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Synthetic photoplethysmography 
(PPG) of the radial artery 
through parallelized Monte Carlo 
and its correlation to body mass 
index (BMI)
Tananant Boonya‑ananta1, Andres J. Rodriguez1, Ajmal Ajmal1, Vinh Nguyen Du Le1, 
Anders K. Hansen2, Joshua D. Hutcheson1 & Jessica C. Ramella‑Roman1,3*

Cardiovascular disease is one of the leading causes of death in the United States and obesity 
significantly increases the risk of cardiovascular disease. The measurement of blood pressure (BP) 
is critical in monitoring and managing cardiovascular disease hence new wearable devices are 
being developed to make BP more accessible to physicians and patients. Several wearables utilize 
photoplethysmography from the wrist vasculature to derive BP assessment although many of 
these devices are still at the experimental stage. With the ultimate goal of supporting instrument 
development, we have developed a model of the photoplethysmographic waveform derived from 
the radial artery at the volar surface of the wrist. To do so we have utilized the relation between 
vessel biomechanics through Finite Element Method and Monte Carlo light transport model. The 
model shows similar features to that seen in PPG waveform captured using an off the shelf device. We 
observe the influence of body mass index on the PPG signal. A degradation the PPG signal of up to 
40% in AC to DC signal ratio was thus observed.

Elevated blood pressure (BP) is considered one of the highest risk factors for cardiovascular disease. In fact, it 
has been estimated that 47% of all coronary heart disease worldwide is attributable to high BP1. BP is less than 
120/80 mmHg in normotensive individuals, between 120 and 129/80 mmHg in prehypertensive individuals, 
between 130–139/80–89 mmHg in hypertensive stage 1, above 140/90 mmHg in hypertensive stage 2, and above 
180/120 mmHg in hypertensive2.

In adults, the risk of cardiovascular disease is significantly increased with obesity3–5, defined as having a body 
mass index (BMI) of over 30 kg/m26–9. BMI is found to correlate strongly with increased 24 h blood pressure as 
well as non-dipping nocturnal blood pressure10,11. Physiological changes that occur in individuals with obesity 
may increase the measurement uncertainties, and optical means for monitoring blood pressure will have to 
account for obesity-related changes to the skin optical properties12 and increased subcutaneous tissue thickness.

There are several ways to evaluate BP. Sphygmomanometers and oscillometric devices are standard 
techniques13, and the most common clinical method of measuring blood pressure is through auscultations using 
a sphygmomanometer with the arm maintained at heart level14. Invasive arterial line blood pressure measure-
ment is often used in the Intensive Care Unit (ICU), where an arterial catheter is placed inside the radial artery 
of a patient to directly measure vessel internal pressure15,16.

Research into cuff-less and continuous BP devices based on photoplethysmography (PPG) is rapidly expand-
ing. These systems provide unique diagnostic opportunities, such as monitoring of nocturnal hypertension10 a 
condition strongly associated with cardiovascular events and organ damage. The PPG waveform can provide 
information such as pulse wave velocity, the relative change in blood volume and pressure wave reflection17. 
The systolic peak and diastolic peak are the primary and secondary features respectively as seen in Fig. 1. The 
primary feature is directly representative of systolic performance during the cardiac cycle17,18. The vessel dilates 
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due to the pressure wave generated by ventricular contraction. The pressure profile inside the arteries changes 
as the pressure wave propagates downstream from the heart to peripheral vasculature19–21. This is due to vessel 
compliance, vessel branch and bifurcations, and wave reflections encountered by the pulse during its journey 
from the heart. The dicrotic notch moves further away from the systolic peak as arterial line measurement loca-
tion moves further down the arterial tree. Another mechanism which has been noted to influence PPG signals is 
optical scattering caused by time-variant red blood cell (RBC) aggregation22,23. Shvartsman et al. show through 
theoretical and experimental approaches that the pulsatile nature of the PPG signal can be described through 
RBC aggregation22 using a PPG monitoring device. It is to be noted though that the RBC aggregation effect is 
dominant in thin blood layers24 specifically microvasculature of the upper dermis. In our work, we have focused 
on dynamics and biomechanical behavior of a large vessel, specifically the radial artery, deeper and larger in 
physiology past thin blood layer contained in the dermis. The vessel under observation is 2.5 mm in diameter. In 
vessels of this size, the vessel diameter is large compared to cell size and fluid can be approximated as a Newtonian 
fluid25,26 and flow can be modeled as a homogenous fluid27 flow.

Measurement of blood pressure at the radial artery located at the wrist is desirable since it is easily accessible, 
and instrumentation can be developed for a wearable device. The blood pressure in the radial artery at the volar 
surface of the wrist is more representative of blood pressure in the main arterial network as opposed to pressure 
in superficial vasculature of the skin28.

In order to derive a better understanding of devices based on PPG, several groups have conducted light propa-
gation models using Monte Carlo (MC) simulations29–31. Yet to our knowledge, these studies have not attempted 
to capture the PPG waveform in its entirety and have focused on an idealized skin model.

The design of wearable devices must account for the population diversity, including physiological changes 
due to obesity32–34 as well as skin tones.

Our study has two main goals. First, we develop a more realistic representation of light interaction with the 
radial artery during a pulse as seen by a commercially available photoplethysmographer (Nellcor by Covidien). 
This location and instrumentation are the focus of our experimental efforts toward developing low-cost cuffless 
BP sensors. Second, we use our model to study the influence of increased BMI on the PPG waveform.

Recent studies have shown that obesity creates variations in skin physiology5,35–38. These changes include but 
are not limited to skin barrier function, epidermal changes, dermal changes, and changes to the vascular and 
capillary recruitment function. In our model, both skin tone and BMI diversity will be considered.

Material and methods
The behavior of arterial pulsatile flow can be modeled as a pulsatile flow through an elastic walled tubing19. The 
key distinction between rigid versus elastic walled flow is the fluid streamline velocity profile (Fig. 2A,B). The 
typical Poiseuille velocity profile for ideal, fully developed fluid flow in a rigid tube is constant along the length 
of the tube (Fig. 2A), whereas in elastic-walled tubing, the velocity profile is dependent upon the location along 
the streamline (Fig. 2B). In elastic tubes, pressure waves cause a local change in fluid pressure that is then propa-
gated downstream. Wall compliance results in oscillation of the wall and changes to tube diameter with induced 
pulsatile flow, as seen in the vascular system.

The mechanics of large vessels such as the aorta, carotid artery, and large coronary arteries has been studied 
extensively39–44 but several authors have noted that smaller peripheral vessels, such as the one under study here, 
exhibit similar mechanical behaviors to larger ones45,46.

Considering the biomechanical changes in the arterial vascular bed, our model of PPG is divided in two parts. 
First, a finite element model is used to observe the dilation of the radial artery under applied pressure. Then, a 
Monte Carlo model is applied to this dynamic geometry to observe loss of optical signal in relation to the pulse.

Vessel geometry.  We have used Finite Element Analysis (FEA) to model the mechanical behavior of an 
arterial vessel. Our model allows us to visualize the motion of an arterial wall under an applied internal pressure. 
The artery is modeled in Solidworks computer-aided design (CAD) software.

We have chosen the volar surface of the distal forearm as the location of our virtual PPG instrument. This 
choice is governed by our interest in the development of wrist-based wearable devices targeting that vessel.

A drawing of the vessel with associated dimensions is shown in Fig. 3A. The radial artery has been reported 
to have 2.5 mm inner diameter and 0.2 wall thickness46–48. Vessel wall mass density and Poisson’s ratio were set 

Figure 1.   Typical PPG waveform with constitutive components. PPG wave components shows the systolic 
upstroke to systolic peak, then systolic decline into the dicrotic notch and the diastolic peak.
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to 1160 kg/m3 and 0.4944,46,49 respectively. A radial artery wall Young’s modulus of 0.70 MPa was used46. Arte-
rial mechanical stiffness ranges between 0.70 and 1.10MPa46. Mechanical properties are highlighted in Table 1.

Radial artery pressure has been shown to be 5 to 15 mmHg50 higher than the brachial artery, where blood 
pressure is often measured using the sphygmomanometer. An internal pressure of 130 mmHg50 was imposed to 
the vessel representing the radial artery. The result of the FEM model at peak applied force is shown in Fig. 3B. 

Figure 2.   Fluid flow in rigid and elastic tubing (adapted19). (A) The top diagram shows fully developed velocity 
profile for flow in a rigid walled tube. (B) Second diagram shows flow in an elastic walled tube.

Figure 3.   Vessel 2D CAD geometry drawing. This is the model used for the radial artery to understand its 
behavior during the cardiac cycle. All dimensions in (mm). (B) Arterial wall dilation contour plot of total 
displacement. Red regions show regions of highest displacement and blue for lowest displacement. Note 
depicted displacement scale is exaggerated. (C) Patch sensor schematic for adaptation to Monte Carlo. (D) Base 
geometric configuration for Monte Carlo Model. The various layers represented by a specific color developed 
in the Monte Carlo geometry. (E) Illustration of pulse shape generating features in Monte Carlo. Geometric 
parameters of arterial dilation and pressure wave propagation is adapted into Monte Carlo through variation in 
geometry of the artery. Pulse features are developed through Eqs. (2–4).

Table 1.   Arterial Wall material properties.

Material property Artery wall

Young’s modulus (kPa) 700

Poisson’s ratio 0.49

Mass density (kg/m3) 1160

Mesh elements 52,610
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The figure shows a time snapshot of the vessel shape as a time-dependent pressure pulse propagates from the 
heart to the radial artery. This is different from a quasi-static pressure vessel representation often used to analyze 
vascular wall mechanics.

The arterial wall is often treated as incompressible44,51, pressure changes applied internally translates to vessel 
wall dilation, but the total wall volume is conserved. This incompressibility estimation is seen in the FEM model. 
Changes to the inner wall and outer wall radii are relatively small in comparison to total vessel dilation. Vessel 
walls have been reported to experience 10–20% diametral strain52,53. Applying 0.70 MPa stiffness, vessel wall 
shows total dilation of 0.4 mm in diameter. The mechanical behavior of the artery during pulse propagation is 
integrated into the light transport model (Monte Carlo) through changes in the vessel geometry.

Through observation of the dilated shape of the finite element model, a set of equations is created to represent 
this shape in the Monte Carlo framework. This shape function is defined as an ellipsoid in three-dimensional 
space. The basic ellipsoid equation is shown in Eq. (1).

where a, b, and c represent the radii of each respective axis of the ellipsoid in the x, y, and z direction, respectively. 
The dilation of the vessel under pressure is directly applied to the radii of the ellipsoid in the x and z directions. 
Whereas the y direction axis controls the elongation of the wave along the length of the artery. Note that the 
pulse wave propagates in the y direction.

The development of the mathematical ellipsoid envelope of the FEA derived pulse geometry using a double 
ellipsoid shown in Eqs. (2–4).

In Eqs. (2) and (3), x, y, and z represent each direction in the frame, d locates the ellipsoid in the vertical, z, 
direction in the media. In Eq. (2), IDx defines the dilation of the inner diameter of the vessel, pL1 is the location 
of the primary ellipsoid in the y-axis, and pwd1 defines the width of the primary ellipsoid in the y direction. 
In Eq. (3), IDxd represents the dilation of the inner diameter of the secondary ellipsoid, pL2 is the location of 
the secondary ellipsoid in the y-axis, and pwd2 defines the width of the secondary ellipsoid in the y direction. 
Equation (4) defines the psep parameter as the separation between the first and second ellipsoids. The geometry 
developed with these equations is shown in Fig. 3E.

Monte Carlo model.  Aside from the radial artery, the Monte Carlo simulation also considered three skin 
layers: epidermis, dermis and subcutaneous tissue with the radial artery inserted into the adipose tissue layer. 
The Monte Carlo model used in this work is an adaptation of MCMatlab developed by Marti et al.29. MCMatlab 
converts S. Jacques’ “mcxyz.c”30 from C-based code to a compact tool usable through Matlab interface. Monte 
Carlo framework simulates a 3-layer model to include epidermis, dermis and subcutaneous tissue with the radial 
artery inserted into the adipose tissue layer. The epidermis consists of multiple sublayers with various compo-
nents, including melanin and melanocytes54. The dermis is comprised of connective tissue along with blood ves-
sels (capillaries and arterioles) with blood volume ratios ranging from 0.2 to 7% and water volume concentration 
around 65%55,56. The subcutis consists of subcutaneous adipose tissue and other connective tissue57.

In this work, we modeled a commercial PPG (Nellcor Covidien, this device also provide pulse oximetry). This 
is a clinical system that incorporates two wavelength sources at 660 nm peak 22 nm FWHM and 890 nm peak 
54 nm FWHM. The sensor provides and effective beam waist radius of 0.06 cm. The detector is located 0.97 cm 
away from the sources providing reflectance PPG signal. Light collector area is measured to be 0.35 cm × 0.35 cm 
which is an effective collector area of 0.1225 cm2 with numerical aperture of 0.866. The sensor schematic is 
shown in Fig. 3C.

The geometry of our Monte Carlo simulation is shown in Fig. 3D. The first layer mimics the epidermis. The 
thickness of human epidermis is approximately 0.10 mm58,59. To avoid using a very small voxel size in the simula-
tion, we chose to scale the optical properties of the epidermis to match its optical thickness60.

The dermis layer was 1.0 mm in thickness. Below the dermis, a subcutaneous adipose tissue layer was added. 
Within this layer, the radial artery is modeled as a cylinder situated at 2.5 mm depth from the top surface47,48. 
The target radial artery is constructed with a vessel wall and the internal lumen is filled with blood. Optical 
properties used in Monte Carlo simulations are extracted from previous work31,55,61–65. Simulation parameters 
are highlighted in Table 2.

Monte Carlo geometry frames a 1.4 × 1.4 × 0.8 cm3 volume with 200 × 100 × 100 elements in each direction. 
Monte Carlo simulations were performed on Windows 10 64-bit Operating System with Intel Core i7-8700 CPU 
3.20 GHz, NVIDIA GeForce GTX 1070 GPU, and 32 GB RAM, and Windows 10 64-bit Operating System with 
Intel Core i7-8750H CPU 2.20 GHz, NVIDIA GeForce GTX 1050 Ti GPU, and 16 GB RAM. Simulations speeds 
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varied between two million photons per minute to 70 million photons per minute. Waveform simulations are 
conducted at 89 incremented pulse positions at 100 million to one billion photons each.

Analyses of the performance of commercial systems and functionality of arterial PPG must account for 
factors of skin tone and physiological changes with the development of obesity32–34. The melanin content of the 
skin increases with darkening skin tone. Melanin volume fraction variation can be used to model the various 
pigmentation levels. Lightly pigmented skin adults have a melanin volume fraction of 1.3–6.3%, moderately pig-
mented skin adults have a 11–16% melanin volume fraction, and darkly pigmented skin adults have an 18–43% 
melanin volume fraction in the epidermis55.

Individuals with obesity experience changes to skin anatomy/physiology and thus optical properties. Previous 
authors have reported relationships between BMI and chromophore concentration in the skin as well as adipose 
tissue. For example, Spilenlli37 et al. studies the optical properties of breast tissue and discovered a positive cor-
relation between BMI and lipid and total hemoglobin, and a negative correlation between BMI and water content. 
When studying the optical properties of adipose tissue, Lanka38 et al. results show that obese have lesser values 
for absorption and reduced scattering coefficients.

Dermal thickness variations with BMI is shown to range from 1.0 mm to over 2.5 mm thickness58. Along 
with changes to the skin, the artery itself is situated deeper in the subcutaneous adipose tissue as adipose tissue 
layer thickness with increasing level of obesity. The signal from the radial artery is discovered to vary in depth 
with different levels of obesity from 2.5 mm for non-obese individuals at BMI of 25 to 3.5 mm for BMI of 4547,48. 
Trans-epidermal water loss (TEWL) the process where water evaporates through the epidermis from the dermis 
is disruption in the obese36. As BMI increases so does TWEL66, and this effect directly contributed to dry skin 
and skin irritation often seen in the obese population. The significant changes to the skin which we have high-
lighted include changes to dermal water content66 and blood content content66 as well as dermal thickness and 
increased radial artery depth all with increasing levels of obesity47,48,58. A summary of all the parameters utilized 
in the modeling is shown in Table 3.

Changes in Table 3 are applied to the MC geometry through two different methods. The changes to TWEL 
and dermal blood contented are applied to the media layer properties. TWEL changes the amount of water in 
the dermal layer. The water loss percentage is multiplied to standard dermal water content. Similarly, dermal 
blood content percentage changes are multiplied to blood content in the dermis. For geometric changes of dermal 
thickness and artery depth, these properties are changed directly in the geometry construction.

Testing on healthy individuals.  Experimental PPG signals were gathered from four healthy volunteers 
utilizing the commercial PPG system described above. The protocol for the study was approved by the Institu-
tional Review Board of Florida International University and followed the tenets of the Declaration of Helsinki. 
Written informed consent was obtained from the subjects after explanation of the nature and possible conse-
quences of the study. The radial artery was located by tactile exploration so that the PPG sensor could be located 
as in the geometry described in Fig. 3. After stabilizing the sensor acquisition was initiated. About thirty seconds 
of PPG data was collected. A representative pulse was then used in the analysis.

Results
A power absorption map of our geometry is shown in Fig. 4A,B. This is a single slice in the three-dimensional 
geometry at a single location of the pulse waves.

Table 2.   Optical properties at two corresponding wavelengths.

Layer

µa (cm−1) µs (cm−1)

g n660 nm/890 nm 660 nm/890 nm

rEpidermis 0.3442/0.3184 121.2/224.7 0.7 1.47

Dermis 0.5453/2459 208.6/116.7 0.7 1.47

Subcutis 0.0001/0.0217 249.7/189.8 0.7 1.47

Vessel Wall 0.8/0.8 230/230 0.9 1.4

Blood 2.026/6.32 75.76/56.18 0.9 1.4

Table 3.   Skin changes simulation parameters attributed with increasing body mass index and obesity.

Body mass index (kg/m2)
Trans-epidermal water 
loss (%)

Dermal blood content 
change (%) Dermal thickness (cm)

Radial artery depth 
(cm)

25 0 0 1.0 2.5

30 30 10 1.325 2.75

35 40 20 1.75 3.0

40 50 30 2.125 3.25

45 60 40 2.5 3.5
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Figure 4C shows an example of PPG waveform generated for the non-obese case. The returned signal is 
comprised of an AC and a DC baseline signal, where the AC signal represents the pulsatility of the vasculature. 
A comparison of the AC to DC signal ratio of each waveform shows the degradation of the signal with increas-
ing BMI. Different PPG signals are generated through varying four different physiological changes observed 
with obesity. These changes can be seen in Table 3. Preliminary experimental data using the PPG sensor (Fig. 5) 
shows features similar to that seen in simulation curve. The PPG of three different individuals was captured 
experimentally (Fig. 5A). There is significant variation between individuals (Fig. 5A green, red, blue), however 
the features of the shape can be identified in all three cases. The PPG data is adjusted from pulse shape in time 
to PPG with respect to pulse position (Fig. 5B,C). This is done by matching the start and end point of the two 
sets as well as the primary peak and overlay on top of each other (Fig. 5D).

Figure 6 shows changes AC/DC signal from four different changes attributed to obesity across different 
BMI levels. Figure 6A shows a 14.0% total signal decline associated with changes to trans-epidermal water loss 
between normal to highest BMI level. Figure 6B shows an 18.0% change with dermal blood content. Figure 6C 
shows total percentage change between smallest and largest dermal thickness is 41.4%. In Fig. 6D, percentage 
change between shallowest and deepest arterial depth is 32.1%. Similar trends of signal degradation are seen 
across the four different changes which occur with obesity: trans-epidermal water loss, blood perfusion, dermal 
thickness, and radial artery depth. Each scenario shows changes isolated to each feature of obesity. Figure 7 
highlights changes seen at four different skin tones classified by epidermal melanin concentration. Total AC 
to DC signal ratio change is seen at 17.1% between 3% epidermal melanin concentration and 42% epidermal 
melanin concentration.

Waveforms for different levels of obesity are generated through varying the combined dermal thickness and 
arterial depth to indicate corresponding physiological changes. Figure 8 shows generated waveforms at non-
obese (8A–B), obese 1 (8C–D), obese 2 (8E–F) and obese 3 (8G–H) at two different photon counts. Changes 
to BMI and obesity level is presented through the increase of dermal thickness from 1.0 to 2.5 mm and arterial 
depth from 2.5 to 4.5 mm. A comparison of the waveform shows the degradation of the baseline signal as well as 
changes to the wave shape itself. Across each level of obesity, at both 100 million and one billion photon counts, 
there is a significant diminishing of the amplitude of the signal. Figure 9A shows the four different signals super-
imposed on top of each other on the same curve. The AC to DC signal ratio is shown in Fig. 9B. Baseline signal 
change between each obesity level and non-obese is shown in Table 4. The baseline change ranges from 12.7 to 
54.5%. Similar changes are seen in both the 100 million photons set as well as the one billion photons set as to 
be expected. The advantage of using lower number of photons is the computational time for each simulation in 
exchange for a higher standard deviation at each point.

Figure 4.   Monte Carlo slices of the negative logarithm of power absorbed color map of radial artery 
configuration at single pulse location at 660 nm wavelength. (A) and (B) shows the front view and side view, 
respectively. (C) PPG Curve generated for non-obese case. PPG signal is developed through normalized 
reflectance signal collected at each pulse position.

Figure 5.   PPG data of radial artery taken at the volar location of the wrist of three different preliminary tests, 
each test is from a different individual. Note x-axis label is in time whereas simulation data pulse is developed 
through pulse position. (B) Experimental data of Test 3. (C) PPG adjusted for from time to pulse position. (D) 
Overlay of experimental PPG and simulated waveform.
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The non-obese BMI of 25 kg/m2, the AC/DC signal ratio is 8.1% and at the maximum level calculated the 
ratio is 4.66%. This accumulates to the total percentage change of 43% between the Non-Obese waveform and 
Obese 3 waveform.

The degradation of the return signal gives an indication to the decrease in quality of the signal that will be 
received by the PPG device. A loss in signal quality is shown to increase as BMI and obesity level increase with 
changes in dermal thickness and arterial depth. PPG devices designed to periodically or continuously probe 
arterial blood pressure as a wearable device at the wrist must be designed to be mindful of the significant effects 
of obesity on optical performance. The advantage of the development of synthetic waveform is understanding 
these changes and the significance of their impact.

Figure 6.   AD/DC PPG signal ratio for changes to trans-epidermal water loss (A), dermal blood content (B), 
dermal thickness (C), and radial artery depth (D) with BMI.

Figure 7.   PPG AC/DC ratio change with melanin concentration change in epidermal layer for non-obese case.
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Discussion
We have demonstrated an approach to modeling PPG signals utilizing a combination of FEM and Monte Carlo 
modeling. Ultimately, our intent is to develop a wearable health device capable of assessing continuous cuff-
less blood pressure with comparable level of performance across populations of varying body size. Cuff-less, 
continuous blood pressure monitoring can provide critical information concerning nocturnal cardiovascular 

Figure 8.   Variously generated waveforms at 660 nm for different photon counts and different geometry 
representative of BMI change. (A) Non-obese waveform generated at 100 million photons and 15 trials. (B) 
Non-obese waveform generated at 1 billion photons and 5 trials. (C) Obese 1 waveform at 100 million photons 
and (D) 1 billion photons. (E) Obese 2 waveform at 100 million photons and (F) 1 billion photons. (H) Obese 3 
waveform at 100 million photons and (G) 1 billion photons.

Figure 9.   (A) Superposition of four different waveforms at 1 billion photons. Black: Non-Obese. Blue: Obese 1. 
Red: Obese 2. Green: Obese 3. (B) AC/DC ratio for each waveform signal comparison.

Table 4.   Waveform baseline signal changes at different levels of obesity.

Waveform Photons (millions) Baseline change (%)

Obese 1
100 13.0

1000 12.7

Obese 2
100 42.4

1000 36.5

Obese 3
100 54.5

1000 52.4
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function, which is a significant indicator of overall cardiac health. This work focuses on a commercial PPG sen-
sor measurement of pulsatile flow in the radial artery.

Our simulations demonstrate that with no changes to the underlying vessel mechanical behavior, an increase 
in BMI significantly impacts the PPG waveform. The AC/DC ratio changes from 14 to 41% as BMI increases from 
20 to 40 for isolated changes attributed with increasing level of obesity and BMI. Increase to dermal thickness 
increases the total volume of absorbers and scatterers through which photons must traverse to reach the artery 
and return to the detector. Increased radial artery depth also increases the total travel distance for photons to 
reach the vessel wall as and return to detector.

Vessel expansion and contraction, under pressure changes of the cardiac cycle, is directly associated with the 
pulsatility of the PPG waveform67, the presence of obesity degrades the quality of the signal even when the ves-
sel mechanics remain unchanged. Synthetic waveform generation provides an insight and prediction of optical 
device functionality.

Computational work from our group has shown that increasing melanin concentration in the epidermal layer 
yields a decrease in overall signal quality of up to 17%. This effect has been documented by other investigators68 
and it may account for some of the errors experienced by dark skin individuals utilizing wearable based on 
PPG68–71. Here we propose a computational framework that could be used to design and develop better wearable 
that account for population diversity.

The changes associated to BMI are applied to evaluate their isolated effect on the captured PPG signal to 
compared differences across different BMI ranges according to each physiological effect. It is, however, clear 
that the development of obesity has other significant changes to total physiological changes to the body. We have 
chosen to isolate and characterize the impact of changers to the skin to observe changes to the PPG signal which 
are not attributed to vascular dynamic behavior.

Future work will focus on the understanding of waveform morphology through connecting various cardio-
vascular conditions with the corresponding PPG. The addition of synthetic waveform generation can allow for 
the study of isolated effects from a variety of factors on the output PPG. Post-processing of the PPG such as first 
and second derivative and frequency domain information can be used as tools for feature extraction for desired 
information.

Future developments of the model will approach the correlation of vascular physiological parameters to the 
shaping equations to help understand the relationship between the biomechanics and PPG output signal. The 
Finite Element Model is based on vascular mechanical stiffness and applied stress to observe vessel dilation. We 
propose that through the development of a robust method of analysis of a PPG signal, the relationship between 
optical signal and internal vessel blood pressure could be derived. Various methods of waveform analysis through 
neural networks have been used to attempt to derive blood pressure values from experimental PPG data sets. 
Unfortunately, the variability in individual anatomy and physiology makes this correlation very complex. Our 
synthetic framework offers a controlled approach to this very complex problem.

This work is limited to the detection of the radial artery and does not consider the pulsatile effect of the super-
ficial arterioles, this will be the focus of future addition to the present model. The model geometry is limited to 
the primary layers of the skin and an embedded dynamic blood vessel, however underlying structures around 
the radial artery such as the muscle or radial styloid process has not been included. The addition of these features 
will be explored in future model to evaluate their effects on generated signal.

Conclusion
We have created a model to describe photoplethysmographic waveform and vascular behavior of the radial artery 
within a light propagation model (Monte Carlo). This was accomplished using Finite Element Modeling to view 
mechanical changes in the radial artery during a single pulse propagation cycle and translating the vessel dilation 
into a set of equation that could be adapted to a voxel-based Monte Carlo model. This modeling framework is 
necessary and useful when developing wearable devices for non-invasive continuous blood pressure monitoring 
systems. Specifically, our interest lies in the development of low-cost devices individuals experiencing obesity. 
We have focused our study on the changes to the PPG waveform for a single pulse cycle due to changes in physi-
ology and optical properties of the skin in relation to BMI. Modeled AC to DC PPG signal ratio suggests that 
physiological changes due to BMI lower the ratio up to 40% this loss of signal amplitude could explain some of 
the errors observed by obese population.
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