally shocked and 
without volumetric deformation. The singularities of the studied functions at the center of the sphere 
have been deleted using L’Hopital’s rule. The numerical results have been represented graphically with 
various mechanical damage values, two‑temperature parameters, and rotation parameter values. The 
two‑temperature parameter has significant effects on all the studied functions. Damage and rotation 
have a major impact on deformation, displacement, stress, and stress–strain energy, while their 
effects on conductive and dynamical temperature rise are minimal. The thermal and mechanical waves 
propagate with finite speeds on the thermoelastic body in the hyperbolic two‑temperature theory and 
the one‑temperature theory (Lord‑Shulman model).

Abbreviations
CE  Specific heat at constant strain
co  =

√

�+2µ
ρ

Longitudinal wave speed
D  The mechanical damage parameter
eij  The strain components
K  Thermal conductivity
TD , TC  Dynamical and conductive temperature, respectively
To  Reference temperature
t   Time
uij  The displacement components
αT  Coefficient of linear thermal expansion

β  =
(

�+2µ
µ

)
1/2

γ  (3�+ 2µ)αT
ε  = γ

ρ CE
  The mechanical coupling constant (dimensionless)

ε1  = γTo
µ

 The thermoelastic coupling constant (dimensionless)
η  = ρ CE

K  The thermal viscosity
� , µ  Lamé’s constants
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�  The angular velocity of the rotation parameter
ρ  Density
σij  Components of the stress tensor
τ0  Thermal relaxation time

In material science, researchers and authors play a key role in seeking a precise and effective model simulating the 
behavior of the thermoelastic materials. Authors and researchers have provided many mathematical models in 
which they studied the transmission of thermomechanical waves in solid materials. It requires a large space not 
limited to one research to talk about thermomechanical transition mathematical models by using elastic materi-
als. So, we will speak about some recent models which need chances to discuss. Chen and  Gurtin1 introduced a 
thermoelasticity model based on two different types of temperatures; the dynamical temperature and conduc-
tive temperature. The difference value between these two temperatures is proportional to the value of the heat 
supply. Warren and  Chen2 studied the wave propagation in the context of the two-temperature thermoelasticity 
theory.  Youssef3 modified this theory and introduced the model of two-temperature generalized thermoelasticity. 
Youssef with other researchers have used that model in many applications and  researches4–6. Youssef and El-Bary7 
introduced the evidence of the two-temperature generalized thermoelasticity model does not provide a finite 
speed of propagating the thermal waves. Therefore, Youssef and El-Bary7 modified this model and introduced 
a new model of two-temperature based on different heat conduction laws called hyperbolic two-temperature 
generalized thermoelasticity. In that model, Youssef proposed that the value of the difference between the value 
of the conductive temperature acceleration and the value of the dynamical temperature acceleration is propor-
tional to the heat supply. Within this model, the thermal wave propagates through the medium with a finite 
speed. Le Thanh et al.8 developed a thermomechanical size-dependent model using finite element method for 
predicting the stress, thermal defection, and critical buckling load of composite microplates laminates based on 
the Reddy plate theory together with new modification of couple stress theory. For the first time, Le Thanh et al.9 
used isogeometric analysis for the size-dependent impacts on the post-buckling and thermal buckling behaviors 
of functionally graded micro-plates with porosities.

Youssef introduced many applications of thermoelasticity of infinite thermoelastic spherical  medium10,11. 
Mukhopadhyay and Kumar studied and discussed the generale form of the thermoelastic interactions in an 
ifinite thermoelastic body with a spherical  cavity12. Many researheres studied the influence of the rotation on the 
thermal and mechanical waves. In the two-dimensional applications of generalized thermoelastic materials, Baksi 
et al.13 used the eigenvalue method for investigating the influence of the relaxation time and rotation.  Othman14 
studied the rotation’s effect on the plane waves in the context of the generalized thermoelasticity model based 
on two relaxation times. Baksi et al.15 studied the influence of the rotation and relaxation time in the general-
ized magneto-thermo-viscoelastic in a one-dimensional medium. Othman and  Singh16 studied the effects of the 
rotation on a generalized thermoelastic micropolar half-space under five different theories. Singh and  Singla17 
discussed the effects of the rotation on the propagating waves in an incompressible transversely thermoelastic 
isotropic solid material.

Many researchers who found their applications and problems as a spherical medium believed that a body 
with a spherical cavity is away from the situation at the sphere’s center. Few authors could overcome the prob-
lem; Thibault et al., for example, employed the L’Hopital rule in the thermoelectric solid sphere to address the 
singularity  situation18.

The aim of this investigation is to study the influneces of the rotation and mechanical damage on the thermoe-
lastic solid sphere under a new theory of thermoelasticity which is called hyperbolic two-temperature generalized 
thermoelasticity theory. The main goal of this work is to prove that the hyperbolic two-temperature thermoe-
lasticity theory grantees a thermoelastic wave which propagates with a finite speed and it is a successful model.

The governing equations
Consider a perfect thermal thermoelastic, isotropic, and spherical body that fills the region 
� = {(r,ψ ,φ) : 0 ≤ r ≤ a, 0 ≤ ψ ≤ 2π , 0 ≤ φ < 2π } . We can apply the well-known spherical co-ordinates 
system (r,ψ ,φ) where r denote the radial co-ordinate ψ and φ denoted to the co-latitude, and longitude of a 
spherical coordinate system, respectively. Assume the medium has no body force and initially quiescent. Con-
sider the sphere is rotating uniformly with an angular velocity �� = � �n , where �n is a unit vector representing 
the direction of the axis of rotation, as in Fig. 1.

There are two more terms for the motion equation of the revolving  frame19; �× (�× u) gives the centripetal 
acceleration comes from the time-varying motion only, and (2�× u̇) which is called the Coriolis acceleration. 
Only if the latitudinal and longitudinal variance is available is the symmetry requirement fulfilled. Thus, all the 
studied functions will depend on radial distance r and time t .

The damage amount can be measured by the fractional  area20:

where D = 0 is devoted to the undamaged case while D = 1 describes the fully damaged case formally with a 
total loss of stress carrying capacity. Physically in natural materials, the value of the damage parameter will be 
D ≈ 0.2...0.5 . In the case of isotropic damage, the effective stresses are given  by20:

(1)D =
dAD

dA
, 0 ≤ D ≤ 1,

(2)σij = (1− D)σ̃ij ,
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where σ̃ij are the stresses components in the undamaged material. Many articles have been published under this 
definition of damage  mechanics21–25. Khatir et al.26 presented an enhanced application for damage quantifica-
tion in laminated composite with less computational time based on IGA using modal analysis. Zenzen et al.27 
introduced a new damage indicator are by using two numerical models.

Due to spherical symmetry, the displacement components have the form

The equations of  motion14,16,28:

The constitutive equations with mechanical damage  parameter28:

The strain components are

and

where e is the cubical dilatation (volumetric deformation) and satisfies the relation:

The hyperbolic two-temperature heat conduction equations take the  forms7,28:

and

where c(m/s) is the hyperbolic two-temperature  parameter7, and ∇2 = 1
r2

∂
∂r

(

r2 ∂
∂r

)

.
We consider that ϕ = (TC − T0) and θ = (TD − T0) are the conductive and dynamical temperature incre-

ment, respectively. Then the equations (4)–(7), (12), and (13) take the forms

(3)
(

ur , uψ , uφ
)

= (u(r, t), 0, 0 ).

(4)ρ
(

ü−�2u
)

= (�+ 2µ)(1− D)
∂e

∂r
− γ (1− D)

∂TD

∂r
.

(5)σrr = (1− D)(2µerr + �e)− γ (1− D)(TD − T0),

(6)σψψ = (1− D)
(

2µeψψ + �e
)

− γ (1− D)(TD − T0),

(7)σφφ = (1− D)
(

2µeφφ + �e
)

− γ (1− D)(TD − T0),

(8)σrφ = σφψ = σrψ = 0.

(9)err =
∂u

∂r
, eψψ = eφφ =

u

r
,

(10)erφ = eφψ = erψ = 0,

(11)e = err + eψψ + eφφ =
∂u

∂r
+

2u

r
=

1

r2
∂
(

r2u
)

∂r
.

(12)K∇2TC = ρCE

(

∂

∂ t
+ τ0

∂ 2

∂ t2

)

TD + γT0

(

∂

∂ t
+ τ0

∂ 2

∂ t2

)

(1− D)e,

(13)T̈D = T̈C − c2∇2TC ,

Figure 1.  The thermoelastic solid sphere with rotation.
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The equation (14) can be re-written to be in the form

For simplicity, we will use the following non-dimensional  variables5,14,16:

Then, we obtain

where γ = (3�+ 2µ) αT,c2o = �+2µ
ρ

 , η = ρCE
K  , ε = γ

ρ CE ,ε1 =
γTo
µ

 , β =
(

�+2µ
µ

)
1/2 , b = ε1

β2 , c̃2 = c2

c2o
.

The primes have been canceled.
The operator ∇2 = 1

r2
∂
∂r

(

r2 ∂
∂r

)

 is singular at r = 0 ; However, if symmetry conditions prevail, the singularity 
situation is reduced by applying L’Hopital’s rule as  follows18:

Then, we get

and satisfy the boundary conditions

Hence, we have

By applying the forms (26) in equations (20)–(22), we obtain

(14)ρ
(

ü−�2u
)

= (�+ 2µ)(1− D)
∂e

∂r
− γ (1− D)

∂θ

∂r
,

(15)σrr = (1− D)(2µerr + �e)− γ (1− D)θ ,

(16)σψψ = (1− D)
(

2µeψψ + �e
)

− γ (1− D)θ ,

(17)σφφ = (1− D)
(

2µeφφ + �e
)

− γ (1− D)θ .

(18)ρ
(

ë −�2e
)

= (�+ 2µ)(1− D)∇2e − γ (1− D)∇2θ .

(19)

{

r′, u′, a′
}

= coη {r, u, a},
{

t ′, τ ′, τ ′o, τ
′
1

}

= c2oη {t, τ , τo, τ1},
{

θ ′,ϕ′
}

=
1

T0
{θ ,ϕ}, σ ′ =

σ

µ
, �′ =

�

c2oη
.

(20)ë −�2e = (1− D)∇2e − b(1− D)∇2θ ,

(21)∇2ϕ =

(

∂

∂ t
+ τo

∂ 2

∂ t2

)

θ + ε

(

∂

∂ t
+ τo

∂ 2

∂ t2

)

(1− D)e,

(22)θ̈ = ϕ̈ − c̃2∇2ϕ,

(23)σrr = (1− D)
(

β2e − 2
u

r

)

− ε1 (1− D)θ ,

(24)σψψ = (1− D)

(

β2e − 2
∂ u

∂ r

)

− ε1 (1− D)θ ,

(25)σφφ = (1− D)

(

β2e − 2
∂ u

∂ r

)

− ε1 (1− D)θ ,

∇2{e, θ ,ϕ} = lim
r→0

[

1

r2
∂

∂r

(

r2
∂{e, θ ,ϕ}

∂r

)]

= lim
r→0

[

∂2{e, θ ,ϕ}

∂r2
+

2

r

∂{e, θ ,ϕ}

∂r

]

=
∂2{e, θ ,ϕ}

∂r2
+2

∂2{e, θ ,ϕ}

∂r2
.

(26)∇2{e, θ ,ϕ} = 3
∂2

∂r2
{e, θ ,ϕ},

(27)
∂

∂r
{e, θ ,ϕ}

∣

∣

∣

∣

r=0

= 0.

(28)∇2e(r, t) = 3
∂2e(r, t)

∂r2
, ∇2θ(r, t) = 3

∂2θ(r, t)

∂r2
, ∇2ϕ(r, t) = 3

∂2ϕ(r, t)

∂r2
.

(29)ë −�2e = 3(1− D)
∂2e

∂r2
− 3b(1− D)

∂2θ

∂r2
,
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We apply the Laplace transform, which is defined as:

and

Thus, the equations (20)–(25) have the forms

where δ2 = 3c̃2

s2
.

Substitute from equation (36) into equations (34) and (35), we get

where α1 = s2−�2

3(1−D) , α2 =
s+τos

2

3+δ2(s+τos2)
 and α3 =

ε (s+τos
2)(1−D)

3+δ2(s+τos2)
.

Substituting from equation (42) into the equation (41), we obtain

where α4 =
bα2(1−δ2α2)

1+δ2bα3
 and α5 =

α1+bα3( 1−δ2α2)
1+δ2bα3

.

The diagonalization method
We can re-write the equations (42) and (43) in a matrix form as  follows29:

(30)3
∂2ϕ

∂r2
=

(

∂

∂ t
+ τo

∂ 2

∂ t2

)

θ + ε

(

∂

∂ t
+ τo

∂ 2

∂ t2

)

(1− D)e,

(31)θ̈ = ϕ̈ − 3c̃2
∂2ϕ

∂r2
.

(32)ℓ
{

f (t)
}

= f (s) =

∫ ∞

0
f (t) e−stdt,

(33)
∂θ(r, t)

∂t

∣

∣

∣

∣

t=0

=
∂ϕ(r, t)

∂t

∣

∣

∣

∣

t=0

=
∂e(r, t)

∂t

∣

∣

∣

∣

t=0

= 0.

(34)
(

s2 −�2
)

e = 3(1− D)
∂2e

∂r2
− 3b(1− D)

∂2θ

∂r2
,

(35)3
∂2ϕ

∂r2
=

(

s + τos
2
)

θ + ε
(

s + τos
2
)

(1− D) e,

(36)θ = ϕ − δ2
∂2ϕ

∂r2
,

(37)σ rr = (1− D)

(

β2e − 2
u

r

)

− ε1(1− D) θ ,

(38)σψψ = (1− D)

(

β2e − 2
∂ u

∂ r

)

− ε1(1− D)θ ,

(39)σφφ = (1− D)

(

β2e − 2
∂ u

∂ r

)

− ε1(1− D)θ ,

(40)e =
1

r2
∂
(

r2u
)

∂r
,

(41)
(

∂2

∂r2
− α1

)

e = b
∂2ϕ

∂r2
− δ2b

∂4ϕ

∂r4
,

(42)∂2ϕ

∂r2
= α2ϕ + α3 e,

(43)∂2e

∂r2
= α4ϕ + α5e,

(44)
d

dr







ϕ

e
ϕ′

e′






=







0 0 1 0
0 0 0 1
α2 α3 0 0
α4 α5 0 0













ϕ

e
ϕ′

e′






.



6

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2289  | https://doi.org/10.1038/s41598-021-82127-1

www.nature.com/scientificreports/

For simplicity, we write the system in (44) as a homogenous system of linear first-order differential equation 
 as29:

where Z(r) =







ϕ(r)
e(r)
ϕ′(r)
e′(r)






 and A =







0 0 1 0
0 0 0 1
α2 α3 0 0
α4 α5 0 0






.

The matrix A has four linearly independent eigenvectors; hence, we can construct a matrix V from the eigen-
vectors of the matrix A such that V−1AV = W where W is a diagonal  matrix29.

If we make the substitution Z = V Y  in the system (45), then

which gives

where ±�1and ± �2 are the eigenvalues of the matrix A or the roots of the characteristic equation

where

Since W is a diagonal matrix, then the system (47) is uncoupled, making each differential equation in the sys-
tem has the form y′i = �iyi , i = 1, 2, 3, 4 . The solution to each of these linear equations is yi = cie

�ix , i = 1, 2, 3, 4 . 
Hence, the general solution of the system (47) can be written as column  vector29:

Then the final solution of the system (45) is

The matrix V from the eigenvectors of the matrix A takes the form

Substitute from Eqs. (50) and (52) into the Eq. (51), we get

The boundary conditions in (27) and equation (53) give that

Hence, we obtain

and

(45)
dZ(r)

dr
= AZ(r),

(46)V Y ′ = AV Y or Y ′ = V−1AV Y = W Y ,

(47)







y′1
y′2
y′3
y′4






=







�1 0 0 0
0 �2 0 0
0 0 �3 0
0 0 0 �4













y1
y2
y3
y4






,

(48)�
4 − L �2 +M = 0,

(49)L = �
2
1 + �

2
2 = α2 + α5, M = �

2
1�

2
2 = α2α5 − α3α4, �2 = −�1, �4 = −�3.

(50)Y =









c1e
�1r

c2e
−�1r

c3e
�2r

c4e
−�2r









.

(51)Z(r) = V Y(r).

(52)V =











α3
�1

�

�
2
1−α2

�

−α3
�1

�

�
2
1−α2

�

α3
�2(�2−α2)

−α3
�2(�2−α2)

1
�1

− 1
�1

1
�2

− 1
�2

α3
�

�
2
1−α2

�

α3
�

�
2
1−α2

�

α3
(�2−α2)

α3
(�2−α2)

1 1 1 1











.

(53)







ϕ(r)
e(r)
ϕ′(r)
e′(r)






=











α3
�1

�

�
2
1−α2

�

−α3
�1

�

�
2
1−α2

�

α3
�2(�2−α2)

−α3
�2(�2−α2)

1
�1

− 1
�1

1
�2

− 1
�2

α3
�

�
2
1−α2

�

α3
�

�
2
1−α2

�

α3
(�2−α2)

α3
(�2−α2)

1 1 1 1



















c1e
�1r

c2e
−�1r

c3e
�2r

c4e
−�2r









.

(54)c1 = −c2 and c3 = −c4.

(55)ϕ (r, s) = α3

2
∑

i=1

Ai cosh (�ir)

�i

(

�
2
i − α2

) ,

(56)e (r, s) =

2
∑

i=1

Ai cosh (�ir)

�i
.
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To get the constants A1 andA2 , we must apply the boundary conditions at r = a ; we consider the sphere when 
r = a is thermally shocked as follows:

where H(t) is called the Heaviside unit step function and ϕo is constant, which gives the strength of the thermal 
shock.

Moreover, we consider the bounding surface of the sphere r = a is connected to a rigid foundation that can 
prevent any displacement. Thus, no volumetric deformation in the bounding surface of the sphere as follows:

Applying Laplace transform to the Eqs. (57) and (58), we get

and

Applying the boundary conditions to the Eqs. (55) and (56), we obtain the following system of equations:

and

By solving the system (61) and (62) using the relations between the roots (49), we get
A1 =

ϕ0α4�1
s
(

�
2
1−�

2
2

)

cosh (�1a)
 and A2 = − ϕ0α4�2

s
(

�
2
1−�

2
2

)

cosh (�2a)
.

Hence, we have

and

To obtain the displacement function, we can use the Eqs. (40) and (64) as follows:

The singularity situation problem (65) can be reduced by using L’Hopital’s rule again as  follows18:

Hence, we have

To obtain the stress function in a simple form, we take the average of the three principal stresses components 
on (37)–(39) to be as follows:

The Riemann-sum approximation techniques will be used to compute the studied functions’ numerical solu-
tions in the time domain. By this method, the Laplace transform of any function can be inverted  as30:

where “ i ” is the imaginary number unit, “Re” is the real part, and the value κ satisfies the relation κ t ≈ 4.730. 
Figure 2 is the flowchart which represents the method and all steps.

(57)ϕ(a, t) = ϕoH(t),

(58)e(a, t) = 0.

(59)ϕ(a, s) =
ϕo

s
,

(60)e(a, s) = 0.

(61)
2

∑

i=1

Ai cosh (�ia)

�i

(

�
2
i − α2

) =
ϕ0

sα3
,

(62)
2

∑

i=1

Ai cosh (�ia)

�i
= 0.

(63)ϕ (r, s) =
ϕ0α3α4

s
(

�
2
1 − �

2
2

)

[

cosh (�1r)
(

�
2
1 − α2

)

cosh (�1a)
−

cosh (�2r)
(

�
2
2 − α2

)

cosh (�2a)

]

,

(64)e (r, s) =
ϕ0α4

s
(

�
2
2 − �

2
1

)

[

cosh (�1r)

cosh (�1a)
−

cosh (�2r)

cosh (�2a)

]

.

(65)u(r, s) =

∫

r2e(r, s) ∂r

r2
.

(66)u(r, s) = lim
r→0

∫ (

r2e(r, s)
)

∂r

r2
= lim

r→0

r2e(r, s)

2r
=

re(r, s)

2
.

(67)u(r, s) =
ϕ0α4r

2 s
(

�
2
2 − �

2
1

)

[

cosh (�1r)

cosh (�1a)
−

cosh (�2r)

cosh (�2a)

]

.

(68)σ(r, s) =
σ rr + σψψ + σφφ

3
=

(

β2 − 4/3
)

(1− D)e(r, s)− ε1(1− D)θ(r, s).

(69)f (t) =
eκt

t

[

1

2
f (κ)+ Re

N
∑

n=1

(−1)nf

(

κ +
i nπ

t

)

]

,
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After getting the stress and strain functions in the original time-domain, we can obtain the stress–strain 
energy as  follows31:

For the present application, the stress–strain energy takes the form

After eliminating the term with a small value, we get

Numerical results and discussion
To obtain the numerical results, the copper material has been taken as the thermoelastic material for which we 
use the following values of the material  properties11:

(70)̟(r, t) =
1

2
σij(r, t)eij(r, t).

(71)̟(r, t) =
1

2

(

σrrerr + σψψ eψψ + σφφeφφ
)

.

(72)̟(r, t) ≈
1

2
(1− D)

[

β2e2(r, t)− ε1 e (r, t)θ(r, t)
]

.

Figure 2.  The flowchart of the method.
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K = 386 kgmk−1s−3 , CE = 383.1 m2 k−1 s−2 , αT = 1.78 (10)−5 k−1 , To = 293 k  , ρ = 8954 kgm−3 , 
µ = 3.86 (10)10 kg m−1 s−2 , � = 7.76 (10)10kg m−1 s−2.

Thus, we have the following non-dimensional values of parameters:
b = 0.01047 , ε1 = 0.0419, ε = 1.6086 , β2 = 4 , ϕ0 = 1.0 , τo = 0.02 , τo = 0.01.
The numerical results of the conductive and dynamical temperature increments, strain, displacement, aver-

age stress, and stress–strain energy distributions have been represented in figures with a wide range of non-
dimensional radial distance r(0 ≤ r ≤ 5.0) at the non-dimension instant of time t = 1.0.

Figures 3, 4, 5, 6, 7 and 8 have been carried out for various values of the two-temperature parameter 
c̃ = (0.0, 0.5) , which gives δ2 = 3c̃2/s2 =

(

0.0, 3(0.5)2, 3(0.5/s)2
)

 , where the value δ = 0.0 represents the L–S 
model of one-temperature, it has been figured in solid curves. The value c̃ = 0.5 represents two cases; the first 
case is δ2 = 3(0.5)2 which represents the classical two-temperature model and has been figured with dash curves, 
while the second case is δ2 = 3

(

0.5
s

)2 which represents the hyperbolic two-temperature model and has been 
figured in dote curves. The numerical results of those figures have been calculated when the mechanical damage 
parameter D = 0.0 and rotation parameter � = 0.0.

Figure 3 shows the conductive temperature increment distributions. It is noted that all the curves start from 
the position r = 5.0 with the same value ϕ(r = 5.0) = 1.0 as the boundary condition on the surface of the sphere. 

Figure 3.  The conductive temperature increment distribution for different models.

Figure 4.  The dynamical temperature increment distribution for different models.
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The three curves have the same behavior but with different values. The two-temperature parameter has a signifi-
cant impact on the conductive temperature increment distribution. In the center of the sphere, the conductive 
temperature increment values based on the one-temperature and hyperbolic two-temperature vanish before its 
values in the classical two-temperature model. Therefore, the thermal wave due to the conductive temperature 
propagates with a finite speed in the context of one-temperature and hyperbolic two-temperature models. In 
contrast, it propagates with infinite speed in the context of the classical two-temperature model.

Figure 4 represents the dynamical temperature increment distributions. It is noted that the three curves start 
from the position r = 5.0 with different values θ

(

One - temp.
)

= 1.0 , which is the value of the thermal shock 
on the bounding surface of the sphere θ

(

Class. two - temp.
)

= 0.98 , and θ
(

Hyp. two - temp.
)

= 0.75 . The three 
curves have the same behavior but have different values. The two-temperature parameter has a significant effect 
on the dynamical temperature distribution. In the center of the sphere, the values of dynamical temperature 
increment in the context of the one-temperature and hyperbolic two-temperature vanish before its values in the 

Figure 5.  The volumetric deformation distribution for different models.

Figure 6.  The displacement distribution for different models.
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classical two-temperature model. It means that the dynamical thermal wave propagates with a finite speed in 
the context of one-temperature and hyperbolic two-temperature models. In contrast, it propagates with infinite 
speed in the context of the classical two-temperature model.

Figure 5 represents the volumetric strain distributions. It is noted that the three curves start from the position 
r = 5.0 with the zero value e(r = 5.0) = 0.0 as the boundary condition on the bounding surface of the sphere. The 
three curves have the same behavior but have different values. Each curve has one peak point, and the absolute 
values of the peak points take the following order:

Figure 6 shows the displacement distribution. The three curves start from the position r = 5.0 with zero value 
u(r = 5.0) = 0.0 . The three curves have the same behavior but have different values. Each curve has a peak point, 
and the absolute values of the peak points take the following order:

Figure 7 shows the average stress distribution, and it is noted that the three curves start from the position 
r = 5.0 with different values. All the curves have the same behavior with different values. In the center of the 
sphere, stress values in the context of the one-temperature and hyperbolic two-temperature vanish before its 
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Figure 7.  The average stress distribution for different models.

Figure 8.  The stress-strain energy distribution for different models.
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values in the classical two-temperature model. It means that the mechanical wave propagates with a finite speed 
in the context of one-temperature and hyperbolic two-temperature models. In contrast, it propagates with infinite 
speed in the context of the classical two-temperature model.

Figure 8 represents the stress–strain energy distribution, and it is noted that the three curves start from the 
position r = 5.0 with the zero value. The three curves have the same behavior and different values. Each curve 
has one peak point, and the values of the peak point take the following order:

Figures 8, 9, 10, 11, 12, 13 have been carried out for various values of the mechanical damage parameter 
D = (0.0, 0.2, 0.4) and without rotation � = 0.0 in the context of the hyperbolic two-temperature model to stand 
on its effects on all the studied functions. The case D = 0.0 represents the sphere without mechanical damage, 
while the cases D = (0.2, 0.4) represent the sphere with different values of the mechanical damage parameter.

(75)̟max

(

One - temp.
)

> ̟max

(

Hyp. two - temp.
)

> ̟max

(

Class. two - temp.
)

Figure 9.  The conductive temperature increment distribution with various values of the mechanical damage 
parameter.

Figure 10.  The dynamical temperature increment distribution with various values of the mechanical damage 
parameter.
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Figures 9 and 10 show that the mechanical damage parameter has minimal effects on the dynamical and 
conductive temperature increment. This result was expected because of the effect of the mechanical damage 
parameter exists in the stress–strain relation.

Figure 11 represents that the mechanical damage parameter has significant effects on the volumetric strain 
distributions. The three curves start from the position r = 5.0  with the zero values. Each curve has one peak 
point, and the absolute values of the peak point take the following order:

Figure 12 represents that the mechanical damage parameter has significant impacts on the displacement 
distributions. The three curves start from the position r = 5.0  with the zero value. Each curve has one peak 
point, and the absolute values of the peak point take the following order:

(76)|emax(D = 0.0)| > |emax(D = 0.2)| > |emax(D = 0.4)|

Figure 11.  The volumetric deformation distribution with various values of the mechanical damage parameter.

Figure 12.  The displacement distribution with various values of the mechanical damage parameter.
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Figure 13 represents that the mechanical damage parameter has significant effects on the average stress dis-
tributions. The three curves start from the position r = 5.0 with different values. The absolute values of the start 
point of the average stress take the following order:

Figure 14 represents that the mechanical damage parameter has significant effects on stress–strain energy 
distributions. The four curves start from the position r = 5.0 with zero values, and each curve has a peak point. 
The values of peak points of the stress–strain energy take the following order

Figures 15, 16, 17, 18, 19 and 20 have been carried out for various values of the angular velocity parameter 
� = (0.0, 1.0, 1.5) and without mechanical damage D = 0.0 in the context of the hyperbolic two-temperature 
model to stand on its effects on all the studied functions. The case � = 0.0 represents the sphere without rota-
tion, while the cases D = (1.0, 1.5) represent the sphere with different values of the angular velocity parameter.

(77)|umax(D = 0.0)| > |umax(D = 0.2)| > |umax(D = 0.4)|

(78)|σr= 5(D = 0.0)| > |σr= 5(D = 0.2)| > |σr= 5(D = 0.4)|

(79)̟max(D = 0.0) > ̟max(D = 0.2) > ̟max(D = 0.4)

Figure 13.  The average stress distribution with various values of the mechanical damage parameter.

Figure 14.  The stress-strain energy distribution with various values of the mechanical damage parameter.
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Figures 15 and 16 show that the angular velocity parameter has minimal effects on the dynamical and con-
ductive temperature increment.

Figure 17 represents that the angular velocity parameter has significant effects on the volumetric strain dis-
tributions. The three curves start from the position r = 5.0 with zero values, and each curve has a peak point. 
The absolute value of the deformation increases when the value of the angular velocity parameter increases. The 
absolute value of the peak points of the volumetric deformation take the following order

Figure 18 represents that the angular velocity parameter has significant effects on the displacement distribu-
tions. The three curves start from the position r = 5.0 with zero values, and each curve has a peak point. The 
absolute value of the displacement increases when the value of the angular velocity parameter increases. The 
absolute value of the peak points of the displacement takes the following order

Figure 19 represents that the angular velocity parameter has significant effects on the average stress distri-
butions. The absolute value of the average stress increases when the value of the angular velocity parameter 
increases.

(80)|emax(� = 1.5)| > |emax(� = 1.0)| > |emax(� = 0.0)|

(81)|umax(� = 1.5)| > |umax(� = 1.0)| > |umax(� = 0.0)|

Figure 15.  The conductive temperature increment distribution with various values of the angular velocity of the 
rotation parameter.

Figure 16.  The dynamical temperature increment distribution with various values of the angular velocity of the 
rotation parameter.
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Figure 20 represents that the angular velocity parameter has significant effects on stress–strain energy distri-
butions. The three curves start from the position r = 5.0  with zero values, and each curve has a peak point. The 
values of the peak points of the stress–strain energy take the following order

For the validation of the results, one can see that the current results of one-temperature and classical two-
temperature agree with the results in  references32–34.

Conclusions
The numerical results conclude that the one-temperature model and the hyperbolic two-temperature model of 
thermoelasticity generate thermal and mechanical waves that propagate with finite speeds. Hence, the hyperbolic 
two-temperature thermoelasticity model is a successful model to describe thermoelastic materials’ thermody-
namical behavior.

The hyperbolic two-temperature parameter has significant effects on all the studied functions. The angular 
velocity parameter and the mechanical damage parameter significantly affect the strain, displacement, stress, 
and stress–strain energy. In contrast, they have minimal effects on the conductive and dynamical temperature 
increments.

(82)̟max(� = 1.5) > ̟max(� = 1.0) > ̟max(� = 0.0)

Figure 17.  The volumetric deformation distribution with various values of the angular velocity of the rotation 
parameter.

Figure 18.  The displacement distribution with various values of the angular velocity of the rotation parameter.
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In the center of the sphere, conductive temperature increments based on one-temperature and hyperbolic 
two-temperature models disappear before their values from the classical two-temperature model. Therefore, the 
thermal wave due to the conductive temperature propagates with a finite speed in the form of one-temperature 
and hyperbolic two-temperature models. In the sense of the classical two-temperature model, instead, it propa-
gates with infinite speed.

The hyperbolic two-temperature thermoelasticity theory introducing a successful model in which the ther-
moelastic wave propagates with a finite speed.
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