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Data science assisted investigation 
of catalytically active copper 
hydrate in zeolites for direct 
oxidation of methane to methanol 
using H2O2
Junya Ohyama1*, Airi Hirayama2, Nahoko Kondou1, Hiroshi Yoshida1, Masato Machida1, 
Shun Nishimura3, Kenji Hirai4, Itsuki Miyazato5 & Keisuke Takahashi5

Dozens of Cu zeolites with MOR, FAU, BEA, FER, CHA and MFI frameworks are tested for direct 
oxidation of CH4 to CH3OH using H2O2 as oxidant. To investigate the active structures of the Cu 
zeolites, 15 structural variables, which describe the features of the zeolite framework and reflect 
the composition, the surface area and the local structure of the Cu zeolite active site, are collected 
from the Database of Zeolite Structures of the International Zeolite Association (IZA). Also analytical 
studies based on inductively coupled plasma-optical emission spectrometry (ICP-OES), X-ray 
fluorescence (XRF), N2 adsorption specific surface area measurement and X-ray absorption fine 
structure (XAFS) spectral measurement are performed. The relationships between catalytic activity 
and the structural variables are subsequently revealed by data science techniques, specifically, 
classification using unsupervised and supervised machine learning and data visualization using 
pairwise correlation. Based on the unveiled relationships and a detailed analysis of the XAFS spectra, 
the local structures of the Cu zeolites with high activity are proposed.

Active site structures in catalyst materials including heterogeneous catalysts, complexes, and enzymes are of great 
interest in chemistry and chemical industry, because new advanced catalyst materials can be designed based on 
the active structures1–5. In order to reveal the active site structures, it is necessary to investigate structure–activity 
relationships carefully based on various structural data of catalysts describing them accurately and thoroughly. 
Here, the data science provides powerful approaches to understand the complex structure–activity relationships 
and to identify the key structural parameters6–9.

The active site structures of methane monooxygenase (MMO) have been studied intensively because they offer 
direct oxidation of CH4 to CH3OH even at ambient temperature and pressure. MMO has two well-known forms, 
particulate MMO (pMMO) and soluble MMO (sMMO) which have active sites of Cu and Fe, respectively10. 
The structure of the Cu active sites in pMMO is still controversial as mono-nuclear or bi-nuclear Cu species 
have been proposed as highly active sites for CH4 oxidation1,11,12. Meanwhile, pMMO-inspired Cu active sites 
have been developed not only in complex catalysts but also in heterogeneous solid catalysts, more specifically, 
in zeolite cages5,11,13,14.

Cu zeolites are considered to be one of the most promising candidate catalyst materials for direct oxidation of 
CH4 to CH3OH in industrial processes15. Previous studies have demonstrated CH3OH production using various 
oxidants including H2O2, NOx, O2 and H2O16–22. When Cu zeolites are applied to CH4 oxidation using H2O2 in 
batch type reactors, CH3OH and CH3OOH are selectively produced while overoxidation to HCOOH and CO2 
are suppressed16,23,24. The problem of this process is the high cost of H2O2 which is more expensive than CH3OH, 
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although the reaction using H2O2 give higher productivity and selectivity of CH3OH than the reactions using 
the other oxidants. In the case of CH4 oxidation using O2, Cu zeolites hardly act as catalysts, but activated Cu 
zeolites, prepared by heat treatment under O2 offer methoxy species on active sites by stoichiometric reaction 
with CH4. Then, the methoxy species are treated by water vapor to extract CH3OH. Thus, the chemical looping 
process involving Cu zeolite activation, CH4 oxidation and CH3OH extraction has been proposed for direct 
conversion of CH4 to CH3OH25,26. Recent analysis from an economic standpoint has suggested that the problem 
of the chemical looping process lies in the production efficiency of CH3OH and the durability of Cu zeolites15. 
On the other hand, when NOx is used as an oxidant, CH3OH is formed over Cu zeolites continuously in gas 
flow reactors; however, the CH3OH selectivity is much lower than those of the former two processes18,27. Thus, 
methods for direct oxidation of CH4 to CH3OH need to be improved further for practical application.

The local structure around the Cu sites in zeolites may be the key to catalytic activity for CH4 oxidation, 
because the local structure strongly influences the adsorption of reactants, intermediates and products, and 
consequently reaction results such as reactant conversion and product selectivity are considerably affected28,29. In 
addition, zeolite-framework-derived diffusion and adsorption of molecules can influence the reaction results30,31. 
Thus, it is necessary to gain an improved understanding of catalytic reactions by investigating structure–activ-
ity relationships based on various structural data which describe each catalyst accurately. Furthermore, if the 
key structural descriptors and their effects are revealed, new catalysts can be developed based on fundamental 
structural design considerations. Here, the data analysis techniques developed in data science such as machine 
learning and data visualization, are considered useful for revealing the key descriptors in “hidden” relationships 
in complex multidimensional data6,7. Recently, such data analysis techniques have been applied in the field of 
catalysis chemistry7,32–41. Meanwhile, the construction and publication of databases related to catalyst materials 
are also progressing. As for zeolites, the Structure Commission of the International Zeolite Association (IZA-SC) 
has provided and upgraded structural data for all zeolite framework types since 199642. Consequently, data for 
various materials can be explored as catalyst descriptors.

Measured structural data often become more important for describing actually used catalysts than the com-
mon data obtained from the published databases. In the case of Cu zeolites, UV–Vis spectra, X-ray diffraction 
and X-ray absorption fine structure (XAFS) spectra are analyzed as they reflect local structures of Cu active 
sites14,29,43. XAFS spectra provide sensitive and accurate information on valence, symmetry and coordination 
structure of Cu active sites. Thus, Cu K-edge XAFS has been used to reveal the structure of Cu active sites for CH4 
oxidation as well as that for NOx purification14,29,43. It should also be noted that advances in synchrotron radiation 
and optical techniques in recent decades have permitted collection of XAFS spectra in a relatively short period 
of time44. Therefore, the actual structural data of active sites can be effectively obtained by XAFS measurement.

Here, dozens of Cu zeolites are prepared and CH4 oxidation is performed in a batch type reactor using H2O2 
as an oxidant. Information on the zeolite framework structure is collected from the database. In addition, Cu 
K-edge XAFS spectra and specific surface areas are obtained for the prepared catalysts. Based on the dataset 
consisting of reaction and structural data, the active site structures in the Cu zeolite catalysts for CH4 oxidation 
are investigated with the aid of data science techniques.

Methods
Catalyst preparation.  CHA type zeolites and JRC-Z90 are obtained from JGC Catalysts and Chemicals Ltd. 
and the Catalysis Society of Japan, respectively. The other zeolites are provided by Tosoh Corporation. Copper-
exchanged zeolites are prepared by adding 1–2 g of zeolite powder to aqueous solutions of Cu(CH3COO)2·H2O. 
After stirring at 80 °C for 3 h, the suspensions are filtered, washed with water, and dried at 110 °C overnight. The 
samples are calcined at 700 °C for 1 h. The zeolites are designated by M(X)-TYP-Y where M is the exchanged 
metal species, (X) is the loading amount of M, TYP is the 3-letter code which indicates the type of frame-
work for the zeolite and Y is the Si/Al2 ratio. Fe-MFI(37) and Mn-MFI(39) are also prepared by the same ion 
exchange method using Fe(CH3COO)2, Mn(CH3COO)2·4H2O and H-MFI(37) or H-MFI(39) at (Mn+/mol)/(Al/
mol) = 1; Co-MFI(39) is prepared using Co(CH3COO)2·4H2O and NH4-MFI(39) at (Mn+/mol)/(Al/mol) = 1; and 
Ni-MFI(37) is prepared using Ni(CH3COO)2·4H2O and H-MFI(37) at (Mn+/mol)/(Al/mol) = 0.5. Ag-MFI(37) 
is prepared using AgNO3 and 1 g of H-MFI(39) by a similar ion exchange method performed at 45 °C for 2 h, 
followed by calcination at 550  °C for 4  h. Rh-MFI(22.5) is prepared by impregnation of NH4-MFI(22.5) in 
Rh(NO3)3 solution to be 0.5wt% Rh loading, followed by calcination at 550 °C for 3 h.

Characterization.  The specific surface area of samples is determined by N2 adsorption using the Brunauer–
Emmett–Teller (BET) equation on BELSORP-mini (MicrotracBEL Corp.).

The Cu loadings of Cu zeolites are determined using inductively coupled plasma-optical emission spectros-
copy (ICP-OES, Thermo iCAP7400) and X-ray fluorescence (XRF, Rigaku EDXL 300). The aqueous solutions 
for ICP analysis are prepared by a fusion method as reported elsewhere45. The mixture of 20 mg of Cu zeolite 
and 0.5 g of sodium peroxide is heated in a Zr crucible at 500 °C. The resulting molten samples are dissolved by 
adding 20 mL of 2 M HCl. The Cu loading is calculated from the Cu/Al evaluated by the ICP-OES measurement 
and the Si/Al specified on the manufacturer’s catalogue. The Cu loadings are also evaluated from XRF analysis 
of the Cu zeolite powders under He flow or under evacuation. Figure S1 shows the relationship between the 
relative XRF intensities for Cu/(Cu + Al + Si) and the Cu loadings determined by ICP-OES, where the data for 
26 samples are plotted. Using the linear relationship and the relative XRF intensities, the Cu loadings for 35 Cu 
zeolite samples are determined.

Cu K-edge XAFS measurements are performed on the BL14B2 at SPring-8 for two Cu-CHA samples and 
on BL11 and BL15 at the SAGA Light Source for the remaining Cu zeolite samples. The XAFS spectra are taken 
using a conventional transmission method with a Si(111) double crystal monochromator and ion chambers. 
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Data are analyzed using the Athena software including in the Demeter package46. The energies of all spectra are 
calibrated by using the spectra of Cu foil. The Fourier transform of the extended XAFS (EXAFS) is performed for 
k = 3–10. An EXAFS simulation using FEFF6 is conducted in the Arthemis software, where two kinds of Cu–O 
scatterings are calculated with a Debye–Waller factor of 0.003 and with summing up to construct model local 
structures for Cu2+(H2O)x (x = 4–6)46,47.

Data analysis using data science techniques.  Scikit–learn (version 0.17) and pandas are implemented 
for supervised and unsupervised machine learning as well as for calculation of pairwise correlation of the vari-
ables representing the structure and reactivity of the Cu zeolites48. A Gaussian mixture model within unsuper-
vised machine learning is used for classifying the data where the covariance type is set to full. Random forest 
classification, supervised machine learning, is used to evaluate the importance of descriptors49. The number of 
trees in the random forest is set to 100 where the random state with the highest score is chosen. Cross validation 
is used to evaluate the accuracy of each machine learning algorithm where the data are split into test data (20% 
of the data) and trained data (80% of the data). The average score of ten random tests is evaluated. The pairwise 
correlations are calculated to evaluate the correlations between the variables.

CH4–H2O2 batch reaction.  Prior to the CH4–H2O2 reaction, the catalysts are calcined at 700 °C for 1 h and 
then cooled to room temperature under an ambient atmosphere. The CH4–H2O2 reaction is performed in an 
autoclave (20 mL, TVS-1 type, Taiatsu Techno Co.) with a glass inner tube. 10 mg of catalyst powder is added 
to 3.0 mL of water in the glass inner tube, where a small polyethylene cup containing 155 μL of 30% H2O2 aq is 
dispensed50. After the glass tube is positioned in the stainless steel autoclave, the autoclave is filled with 5.0 MPa 
of N2 for a leak check, then replaced with 4.0 MPa of CH4 three times, and then charged with 3.5 MPa of CH4. 
After the autoclave is heated to 60 °C, the reaction is started by adding H2O2 aq to the catalyst suspension by 
shaking the autoclave to turn over the cap containing the H2O2. The reaction solution is stirred at 700 rpm for 
1 h. The suspension after the reaction is filtered and 700 μL of the filtrate is mixed with 200 μL of D2O for prod-
uct quantification using 1H-NMR (JEOL JNM-ECZ400R). The mixed liquid is transferred to an NMR glass tube 
(3 mm diameter) with an inner tube containing about 0.03% tetramethylsilane (TMS) solution in CDCl3. The 
1H NMR spectra are obtained using a water suppression pulse program. The reaction products, i.e., CH3OH, 
CH3OOH and formic acid, are quantified from the peak areas at δ = 3.36, 3.87 and 8.26 ppm, respectively, by 
the external standard method using maleic acid as standard. The gas phase in the autoclave is analysed by a gas 
chromatograph (GC-2014, Shimadzu) equipped with a thermal conductivity detector.

Results and discussion
Thirty-five Cu zeolites and twenty H zeolites are tested for the CH4–H2O2 reaction in the batch reaction system 
and the results are presented in Fig. S2a,b and Table S1. CH3OH, CH3OOH, or HCOOH are observed as the 
products, and the main product is varied with the catalysts (Figs. S2a, S3, Table S2). The Cu zeolites offer CH3OH 
and CH3OOH as the oxygenated products (Figs. S2a, S3c,d). When H-MFI zeolites are used, the overoxidized 
product, HCOOH, is formed in addition to CH3OH and CH3OOH (Figs. S2b, S3a). Thus, the Cu2+ in Cu-MFI 
suppresses overoxidation of CH4, which is consistent with previous studies16,23,24. The catalytic activity of H-MFI 
is attributed to Fe contamination which has activity for non-selective oxidation of CH4 via the Fenton reaction 
(Table S2)24. Interestingly, the other H-zeolites of MOR, FER, FAU and CHA show much less oxidized products 
than H-MFI, and do not produce HCOOH (Figs. S2b, S3b). This might be due to the difference in the structure 
of the Fe species in the H-zeolites (Fig. S4). In the viewpoint of H2O2 utilization, the different Fe and Cu species 
do not cause significant change in the H2O2 utilization based on the H2O2 concentration measurement after 
the CH4–H2O2 reaction using several zeolites (Fig. S5). The CH4-H2O2 reaction is also performed using other 
metal exchanged zeolites, i.e., Fe, Co, Ni, Rh and Ag-MFI. As presented in Table S3, the M-MFI other than 
Cu-MFI produce HCOOH. According to the literature, CH3OH is formed by the decomposition of CH3OOH, 
while HCOOH is formed by overoxidation of CH3OH or non-selective oxidation24. Therefore, Cu species are 
considered to be effective for selective oxidation of CH4 to CH3OH and CH3OOH. The result is in good agree-
ment with previous studies16,23,24.

To investigate the catalytic performance of Cu species in the zeolites, the increments of the products due 
to Cu exchange are evaluated from the differences in total yields of all products before and after Cu exchange. 
The product increments for all Cu zeolites are shown in Fig. S2c, where all Cu-MFI show negative values. It is 
reasonable to consider that Cu in the MFI zeolites traps oxygen radical species as a result of Fe contamination in 
the MFI zeolites. A more important fact is that the other Cu-zeolites show positive values (Fig. S2c), which are 
attributable to catalysis by Cu species. On the other hand, the catalysis of Cu species in MFI cannot be evaluated 
because of the too strong influence of Fe species in MFI on the catalytic performance. Therefore, active structures 
of Cu zeolites can be investigated due to the catalytic activity of Cu-zeolites other than Cu-MFI. It should be 
also noted that neither CO2 nor CO (< 6 ppm) is detected in the gas phase after the CH4–H2O2 reaction using 
several catalysts including H-MOR(18.8), H-MOR(29.4), and Cu(2.02)-MOR(18.8) by a gas chromatograph with 
a thermal conductivity detector. Thus, the catalyst activity is evaluated from the total products of CH3OH and 
CH3OOH. Figure 1 shows the specific activity determined by dividing the product increments by the amount of 
Cu in the Cu zeolites. The catalyst activity varies with the Cu zeolites, suggesting that the catalyst activity varies 
depending on the Cu zeolite structure.

The catalyst structural data are collected in order to explore the highly active structures. Table 1 lists the 
catalyst structural data collected in this study. The structural data due to the zeolite framework type are taken 
from the Database of Zeolite Structures of the IZA42. More specifically, the following eight variables are collected: 
framework density; topological density (TD10); channel dimensionality (CD); maximum diameter of a sphere 
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that can be included; those that can diffuse along three unit vectors (Da, Db, Dc); and accessible volumes. The 
surface area, which also belongs to the zeolite structural data, is evaluated by N2 adsorption measurements. 
Further, the zeolite compositional data includes the Si/Al2 ratio of zeolite, the Cu loadings and the ion exchange 
rates (Cu/Al2 ratio, denoted as IE) which are determined by the ICP/XRF measurements.

The data describing the Cu active site features are obtained by Cu K-edge XAFS spectral analysis, where the 
electronic state and local structure of the Cu species are evaluated. The Cu K-edge XANES spectra of all Cu zeo-
lites listed in Fig. 1 are presented in Figs. 2 and S6 together with those for Cu2O, Cu(OH)2 and CuO powders as 
references of Cu+ and Cu2+. The XANES spectrum of Cu(NO3)2 aq is also taken as a reference of hydrated Cu2+. 
All Cu zeolites exhibit an X-ray absorption edge at similar energy to Cu(OH)2, CuO and Cu(NO3)2 aq, but at 
higher energy than Cu2O, indicating that all the Cu species in the zeolites are Cu2+. Furthermore, the Cu2+ species 
in the zeolites are attributable to hydrated Cu2+ because the spectra are similar to Cu(NO3)2 aq. However, the Cu 
zeolites exhibit slightly different X-ray absorption edge profiles from each other, suggesting different electronic 
state or coordination number/symmetry for the Cu species29,51. Thus, the edge energies at 0.5 of the normalized 
absorption are evaluated as a means to describe the structure of the Cu species. It should also be noted that the 
XAFS spectrum of a Cu zeolite is not changed by immersion in H2O (Fig. S7). The result suggests that the XAFS 
spectra of Cu zeolites (Figs. 2, 3) reflect the sample state in the liquid phase reaction conditions.  

The local structure of the Cu species is evaluated from the Fourier transform (FT) of the EXAFS spectra. The 
Cu K-edge FT EXAFS spectra for all the Cu zeolites in Fig. 1 are presented in Figs. 3a and S8. The peak at ca. 
1.5 Å is assignable to Cu–O scattering, which shows differences in the peak intensity between the Cu zeolites. 
In addition, the peak intensity at ca. 2.1 Å is also significantly different between the Cu zeolites. The spectral 
differences suggest a difference of local structure around the Cu species. In fact, previous studies on an aqueous 
solution of Cu2+ revealed that hydrated Cu2+ can have various local structures in dynamic equilibrium includ-
ing: a distorted octahedron with six H2O coordinated Cu2+ (dOh), a distorted square pyramid (dSPy), a square 
pyramid (SPy), a regular trigonal bipyramid (TBPy) with five H2O coordinated ones and a square planner (SPl) 
structure with four H2O coordinated one51. Accordingly, the FT EXAFS spectra of the various hydrated Cu2+ 

Figure 1.   Specific activity of twenty-eight Cu zeolites for the CH4–H2O2 reaction. Reaction conditions: CH4 
3.5 MPa, 30 wt% H2O2 155 μL, H2O 3 mL, catalyst 10 mg, 60 °C, 1 h. The specific activity is determined by 
dividing the product increments shown in Fig. S2c with the amount of Cu listed in Table S1.

Table 1.   Structural data collected as catalyst descriptors.

Feature Variable (abbreviation) Source or analysis method

Zeolite framework Framework density (FD); topological density (TD10); maximum diameter of a sphere that can be included (DI); 
those can diffuse along three unit vectors (Da, Db, Dc); accessible volumes (AV), channel dimensionality (CD) Database of zeolite structures of the IZA

Composition Si/Al2 ratio of zeolite (Si/Al2); Cu loading (Cu wt); ion exchange rate (IE) ICP, XRF

Surface area Surface area (SA) N2 adsorption

Local structure of Cu X-ray absorption edge energy at 0.5 of normalized absorption (E at abs 0.5); FT-EXAFS peak intensity at ca. 
1.5 Å (Int at 1.5 Å); that at ca. 2.1 Å (Int at 2.1 Å) XAFS
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species may be simulated by FEFF 6 calculations using simple local structure models of Cu2+(H2O)x (x = 4–6), 
where the two kinds of single scattering of Cu–O with bond lengths of 1.96 Å and 2.40 Å are calculated based on 
the literature, and summed up to construct each model structure47,51. The structural parameters for each model 
structure are shown in Table S4. The simulated FT EXAFS spectra are presented in Fig. 3b and show that the 
peak intensities at ca. 1.5 and 2.1 Å vary with the local structure. Therefore, the peak intensities at ca. 1.5 and 
2.1 Å are extracted as descriptors of the local structure of Cu.

Figure 2.   Cu K-edge XANES spectra of the twenty-eight Cu zeolites presented in Fig. 1 (blue), together with 
reference spectra for Cu2O (gray solid), Cu(OH)2 (black dashed), CuO (black dotted) and Cu(NO3)2 aq (black 
solid). The arrow indicates the adsorption edge at 0.5 of the normalized absorption, where the edge energies are 
collected as a structural variable of the Cu zeolites.

Figure 3.   (a) Cu K-edge FT-EXAFS spectra for the twenty-eight Cu zeolites presented in Fig. 1. The two 
arrows indicate peaks at ca. 1.5 and 2.1 Å where the peak intensities are collected as structural variables of 
the Cu zeolites. (b) Simulated Cu K-edge FT-EXAFS spectra for four types of Cu local structures having 4–6 
coordinated oxygen atoms as models of hydrated Cu2+ with dOh, dSPy, SPy, TBPy and SPl structures.
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The values of the 15 descriptors of the twenty-eight Cu zeolite catalysts are listed in Table S5 together with 
the specific activity. To explore the important descriptors for the specific activity, the random forest classifica-
tion method is deployed for the data of the twenty-eight Cu zeolites. As a data pretreatment, the specific activity 
is classified into three groups, i.e., low, medium and high using Gaussian Mixture model within unsupervised 
machine learning in order to perform random forest classification. The classified specific activity is listed in 
Table S5. Here, the explanatory variables are set to fifteen descriptors of the Cu zeolite catalysts while the objective 
variable is set to the classified specific activity. Then, the trained random forest classification with the 15 descrip-
tors is evaluated by cross-validation, which returns an average score of 68%. The importance of each descriptor 
is evaluated and the results are presented in Fig. 4. Relatively high importance is assigned to seven variables 
including Si/Al2, Cu wt, IE, SA, E at abs 0.5, Int at 1.5 Å and Int at 2.1 Å, which are the structural parameters or 
compositions of the Cu zeolites. In contrast, the descriptors of zeolite types and pores including FD, TD10, DI, 
Da-c, AV and CD have less impact on the specific activity. It is suggested that the Cu zeolite structure and/or 
composition are the key descriptors of catalytic activity. 

Pairwise correlations of the 16 variables including both explanatory variables and objective one are evaluated 
in terms of the Pearson correlation coefficient and the results are presented in Fig. 5. The dark color in red or blue 
means high positive or high negative correlation coefficients, respectively, which suggest a strong correlation 
between the pair variables. Accordingly, the correlations between the specific activity and the seven variables 
from FD to CD representing zeolite framework structure are weak (See the green square in Fig. 5). However, 
there are relatively strong correlations between the specific activity and the other seven variables from Si/Al2 
to the Int at 2.1 Å (the purple square in Fig. 5). Note that the strength of the pairwise correlation is consistent 

Figure 4.   Importance of explanatory variables evaluated by the random forest classification.

Figure 5.   Heat map for pairwise correlation between structural variables and specific activity.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2067  | https://doi.org/10.1038/s41598-021-81403-4

www.nature.com/scientificreports/

with the importance of the random forest classification. Thus, both data analyses suggest that the seven variables 
relating to Cu zeolite structure and composition are important descriptors of the specific activity. Interestingly, 
relatively strong correlations are observed for the pairs between the variables of the zeolite framework structure 
(from FD to CD) and those of the Cu structure (E at abs 0.5, Int at 1.5 and 2.1 Å) (the yellow square in Fig. 5), 
suggesting that the zeolite framework structure affects the structure of the Cu active site. In addition, significant 
correlations are also found among the pairs between the variables from Si/Al2 to SA and those from E at abs 0.5 
to Int at 2.1 Å (the pink square in Fig. 5). Thus, one can consider that the zeolite framework structure, composi-
tion and surface area determine the structure of the Cu active site, which strongly affects the catalytic activity. 

In order to specify a highly active Cu structure, the specific activity is plotted against the intensities of FT-
EXAFS at 1.5 and 2.1 Å as shown in Fig. 6. In both cases, the specific activity increases with the decrease of the 
intensities of the FT EXAFS. Note that the SPy and TBPy structures have five Cu–O bonds of length 1.96 Å, 
which show the highest intensity at 1.5 and 2.1 Å among the simulated spectra (Fig. 6). Thus, the SPy and TBPy 
structures are not highly active species. In other words, any of the other structures dOh, dSPy and SPl have high 
specific activity. Given that the Cu species in zeolites are considered mixtures of various structures, the main 
structures are difficult to be determined only from the intensities of FT EXAFS. In addition, the Int at 2.1 Å might 
be affected significantly by noise in the EXAFS spectra (Fig. S9). Thus, the Cu K-edge XANES spectral features 
of the active Cu zeolites are also examined for further specification of the active structure, because the XANES 
feature is sensitive to the local structure and is less affected by the noise than the EXAFS. Figure 7 displays the 
XANES spectra of Cu(0.40)MOR(220), Cu(0.64)FAU(110) and Cu(1.11)FAU(14.9) with a high specific activity. 
The spectra of the two CuFAU catalysts have a shoulder at 8986 eV and have a relatively low white line intensity 
at 8995 eV, features which are similar to the SPl structure reported in the literature29. In particular, the shoulder 
at 8986 eV is assignable to the electronic transition 1s to 4p of the Cu2+ species with the SPl structure. Therefore, 

Figure 6.   Plots of the specific activity against (a) the intensities of FT EXAFS at 1.5 Å and (b) the intensities of 
FT EXAFS at 2.1 Å.

Figure 7.   Cu K-edge XANES and FT-EXAFS spectra for Cu(0.64)FAU(14.9) (green), Cu(0.64)FAU(110) (blue), 
Cu(0.40)MOR(220) (red), and the other Cu zeolites (gray).
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the SPl structure is considered to be the highly active structure in FAU. In the case of Cu(0.40)MOR(220), the 
XANES spectrum does not show such a shoulder at 8986 eV but shows a relatively high white line intensity. Such 
a spectral feature is seen in dOh and dSPy. In addition, the FT-EXAFS of Cu(0.40)MOR(220) does not exhibit 
a peak shift at 1.5 Å as is the case for the two CuFAU with SPl structures, suggesting that the dSPy structure is 
formed in Cu(0.40)MOR(220), because dOh should show the peak shift as simulated in Fig. 4. Therefore, the 
dSPy structure is proposed as the highly active structure in MOR. 

Conclusions
Various metal zeolites are prepared and tested for direct oxidation of CH4 to CH3OH using H2O2 as an oxidant. 
Given that Cu is effective for the selective oxidation to CH3OH and CH3OOH without producing HCOOH, the 
catalytic performance of 35 Cu zeolites and 20 H zeolites having MOR, FAU, BEA, FER, CHA, and MFI frame-
works are evaluated, where the Cu zeolites except for Cu-MFI are confirmed to show catalytic activity for the 
CH4–H2O2 reaction. In addition, the CuMOR and CuFAU zeolites contain highly active Cu species among the 
Cu zeolites tested. The catalytically active twenty-eight Cu zeolites are described in terms of the structural vari-
ables of the zeolite framework obtained from the database of the IZA and the experimentally evaluated zeolite 
features based on composition, surface area and local structure of the Cu active site. The relationships between 
the specific activity of the Cu zeolites and the structural variables are analyzed by classification methods using 
unsupervised and supervised machine learning and by pairwise correlation, suggesting that the local structure 
of the Cu active species, represented by the intensities of FT-EXAFS at 1.5 and 2.1 Å are the important descrip-
tors for the specific activity. By comparing the experimental XAFS spectra with the simulated or reported ones, 
highly active Cu species in FAU and MOR are considered to have SPl and dSPy structures, respectively.
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