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A generalized strain approach 
to anisotropic elasticity
M. H. B. M. Shariff

This work proposes a generalized Lagrangian strain function fα (that depends on modified stretches) 
and a volumetric strain function gα (that depends on the determinant of the deformation tensor) 
to characterize isotropic/anisotropic strain energy functions. With the aid of a spectral approach, 
the single-variable strain functions enable the development of strain energy functions that are 
consistent with their infinitesimal counterparts, including the development of a strain energy 
function for the general anisotropic material that contains the general 4th order classical stiffness 
tensor. The generality of the single-variable strain functions sets a platform for future development 
of adequate specific forms of the isotropic/anisotropic strain energy function; future modellers only 
require to construct specific forms of the functions fα and gα to model their strain energy functions. 
The spectral invariants used in the constitutive equation have a clear physical interpretation, which 
is attractive, in aiding experiment design and the construction of specific forms of the strain energy. 
Some previous strain energy functions that appeared in the literature can be considered as special 
cases of the proposed generalized strain energy function. The resulting constitutive equations can 
be easily converted, to allow the mechanical influence of compressed fibres to be excluded or partial 
excluded and to model fibre dispersion in collagenous soft tissues. Implementation of the constitutive 
equations in Finite Element software is discussed. The suggested crude specific strain function 
forms are able to fit the theory well with experimental data and managed to predict several sets of 
experimental data.

Hill1 introduced a generalized strain function in finite elasticity. Using a Hill’s strain function of the form

where κ is real parameter and � is a principal stretch,  Ogden2 successfully model the mechanical behaviour of 
incompressible isotropic solids. In the literature, different values of the parameter κ are used to model different 
types of incompressible isotropic elastic solids; this suggests that the selection of strain functions to model a 
constitutive equation depends on the type of material we intend to model. Several special forms of the Hill’s 
generalized strain function used in modelling anisotropic/isotropic elastic solids can be found, for example in 
 references3–7. In general, Hill’s strain invariants do not depend explicitly on right Cauchy-Green tensor C and 
their 1st and 2nd order derivatives with respect to C can only be obtained via spectral derivative formulae that 
are recently developed (see, for example  references8–11) and, in view of this, the author believes that anisotropic/
isotropic strain energy functions that are characterized by Hill’s generalized strain functions (to the best of the 
author’s knowledge) do not exist in the literature. This motivates the author to develop infinitesimal-consistent 
anisotropic/isotropic finite strain energy functions that are based on the generalized Hill’s strain function and 
the development requires proposing modified Hill’s and volumetric strain functions; it also requires a spectral 
approach based on the author’s previous work on anisotropic spectral models (see, for example  references12–15) 
that used spectral invariants with a clear physical meaning. The advantages of spectral invariants over classical 
 invariants16 in constitutive modelling are described, for example, in Shariff and  Merodio17, hence we will not 
elaborate them here. In the excellent work of  references18–22, spectral invariants have also been used to construct 
an infinitesimal-consistent anisotropic/isotropic finite strain energy function via the WYPiWYG approach, where 
the energy function shape and the material data of the model are obtained solving the equilibrium equations 
of the different experiments. In future, there might be a possibility to connect our approach to the WYPiWYG 
approach. Using an approach similar to that given in  references8,9,15,23, our proposed model may be extended to 
model dissipative materials such as those discussed  in24–26. Our proposed model may also be possibly extended to 
model strain gradient materials (see, for example  references26,27) via a similar approach to that of Soltadtos et al.28.
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The number of independent spectral invariants in an irreducible/minimal integrity basis can be easily 
 derived29–32. A classical irreducible/minimal integrity basis, for a highly anisotropic material, contains a numer-
ous amount of classical  invariants16 and, due to their unclear physical interpretation, it is not clear in the literature 
how to select an appropriate (or optimum) subset of classical invariants from an irreducible/minimal integrity 
basis to represent a strain energy function: In particular, most traditional invariant-based approach to hyper-
elasticity, which uses classical invariants, typically allows discretion to deem which invariants are necessary for 
inclusion in the strain energy function for a given model. Omission of invariants offers mathematically simplified 
models and reduced number of ground-state material constants required for calibration  (Shariff12,14 has shown 
that some of the well known models in the literature do not contain all their ground-state constants). However, 
the discrimination in selection of invariants is often debated, and neglecting the influence of some invariants may 
result in an incomplete representation of the full range of mechanical response subjected to a  continuum14,33–35. 
In this communication, we show that the construction of a strain energy function that uses a full set of spectral 
invariants that is consistent with infinitesimal theory can be easily done via the use of, modified Hill’s and volu-
metric strain functions: A discussion on the importance of a nonlinear (finite strain) strain energy function that 
must be consistent with infinitesimal theory can be found, for example in, Rosa et al.22 and  Shariff14.

In some materials, the mechanical influence of compressed fibres is negligible or is different from stretched 
fibres and, in soft tissues, the influence of fibre dispersion could be relevant in modelling constitutive equations: 
In Appendices A and B (Supplementary information), we illustrate how the proposed strain energy functions 
can be easily amended to take account of these influences.

Remark. Valanis and  Landel36 strain energy function

where �i s are principal stretches, play an important role in modelling incompressible isotropic solids. The func-
tion r̄ is arbitrary and this set a platform for modelling specific types of incompressibe isotropic elastic solids. 
Numerous specific forms of r̄ , that are able to successfully model the mechanical behaviour of incompressible 
isotropic solids, have been proposed in the literature, see for example  Ogden2 and  Shariff37. The single variable 
function r̄ depends on an invariant with a clear physical meaning and this makes the Valanis and Landel form 
experimentally  attractive17. The Valanis and Landel form impels us to develop anisotropic constitutive equations, 
which depends on single variable aribtrary functions that will set a platform for future modelling of specific 
types of anisotropic elastic solids. Our constitutive equations are developed via generalized strain single-variable 
functions. We overtly emphasize that, in this paper, we are not particularly concerned in obtaining specific forms 
of the proposed generalized strain functions. A rigourous construction of specific forms such those found in 
 references2,14,37 requires a lot of work and it is beyond the scope of this paper. As mentioned above, the general-
ized constitutive equations described here will set a platform (analogous to the “generalized” Valanis and Landel 
form for isotropic elastic solids) for future modelling of specific types of anisotropic elastic solids.

Preliminaries
In this paper, summation convention is not used and all subscripts i,j and k take the values 1, 2, 3, unless stated 
otherwise. Vectors and tensors are written in lowercase and uppercase bold fonts, respectively. Only quasi-
static deformations and time-independent fields are considered. The mechanical body forces are assumed to 
be negligible. The deformation gradient is denoted by F and C = FTF = U2 , respectively, where U  is the right 
stretch tensor.

General strain energy function
A general strain energy function for an elastic solid can be expressed as

The facilitate the construction of an incompressible material, regarded as a material recovered from the corre-
sponding compressible material by taking the incompressible  limit38, we use the modified stretch tensor

where J = det F > 0 and det is the determinant of a tensor. Hence, we express

The spectral representation

where �∗i = J−
1
3 �i , ⊗ denotes the dyadic product and, �i and ui are an eigenvalue and an orthonormal eigenvec-

tor of U  , respectively. In view of (6),

(2)W(v) =
3

∑

i=1

r̄(�i) ,

(3)W(A) = Wa(U) .

(4)U∗ = J−
1
3U , detU∗ = 1 ,

(5)W(A) = Wa(U) = W∗(U∗, J) .

(6)U∗ =
3

∑

i=1

�
∗
i ui ⊗ ui ,

(7)W(A) = W∗(U∗, J) = W(�∗1, �
∗
2, �

∗
3, u1, u2, u2, J) .
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Since �∗1�
∗
2�

∗
3 = 1 only 6 of the 7 arguments in (7) are independent. The strain energy function W must satisfy 

the P-property described  in13, that is associated with the symmetrical property of W and the unique value of W 
when two or more of the principal axes has the same value.

Stress. The Cauchy stress for a compressible solid is

and for an incompressible solid

where p is the Lagrange multiplier associated with the constraint det F = 1 and I is the identity tensor. Following 
the work  of10,17, the Cauchy stress T with respect to the Eulerian orthonormal basis {v1, v2, v3} , where vi = Rui 
and R = FU−1 takes the form

where

for compressible elastic solids and in the case for an incompressible solid ( J = 1 ), we have,

The nominal stress

It is clear from the above that hydrostatic stress for a compressible material

In the incompressibility limit, the value of lim
J→1

∂W

∂J
 and the appropriate properties of W are discussed in Shariff 

and  Parker38. We note that all the proposed strain energy functions in this paper are consistent with the strain 
energy functions proposed by Shariff and  Parker38. The deformation dependent bulk modulus is defined  as39

The ground-state bulk modulus is defined as

Generalized strain
Consider a set of general class of Lagrangean strain tensor F(α) , similar to that defined by  Hill1,

where N = {1, 2, 3, . . .} is the set of natural numbers excluding 0 and fα : (0,∞) → R is a monotonic increasing 
function, i.e, f ′α(�∗i ) > 0 , such that

(8)T =
2

J
F
∂W(A)

∂C
FT

(9)T = 2F
∂W(A)

∂C
FT − pI ,

(10)T =
3

∑

i,j=1

tijvi ⊗ vj , tij = vi · Tvj ,

(11)Jtii =�
∗
i

∂W

∂�∗i
− p∗ , Jtij =

�
∗
i �

∗
j

�
∗2
i − �

∗2
j

(

∂W

∂ui
· uj −

∂W

∂uj
· ui

)

, i �= j ,

(12)p∗ =
1

3

3
∑

i=1

�
∗
i

∂W

∂�∗i
− J

∂W

∂J
,

(13)tii = �i
∂W

∂�i
− p , tij =

�i�j

�
2
i − �

2
j

(

∂W

∂ui
· uj −

∂W

∂uj
· ui

)

, i �= j .

(14)S = JF−1T =
3

∑

i,j=1

Jtij

�i
ui ⊗ vj .

(15)
tr T

3
=

1

3

3
∑

i=1

tii =
∂W

∂J
(�∗1, �

∗
2, �

∗
3, u1, u2, u2, J) .

(16)B(U) =
∂2W

∂J2
(�∗1, �

∗
2, �

∗
3, u1, u2, u2, J) .

(17)χ = B(I) .

(18)F(α)(U) =
3

∑

i=1

fα(�
∗
i )ui ⊗ ui , α ∈ N

(19)fα(1) = 0 , f ′α(1) = 1 .
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We could also include, when appropriate, fα to represent physical strain measures with the extreme deforma-
tion values

An example of a strain measure commonly used in the literature that satisfies the above properties is

A strain function that could be of interest, which is similar to the Ogden’s strain  function2, is

where ᾱ is a real number. We strongly emphasize that we are not concerned with proposing prototypes of the 
strain function fα , such as those expressed in (21) and (22). An objective of this paper is to construct constitu-
tive equations that depend explicitly on the arbitrary functions fα and gα (defined below), and are consistent 
with infinitesimal elasticity.

We define a volumetric strain

where gα : (0,∞) → R is a monotonic increasing function such that

We also include, if required, gα to represent physical volumetric strain measures with the extreme deformation 
values

An example of a volumetric strain is

Note that in view of (18), we have, for example

It is clear from the properties of fα that

Infinitesimal strain. In infinitesimal strain

where u is the displacement vector, | • | is an appropriate norm and the magnitude of e is much less than unity. 
Up to O(e), we have

where ei is an eigenvalue of the infinitesimal strain E (we do not distinguish the eigenvectors of U  and E ) and 
e∗i  is an eigenvalue of

Spectrally, we can express

where the eigenvalues

Up to order O(e), the volumetric strain

(20)fα(�
∗
i → ∞) = ∞ , fα(�

∗
i → 0) = −∞ .

(21)ln(U∗) =
3

∑

i=1

ln(�∗i )ui ⊗ ui , fα(x) = ln x .

(22)fα(x) =
1

m

m
∑

n=1

xᾱn − 1

ᾱn
, x > 0 ,

(23)gα(J) , α ∈ N ,

(24)gα(1) = 0 , g ′α(1) = 1 .

(25)gα(J → ∞) = ∞ , gα(J → 0) = −∞ .

(26)g1(J) = ln J .

(27)tr (F(α)F(β)) =
3

∑

i=1

fα(�
∗
i )fβ(�

∗
i ) , α,β ∈ N .

(28)fα(�
∗
i )fβ(�

∗
i ) ≥ 0 .

(29)| F − I |=|
∂u

∂x
|= O(e) ,

(30)U − I ≈ E , U∗ − I ≈ E∗ , fα(�i) ≈ �i − 1 = ei , fα(�
∗
i ) ≈ �

∗
i − 1 = e∗i ,

(31)E∗ = E −
1

3
( tr E)I .

(32)E =
3

∑

i=1

eiui ⊗ ui , E∗ =
3

∑

i=1

e∗i ui ⊗ ui ,

(33)e∗i = ei −
e1 + e2 + e3

3
.
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Remark. In this paper, the construction of a strain energy function for finite strain deformations that is con-
sistent with infinitesimal elasticity is facilitated via infinitesimal strain elasticity. Hence, in sections “Isotropic” 
to “General anisotropy”, we start the construction of a finite strain constitutive equation with the development of 
its infinitesimal strain energy function counterpart.

For the sake of generality, the general constitutive equations given below contain numerous functions of fα 
and gα , which may seem unappealing. However, in many occasions only a few fα and gα functions are required 
to model anisotropic solids (see “Example of specific forms of fα and gα used in experimental fitting” section).

Isotropic
Let W(I) represents the strain energy for an isotropic elastic solid. We then have

where Q is an arbitrary rotational tensor and (35) implies that the strain energy W(I) can be symmetrically express 
in terms the principal stretches (spectral invariants) �i.

Infinitesimal strain. The strain energy function for infinitesimal strain deformations is

where µ and χ are, respectively, the ground state shear and bulk moduli and � is the Lame’s constant. For the 
purpose of this paper, we express

where h = tr E . In the case of an incompressible solid, (37) is reduced to

Finite strain. A finite strain energy function that is consistent with its infinitesimal counterpart (37) is pro-
posed, i.e.,

where the “higher order” term φ(I) (which depends on �i ) satisfies the P-property and the conditions

at F = I . We note that, in view of (40), the function φ(I) does not contribute to the infinitesimal strain energy 
function. In the case of an incompressible material, we propose

For neatness, we have used the same expression for φ(I) in (39) and (41) although they are, generally, different 
functions.

The weighted Cauchy stress takes the form

Examples of strain energy functions in the literature that can be written in the forms (39) and (41) are given 
below:

(a) For compressible materials with �(I) = 0 : 

1. The  Hencky40 strain energy function 

(34)gα(J) ≈ J − 1 = tr E .

(35)W(I) = WI (U) = WI (QUQT ) ,

(36)W(I) = µ tr E2 +
�

2
( tr E)2 = µ tr E∗2 +

χ

2
( tr E)2 ,

(37)W(I) = µ
∑

i=1

e∗2i +
χ

2
h2 ,

(38)W(I) = µ
∑

i=1

e2i .

(39)W(I) = µ tr (F(1)F(2))+
χ

2
g1(J)g2(J)+ φ(I) = µ

3
∑

i=1

f1(�
∗
i )f2(�

∗
i )+

χ

2
g1(J)g2(J)+ φ(I) ,

(40)φ(I) = 0 ,
∂φ(I)

∂U
= 0 ,

∂2φ(I)

∂U∂U
= 0

(41)W(I) = µ

3
∑

i=1

f1(�i)f2(�i)+ φ(I) .

(42)JT =
3

∑

i=1

(

�
∗
i

∂W(I)

∂�∗i
− p∗

)

vi ⊗ vi .

(43)W(I) = µ

3
∑

i=1

(ln(�∗i ))
2 +

χ

2
(ln J)2 = µ

3
∑

i=1

(ln(�i))
2 +

�

2
(ln J)2 .
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 In this case, we have, 

2. A Mooney-Rivlin strain energy function 

 In this case, we have, 

 for appropriate values of c1 and c2 . Note that, we can also compare our model with Mooney-Rivlin strain 
energy function, where f1  = f2 . For example, 

 taking note that 

(b) Incompressible materials with �(I) = 0 : 

1. The Valanis and  Landel36 form 

 In this case 

 with the conditions 

2. Ogden2 strain energy function 

 In this case, we have, 

 for appropriate values of the material constants µr and αr . It is worth noting that 

Remark: In sections “Transversely Isotropic with a unit preferred direction a” and “Two preferred direction elastic 
solid” below, we discuss elastic solids with one and two preferred directions. In some of these solids, the mechani-
cal influence of compressed fibres is negligible or is different from stretched fibres and in some soft tissue solids, 
the influence of fibre dispersion could be relevant in modelling constitutive equations: In Appendices A and B 
(Supplementary information), we illustrate how the strain energy functions developed in sections “Transversely 
Isotropic with a unit preferred direction a” and “Two preferred direction elastic solid” can be easily amended 
to take account of these influences.

(44)f1(�
∗
i ) = f2(�

∗
i ) = ln(�∗i ) , g1(J) = g2(J) = ln J .

(45)

W(I) =c1

(

3
∑

i=1

�
∗2
i − 3

)

+ c2

(

3
∑

i=1

1

�
∗2
i

− 3

)

+
χ

2
(J − 1)2

=c1

3
∑

i=1

(�∗2i − 2 ln �∗i − 1)+ c2

3
∑

i=1

(
1

�
∗2
i

+ 2 ln �∗i − 1)+
χ

2
(J − 1)2 .

(46)

µ =2(c1 + c2) , f1(�
∗
i ) = f2(�

∗
i ) = f (�∗i ) ,

f (�∗i )
2 =

1

µ

(

c1(�
∗2
i − 2 ln �∗i − 1)+ c2

(

1

�
∗2
i

+ 2 ln �∗i − 1

))

≥ 0 ,

g1(J) =g2(J) = (J − 1) ,

(47)
f1(�

∗
i ) =(�∗i − 1) ,

f2(�
∗
i ) =

1

µ(�∗i − 1)

(

c1(�
∗2
i − 2 ln �∗i − 1)+ c2

(

1

�
∗2
i

+ 2 ln �∗i − 1

))

,

(48)lim
�
∗
i →1

f2(�
∗
i ) = 0 , lim

�
∗
i →1

f ′2(�
∗
i ) = 1 .

(49)W(I) =
3

∑

i=1

r(�i) .

(50)f1(�i) = f2(�i) = f (�i) , f (�i)
2 =

1

µ
r(�i) ,

(51)r(1) = r′(1) = 0 , r′′(1) = 2µ .

(52)W(I) =
∑

r

µr

αr
(�

αr
1 + �

αr
2 + �

αr
3 − 3) .

(53)

µ =
1

2

∑

r

µrαr , f1(�i) = f2(�i) = f (�i) ,

f (�i)
2 =

1

µ

∑

r

µr

αr
(�

αr
i − αr ln(�i)− 1) ≥ 0 ,

(54)�
αr
i − αr ln(�i)− 1 ≥ 0 .
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Transversely Isotropic with a unit preferred direction a
Let W(T) represents the strain energy for a transversely isotropic elastic solid. We then have

Following the work of  Shariff14, we can express the strain energy function in terms of the spectral invariants

Since, a is a unit vector, we have,

and hence only 5 of the 6 invariants in (56) are  independent31,32.

Infinitesimal strain. The infinitesimal strain energy function  is41

where A = a⊗ a . The material constants āi ( i = 1, 2, . . . , 5 ) can be be described in terms of physical parameters 
as shown below:

where

Here νp is the Poisson ratio in a particular direction on the plane of symmetry, when the material is extended 
in a direction on the plane of symmetry perpendicular to the particular direction, νa is the Poisson ratio in the 
preferred direction when the material is extended in the plane of symmetry, Ep is the Young’s Modulus in the 
plane of symmetry normal to the preferred direction a , µa is the shear modulus in the preferred direction and 
Ea is the Young’s modulus in the preferred direction. Take note that we have also the relation

where νzp is the Poisson ratio in any direction on the plane of symmetry, when the material is extended in the 
preferred direction.

We can express (58) in the form

where

The infinitesimal hydrostatic stress

The ground-state bulk modulus then takes the form

It can be easily shown that, in the incompressible limit, as νzp → 0.5 and 1− νa − νp → 042 the ground-state 
bulk modulus χ → ∞ . It is clear from (65) that, since,

exists, we have

(55)W(T) = W̄T (U , a⊗ a) = WT (U , a) = WT (QUQT ,Qa) .

(56)�i , ai = ui · a = Qui · Qa .

(57)
3

∑

i=1

ζi = 1 , ζi = a2i

(58)W(T) = ā1 tr E
2 + ā2( tr E)

2 + ā3 tr (AE
2)+ ā4( tr (AE))

2 + ā5 tr (AE) tr E ,

(59)
ā1 =

a11 − a12

2
, ā2 =

a12

2
, ā3 = a44 − a11 + a12 , ā4 =

a33

2
+

a11

2
− a44 − a13 ,

ā5 =a13 − a12 ,

(60)a11 =
1− νaνzp

EpEaD
, a12 =

νp + νzpνa

EpEaD
, a13 =

νa(1+ νp)

E2pD
, a33 =

1− ν2p

E2pD
, a44 = 2µa ,

(61)D =
(1+ νp)(1− νp − 2νaνzp)

E2pEa
.

(62)
νa

Ep
=

νzp

Ea
,

(63)W(T) = WT (E
∗, h) = ā1 tr E

∗2 + a(2)h
2 + ā3a · E∗2a + ā4(a · E∗a)2 + a(5)ha · E∗a ,

(64)a(2) =
ā1

3
+ ā2 +

ā3

9
+

ā4

9
+

ā5

3
, a(5) =

2ā3

3
+

2ā4

3
+ ā5 .

(65)
tr T

3
=

∂WT

∂h
(E∗, h) = 2a(2)h+ a(5)a · E∗a .

(66)χ =
∂2WT

∂h2
(E∗, h) = 2a(2) .

(67)lim
νzp→0.5,1−νa−νp→0

a(5)
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In spectral form,

Finite strain. Using (63) and (69), we easily construct a finite strain energy that it is consistent with its 
infinitesimal counterpart, i.e.

or, alternatively,

where the higher order function φ(I) (for convenient, we use the same expression for all anisotropic material 
discussed in this paper, although they are, generally, different functions.) has the properties given in “Finite 
strain” section and φ(I) depends on the spectral invariants �i and ai.

The weighted Cauchy stress takes the form

Two preferred direction elastic solid
Consider an elastic material with preferred unit directions a and b , where the unit vectors a and b are independ-
ent. The strain energy

Hence, we can express W(P) in terms of the spectral  invariants17,30

We note that in view of (57) and the relations

only 7 of the 9 invariants in (74) are independent and they formed the minimal/irreducible integrity  basis30,32.

Infinitesimal strain. Modifying the work of Shariff and  Bustamante30, we have the strain energy

The mean hydrostatic stress is

The bulk modulus

(68)h = tr E → 0 as χ → ∞ .

(69)tr E∗2 =
3

∑

i=1

e∗2i , a · E∗a =
3

∑

i=1

ζie
∗
i , a · E∗2a =

3
∑

i=1

ζie
∗2
i .

(70)
W(T) =ā1 tr (F(1)F(2))+ a(2)g1(J)g2(J)+ ā3a · F(3)F(4)a

+ ā4(a · F(5)a)(a · F(6)a)+ a(5)g3(J)a · F(7)a + φ(I)

(71)

W(T) =ā1

3
∑

i=1

f1(�
∗
i )f2(�

∗
i )+ a(2)g1(J)g2(J)+ ā3

3
∑

i=1

ζi f3(�
∗
i )f4(�

∗
i )

+ ā4

(

3
∑

i=1

ζi f5(�
∗
i )

)(

3
∑

i=1

ζi f6(�
∗
i )

)

+ a(5)g3(J)

3
∑

i=1

ζi f7(�
∗
i )+ φ(I) ,

(72)JT =
3

∑

i=1

(

�
∗
i

∂W(T)

∂�∗i
− p∗

)

vi ⊗ vi +
3

∑

i �=j

2aiaj�
∗
i �

∗
j

�
∗2
i − �

∗2
j

(

∂W(T)

∂ζi
−

∂W(T)

∂ζj

)

vi ⊗ vj .

(73)W(P) = W̄P(U , a⊗ a, b⊗ b) = WP(U , a, b) = WP(QUQT ,Qa,Qb) .

(74)�i , ai , ιi = ui · b = Qui · Qb .

(75)
∑

i=1

γi = 1 , γi = ι2i ,

(76)

W(P) =Wp(E
∗, h) = b1 tr E

∗2 + b2a · E∗2a + b3(a · E∗a)2 + b4b · E∗2b + b5(b · E∗b)2

+ b6(a · b)a · E∗2b + b7[(a · b)a · E∗b]2 + b8(a · E∗a)(b · E∗b)+ b9(a · b)(a · E∗b)(a · E∗a)

+ b10(a · b)(a · E∗b)(b · E∗b)+ b11h(a · E∗a)+ b12h(b · E∗b)+ b13h(a · b)(a · E∗b)+
χ

2
h2 .

(77)
tr T

3
=

∂Wp

∂h
(E∗, h) = b11(a · E∗a)+ b12(b · E∗b)+ b13(a · b)(a · E∗b)+ hχ .

(78)χ =
∂2Wp

∂h2
(E∗, h) .
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Mechanically equivalent material. For a mechanically equivalent material we simply let

and we have only 10 material constants [In Shariff and  Bustamante30, they mistakenly evaluate 11 material con-
stants.] to characterize its mechanical behaviour. Hence, we have, the strain energy

where cα ( α = 1, 2, . . . 9 ) are ground state material constants.

Orthotropic elastic solid. In the case of an orthotropic material, where the preferred directions a and b are 
orthogonal, we have

where d1, d2, . . . d8 are ground state constants.

Finite strain. Following the work of sections “Isotropic” and “Transversely Isotropic with a unit preferred 
direction a” sections, we propose the strain energy function

where ηi = (a · b)aiιi , φ(I) has the properties given in “Finite strain” section and is a function of �i , ai and ιi.
The weighted Cauchy stress takes the form

(79)b2 = b4 , b3 = b5 , b9 = b10 , b11 = b12 ,

(80)

W(M) = WM(E∗, h) =c1 tr E
∗2 + c2[a · E∗2a + b · E∗2b] + c3[(a · E∗a)2 + (b · E∗b)2]

+ c4(a · b)a · E∗2b + c5[(a · b)a · E∗b]2 + c6(a · E∗a)(b · E∗b)

+ c7[(a · b)(a · E∗b)(a · E∗a)+ (a · b)(a · E∗b)(b · E∗b)]

+ c8[h(a · E∗a)+ h(b · E∗b)] + c9h(a · b)(a · E∗b)] +
χ

2
h2 ,

(81)
W(O) =WO(E

∗, h) = d1 tr E
∗2 + d2a · E∗2a + d3(a · E∗a)2 + d4b · E∗2b + d5(b · E∗b)2

+ d6(a · E∗a)(b · E∗b)++d7h(a · E∗a)+ d8h(b · E∗b)+
χ

2
h2 ,

(82)

W(P) =b1

3
∑

i=1

f1(�
∗
i )f2(�

∗
i )+ b2

3
∑

i=1

ζi f3(�
∗
i )f4(�

∗
i )+ b3

3
∑

i=1

ζi f5(�
∗
i )

3
∑

i=1

ζi f6(�
∗
i )

+ b4

3
∑

i=1

γi f7(�
∗
i )f8(�

∗
i )+ b5

3
∑

i=1

γi f9(�
∗
i )

3
∑

i=1

γi f10(�
∗
i )+ b6

3
∑

i=1

ηi f11(�
∗
i )f12(�

∗
i )

+ b7

3
∑

i=1

ηi f13(�
∗
i )

3
∑

i=1

ηi f14(�
∗
i )+ b8

3
∑

i=1

ζi f15(�
∗
i )

3
∑

i=1

γi f16(�
∗
i )

+ b9

3
∑

i=1

ηi f17(�
∗
i )

3
∑

i=1

ζi f18(�
∗
i )+ b10

3
∑

i=1

ηi f19(�
∗
i )

3
∑

i=1

γi f20(�
∗
i )

+ b11g1(J)

3
∑

i=1

ζi f21(�
∗
i )+ b12g2(J)

3
∑

i=1

γi f22(�
∗
i )

+ b13g3(J)

3
∑

i=1

ηi f23(�
∗
i )+

χ

2
g4(J)g5(J)+ φ(I) ,

(83)

JT =
3

∑

i=1

(

�
∗
i

∂W(T)

∂�∗i
− p∗

)

vi ⊗ vi +
3

∑

i �=j

2�∗i �
∗
j

�
∗2
i − �

∗2
j

{(

∂W(T)

∂ζi
−

∂W(T)

∂ζj

)

aiaj

+
(

∂W(T)

∂γi
−

∂W(T)

∂γj

)

ιiιj +
a · b
2

(

∂W(T)

∂ηi
−

∂W(T)

∂ηj

)

(aiιj + ajιi)

}

vi ⊗ vj .
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Mechanical equivalent elastic solid. 

An orthotropic strain energy function can be easily obtained from (82) by letting ηi = 0.

General anisotropy
Consider the strain energy W(G) that depends of the 4th order classical stiffness tensor C , i.e.,

Note that Wg must be invariant with respect to the rotation Q , i.e.

where43

and, the operations  :  and  are defined as follows

We also have the definition

In view of (87),(88) and (89), we obtain

where

From (87) and (91), we have

for all rotation Q and this implies that cijkl are invariants. Hence, the strain energy W(G) can be expressed in terms 
of the invariants

with the symmetrical properties

Due to the symmetrical property (95), only 24 of the invariants in (94) are independent.These 24 invariants are 
elements of the irreducible/minimal integrity basis. Hence, all other invariants (see, for example,  reference44) 
can be expressed in terms of the 24 independent spectral invariants.

Infinitesimal strain. The strain energy for a general anisotropic elastic solid is

(84)

W(M) =c1

3
∑

i=1

f1(�
∗
i )f2(�

∗
i )+ c2

3
∑

i=1

(ζi + γi)f3(�
∗
i )f4(�

∗
i )

+ c3

{

3
∑

i=1

ζi f5(�
∗
i )

3
∑

i=1

ζi f6(�
∗
i )+

3
∑

i=1

γi f5(�
∗
i )

3
∑

i=1

γi f6(�
∗
i )

}

+ c4

3
∑

i=1

ηi f7(�
∗
i )f8(�

∗
i )

+ c5

3
∑

i=1

ηi f9(�
∗
i )

3
∑

i=1

ηi f10(�
∗
i )+ c6

3
∑

i=1

ζi f11(�
∗
i )

3
∑

i=1

γi f11(�
∗
i )

+ c7

3
∑

i=1

ηi f12(�
∗
i )

3
∑

i=1

(ζi + γi)f13(�
∗
i )+ c8g1(J)

3
∑

i=1

(ζi + γi)f14(�
∗
i )

+ c9g2(J)

3
∑

i=1

ηi f15(�
∗
i )+

χ

2
g4(J)g5(J)+ φ(I) .

(85)W(G) = Wg (C,U) .

(86)Wg (C,U) = Wg (C̄,QUQT ) ,

(87)C̄ =
[(

(C : QT ) : QT
)

: QT
]

| QT ,

(88)a1 ⊗ a2 ⊗ a3 ⊗ a4 : b1 ⊗ b2 =(b1 · a2)a1 ⊗ a3 ⊗ a4 ⊗ b2 ,

(89)a1 ⊗ a2 ⊗ a3 ⊗ a4 | b1 ⊗ b2 =(b1 · a1)b2 ⊗ a2 ⊗ a3 ⊗ a4 .

(90)(a1 ⊗ a2 ⊗ a3 ⊗ a4)(b1 ⊗ b2) = (a1 ⊗ a2)(a3 · b1)(a4 · b2) .

(91)C̄ =
∑

i,j,k,l

cijklQui ⊗ Quj ⊗ Quk ⊗ Qul ,

(92)cijkl = ui · [C(uk ⊗ ul)]uj .

(93)cijkl = ui · [C(uk ⊗ ul)]uj = Qui · [C̄(Quk ⊗ Qul)]Quj ,

(94)cijkl , �i

(95)cijkl = cjikl = cklij = cijlk .
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The infinitesimal stress takes the form

The hydrostatic stress is

From (98), we have the ground-state bulk modulus

In terms of spectral expressions, we have,

and the ground-state bulk modulus

Finite strain. In view of (100), we propose a (not the) general finite strain energy for a general anisotropic 
material, i.e.

where φ(I) depends on the spectral invariants �i and cijkl . For example, when specialized to a transversely isotropic 
material, we have from (71)

In this case the spectral components take the form

As mentioned earlier, it is important that W(G) satisfies the P-property. It is clear that, in view of (92), that the 
symmetrical part of the P-property is satisfied. We now show that W(G) has a unique value when two or more of 
the principal stretches have a same value. Consider the case when �∗1 = �

∗
2 = � . In this case the principal direc-

tions u1 and u2 are not unique but u3 has a unique direction. We then have

where

(96)
W(G) =

1

2
( tr [CE]E) =

1

2
tr

(

[C(E∗ +
h

3
I](E∗ +

h

3
I)

)

=
1

2

(

tr [CE∗]E∗ +
2h

3
tr [CE∗]I +

h2

9
tr [CI]I

)

.

(97)T = CE∗ +
h

3
CI .

(98)
tr T

3
=

tr CE∗

3
+ h

tr CI

9
.

(99)χ =
tr CI

9
.

(100)W(G) =
3

∑

i,r=1

{

ciirr

[

e∗i e
∗
r

2
+

he∗r
3

+
h2

18

]}

,

(101)C =
∑

i,j,k,l

cijklui ⊗ uj ⊗ uk ⊗ ul

(102)χ =
1

3

3
∑

i,r=1

ciirr .

(103)W(G) =
3

∑

i,r=1

ciirr

(

f1(�
∗
i )f2(�

∗
r )

2
+

g1(J)f3(�
∗
r )

3
+

g2(J)g3(J)

18

)

+ φ(I) ,

(104)

W(G) =W(T) = ā1

3
∑

i=1

f1(�
∗
i )f2(�

∗
i )+ a(2)g2(J)g3(J)+ ā3

3
∑

i=1

ζi f1(�
∗
i )f2(�

∗
i )

+ ā4

(

3
∑

i=1

ζi f1(�
∗
i )

)(

3
∑

i=1

ζi f2(�
∗
i )

)

+ a(5)g1(J)

3
∑

i=1

ζi f3(�
∗
i )+ φ(I) .

(105)
cijkl =ā1(δikδjl + δjkδil)+ 2ā2δijδkl +

ā3

2
(aiakδjl + aialδjk + ajakδil + ajalδik)

+ 2ā4aiajakal + ā5(akalδij + aiajδkl) .

(106)W(G) = W1 +W2 +W3 ,

(107)
W1 =

1

2

{

(c1111 + c2222 + c1122 + c2211)f1(�)f2(�)

+ (c1133 + c2233)f1(�)f2(�3)+ (c3311 + c3322)f1(�3)f2(�)
}

,
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Making use of the relations

we have

where

It is clear from (109),(111), (112) and (113) that W(G) has a unique value when �∗1 = �
∗
2 = � , since it is independ-

ent of the eigenvectors u1 and u2 . Following the above method, it is straightfoward to show that W(G) has a unique 
value when any two of the principal stretches have a same value. In the case when �∗1 = �

∗
2 = �

∗
3 = � , the value 

of W(G) is unique since, in this case,

The weighted Cauchy stress is

where

Example of specific forms of fα and gα used in experimental fitting
In this section, we suggest specific forms of the strain functions fα and gα to fit experiment data. We strongly 
emphasize that we are not interested in constructing the (or an) optimal form of fα and gα for a particular 
material; we are only interested in giving examples of specific forms of the proposed strain functions that can 
be used to fit experimental data. Constructing an optimal form of the strain functions for a particular material 
similar to the previous work of  Shariff12,14,37 will be done in the near future. We also emphasize that the specific 
forms are mainly constructed via visual curve fitting. Since, we are dealing with many types of isotropic and 
anisotropic materials, curve fitting exercises (such as those found in  references45–47 for isotropic solids only), for 
all the isotropic/anisotropic solids mentioned below require a considerable amount of work and analysis, and it 
is outside the scope of this paper.

Only strain energy functions with φ(I) = 0 are discussed in this section.

Isotropic. In the case of a compressible material, we use the simple strain functions based on the Hencky 
strain energy  function40

to fit the simple tension data of an isotropic polyurethane foam material used in Blatz and  Ko48 experiment, 
where four sets of data are used. The nominal axial stress in the 3-direction is

The values of the lateral stretch �1 = �2 is obtained in terms of �3 via the zero lateral stress condition, i.e.,

(108)W2 =
g1(J)

3

{

3
∑

i=1

(cii11 + cii22)f3(�)+ cii33f3(�3)

}

,

(109)W3 =
1

18
tr (CI)g2(J)g3(J) .

(110)

tr [C(u3 ⊗ u3)] = c1133 + c2233 + c3333 = tr [(CI)(u3 ⊗ u3)] = c3311 + c3322 + c3333,

tr [CI] =
3

∑

i,r=1

ciirr ,

(111)W1 =
1

2

(

Af1(�)f2(�)+ B[f1(�3)f2(�)+ f1(�)f2(�3)]
)

,

(112)W2 =
g1(J)

3

(

(A+ B)f3(�)+ (B+ c3333)f3(�3)
)

,

(113)A = tr [CI − C(u3 ⊗ u3)− CI(u3 ⊗ u3)] + 2c3333 , B = tr [CI(u3 ⊗ u3)] − c3333 .

(114)W(G) = tr [CI]
{

1

2
f1(�)f2(�)+

1

3
g1(J)f3(�)+

1

18
g2(J)g3(J)

}

.

(115)JT =
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�
∗
i
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∂�∗i
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)

vi ⊗ vi +
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i �=j

4�∗i �
∗
j

�
∗2
i − �

∗2
j

κijvi ⊗ vj ,

(116)κij =
∂W(G)

∂ciiii
cijii −

∂W(G)

∂cjjjj
cijjj +

∑

r �=i

∂W(G)

∂ciirr
cijrr −

3
∑

r �=j

∂W(G)

∂cjjrr
cijrr .

(117)f1(x) = f2(x) = g1(x) = g2(x) = ln x ,

(118)t3 = �
∗
3

∂W(I)

∂�∗3
− �

∗
1

∂W(I)

∂�∗1
.



13

Vol.:(0123456789)

Scientific Reports |          (2022) 12:172  | https://doi.org/10.1038/s41598-021-03842-3

www.nature.com/scientificreports/

We use the ground-state values

to fit the simple tension data in Fig. 1; these are the same values that are obtained in Blatz and  Ko48 experiment. 
Fig. 1 shows that our theory reasonably fit the nominal stress vs. axial stretch curve and the behaviour of the 
lateral stretch �1 = �2 in terms of the axial stretch �3 is predicted quite well in Fig. 2.

For incompressible materials ( J = 1 ), we give, below, specific forms for the strain functions to fit the experi-
mental data of  Treloar49 and Jones and  Treloar50. In the case of Treloar’s49 data, we use the strain  functions37

(119)�
∗
1

∂W(I)

∂�∗1
= �

∗
2

∂W(I)

∂�∗2
or �

∗
1

∂W(I)

∂�∗1
= p∗ .

(120)µ = 32 psi , ν = 0.25

Figure 1.  Axial nominal stress t3 versus axial stretch �3 . µ = 32 and ν = 0.25.

Figure 2.  Prediction of the Lateral stretch �1 = �2 versus axial stretch �3.
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to fit  Treloar49 experimental data, where

In uniaxial, pure shear and equibiaxial extensions, the principal nominal stress t3 can be simply expressed as

where m = 0.5, 1, 2 corresponds, respectively, to uniaxial, pure shear and equibiaxial deformatons. It is clear in 
Fig. 3, that the theoretical curves for the three different deformations fit the experiment data very well when the 
shear modulus has the value µ =

11.009

3
 kg/cm2.

To fit Jones and  Treloar50 biaxial experimental data, we use µ = 0.4(MPa) and the strain functions

The biaxial deformation experiment require the stress difference

where σ1 and σ2 are principal Cauchy stresses. Fig. 4 indicates that the strain functions (124) fits the experiment 
extremely well.

Transversely isotropic. We compare our theory with the axial compression experiment of Jin et al.51 on 
compressible rectangular slabs of transversely isotropic Marcellus shale. Although the measured experimental 
strains are infinitesimal, the stress-strain behaviour is very mildly  nonlinear42. Since, the strains are infinitesimal, 
the Cauchy and nominal stress are indistinguishable. The nominal stress-strain relation

is required for the curve fitting and the rock is compressed in the 3-direction. In general, �1  = �2 and their values 
are obtained via the relations

(121)
f1 =f2 , f 21 (x) = r(x) = ln(x)2 + 3(1.37334ψ1(x)+ 0.471163× 10−1ψ2

+ 0.841383× 10−4ψ3) ≥ 0

(122)ψ1 =
∫ x

1

e1−s

s
ds + x − 2 ln x − 1 , ψ2 =

∫ x

1

es−1

s
− x + 1 , ψ3 =

∫ x

1

(s − 1)3

s4.6
ds .

(123)
t3 =

�3r
′(�3)−

1

�
m
3

r′
(

1

�
m
3

)

�3
,

(124)f1 = f2 , f 21 (x) = r(x) = ln(x)2 + 2.4669ψ1(x)+ 0.3771ψ2 ≥ 0 .

(125)σ1 − σ2 = µ(�1r
′(�1)− �2r

′(�2)) ,

(126)
t3 =

�
∗
3

∂W

∂�∗3
− p∗

�3

Figure 3.  Comparison of theoretical curves with the Treloar’s49 experimental data.
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that correspond to the lateral stress-free condition. To compare our theory with the experiment of Jin et al.51, 
we consider the preferred direction

where {g1, g2, g3} is the Cartesian basis and θ is the angle a makes with the direction g3 . The simple strain 
functions

are used in the curve fitting. The values of the ground-state constants used are

We note that Jin et al.51, experimentally, obtained the ground-state constant values:

However, we are not able to satisfactorily fit the data using the data values in (131), but some of our values are 
quite close to the values obtained by Jin et al.51.

We plot the strain-stress equation (126) when a has the directions described by the angles 
θ = 0o, 30o, 45o, 60o, 90o . The compression curves are given in Fig. 5 and it is clear that our theory capture the 
behaviour of the experimental data.

To compare with the experimental data given in this section for incompressible materials, we consider a 
strain energy function of the  form14

where the constants µT and µL , represent the elastic shear moduli in the ground state. The other ground state 
elastic constant β41 can be related to an elastic constant which has more direct physical interpretations, such as 
the extension moduli. Since the ground-state constant values when the fibre tension is different from when fibre 
compression (see Appendix A in Supplementary information), we have,

In this section we compare our theory with the uniaxial tension and compression experiment of Chui et al.52 and 
Takaza et al.53 multiple angle uniaxial experiment on soft tissue. We note that in Chui et al.52 the uniaxial stretch 
in the fibre direction is the stiffest, where else Takaza et al.53 experiment indicates that the transverse stress is 

(127)�
∗
1

∂W

∂�∗1
= p∗ , �

∗
2

∂W

∂�∗2
= p∗

(128)a = cos θg3 + sin θg2 ,

(129)fα(x) = g1(x) = g2(x) = g3(x) = ln(x) , α = 1, 2, . . . 7

(130)
Ea =75.146 GPa , Ep = 34.614 GPa ,

νzp =0.154 , νp = 0.374 , µa = 5.48 GPa .

(131)
Ea =16.12± 1.29 GPa , Ep = 37.72± 7.04 GPa ,

νzp =0.35± 0.15 , νp = 0.25± 0.01 , µa = 6.87± 1.19 GPa .

(132)W(T) =
3

∑

i=1

[

µT f
2
1 (�i)+ 2(µL(I4)− µT )ζi f

2
2 (�i)

]

+
β

2
(I4)

(

3
∑

i=1

ζi f3(�i)

)2

,

(133)µL(I4) = lpq(p)(I4)+ lnq(n)(I4) , β(I4) = mpq(p)(I4)+mnq(n)(I4) , I4 = a · Ca .

Figure 4.  Comparison of theory with the biaxial experimental data of Jones and  Treloar50.
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the stiffest. In soft tissues, the initial large extension is generally achieved at relatively low levels of stress with 
subsequent stiffening at higher levels of extension. This behaviour is due to the recruitment of collagen fibres 
as they become uncrimped and reach their natural lengths. The inverse error function erf −1(x) seems a good 
candidate to describe the above mentioned soft tissue stress-strain behaviour since it has low initial gradients 
followed by high gradients at higher values of x. In view of this, for simplicity, to fit the experiments, we use the 
strain functions

where α1−3 �= 0 are dimensionless material parameters.
The tensor and vector components used below are with respect to the Cartesian basis {g1, g2, g3} . The stress-

strain relations are based on that given in (13). We first consider Chui et al.52 uniaxial tension and compression 
experiment. The nominal stresses Tf =

t11

�1
 for a ≡ [1, 0, 0]T and Tt =

t11

�1
 for a ≡ [0, 1, 0]T are plotted. We use 

µT = 200 , β = 0 and for µL , lp = 600 and ln = 550 . In Fig. 6 we curve fit the data. Using the curve fitted material 
constant values, in Fig. 7 we predict the experimental data for the transverse stress. It is clear from Fig. 7 that 
our theory predicts the data quite well.

In the case of Takaza et al.53 experiment, we plot the Cauchy stress components t11 vs �1 . In Fig. 8 we curve fit 
for a ≡ [1, 0, 0]T (fibre direction stress) and a ≡ [0, 1, 0]T (transverse direction stress). Using the fitted numeri-
cal values for the material constants, we predict the stress for a ≡ [cos(45o), sin(45o), 0]T (shown in Fig. 8) and, 
a ≡ [cos(30o), sin(30o), 0]T and a ≡ [cos(60o), sin(60o), 0]T , both shown in Fig. 9. The values for µL are lp = 70 
and ln = 0 . For simplicity, we have assumed, on the onset, β = 0 and α2 = α3.

Orthotropic. Here, we only consider fitting our theory with the incompressible simple shear experimental 
data of Dokos et al.54 on passive myocardium, where the material can be considered to be  orthotropic55. We 
consider the strain  energy12

where the strain function

(134)
f 21 (x) =

∫ x

1

4

α1
√
π
erf −1(α1ln(y)) dy ≥ 0 , f 22 (x) =

∫ x

1

4

α2
√
π
erf −1(α2ln(y)) dy ≥ 0 ,

f3(x) =
2

α3
√
π
erf −1(α3ln(x)) ,

(135)

W(O) =
3

∑

i=1

[

n(1)s
2(�i)+ n(2)ζis

2(�i)+ n(3)γis
2(�i)

]

+ n(5)

(

3
∑

i=1

ζis(�i)

)2

+ n(6)

(

3
∑

i=1

γis(�i)

)2

+ n(7)

3
∑

i=1

ζis(�i)

3
∑

i=1

γis(�i) ,

Figure 5.  Stress–strain curves for a uniaxial compression deformation. The points are from the experimental 
test of Jin et al.51.
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erf −1(x) is the inverse error function and, ρo and ρ1 are dimensionless material parameters. The tensor and vec-
tor components given below are with respect to the Cartesian basis {g1, g2, g3} . Following the work of  Shariff12 
the shear stress is given by

where γ is the amount of shear,

(136)s(x) =
2

ρ0
√
π
erf −1(ρ0ln(x))+ ρ1(e

1−x + x − 2) ,

(137)σ12 = 2
[

l1(γ s
2 + cs)+ l2(γ c

2 − cs)+ l3γ cs
]

,

Figure 6.  Fitting Chui et al.52 porcine liver uniaxial deformation in the fibre direction. µT = 200 Pa, 
µL = 600/550 Pa, β = 0 Pa, α1 = α2 = α3 = 5.7.

Figure 7.  Predicting Chui et al.52 porcine liver uniaxial deformation in transverse direction. µT = 200 Pa, 
µL = 600/550 Pa, β = 0 Pa, α1 = α2 = α3 = 5.7.
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(138)l1 =
1

2�1

∂W(O)

∂�1
, l2 =

1

2�2

∂W(O)

∂�2
,

(139)l3 =
1

�
2
1 − �

2
2

[(

∂W(O)

∂ζ1
−

∂W(O)

∂ζ2

)

a1a2 +
(

∂W(O)

∂γ1
−

∂W(O)

∂γ2

)

ι1ι2

]

,

(140)�1 =
γ +

√

γ 2 + 4

2
≥ 1, �2 =

1

�1
=

√

γ 2 + 4− γ

2
≤ 1 ,

Figure 8.  Takaza et al.53 uniaxial experiment. µT = 200 kPa, µL = 70 Pa, β = 0 kPa, α1 = 5 , α2 = α3 = 3.2.

Figure 9.  Predicting Takaza et al.53 uniaxial experiment. µT = 200 kPa, µL = 70 kPa, β = 0 kPa, 
α1 = 5,α2 = α3 = 3.2.
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and

Let a and b represent the fibre and sheet  directions55, respectively, of the passive myocardium.
In Figure 10, there are six sets of data, however, the experimental data corresponding to the fibre/sheet 

directions of the passive myocardium with Cartesian components [1, 0, 0]T/[0, 0, 1]T and [0, 0, 1]T /[1, 0, 0]T 
are indistinguishable. We note that no experiment is perfect. This indistinguishable behaviour could be caused 
by minute errors or approximations in the experiment or it could be the actual behaviour of the myocardium 
specimen or other unknown factors.

We first fit the five sets of data that correspond to fibre/sheet directions with Cartesian components (from top 
to bottom in Figure 10) : (a) [0, 1, 0]T/[1, 0, 0]T (b) [0, 1, 0]T/[0, 0, 1]T (c) [1, 0, 0]T/[0, 1, 0]T (d) [0, 0, 1]T/[0, 1, 0]T 
(e)[1, 0, 0]T/[0, 0, 1]T . It is clear in Figure 10 that very good agreement is indicated between the model and the 
experimental data.

Using the fitted values, we then predict the set of data that corresponds to the fibre/sheet directions with 
components [0, 0, 1]T/[1, 0, 0]T . The predicted curve shown in Fig. 11 is also in good agreement with the experi-
mental data.

Finite element implementation
In order to obtain numerical solutions for nonlinear isotropic and anisotropic elastic problems, a finite element 
software, such as  Abaqus56, requires the end users to supply an explicit expression for the consistent tangent 
modulus tensor for an invariant-based potential function. In many cases, the consistent (algorithmic) tangent 
modulus tensor

is used in the finite element code, where τ (J) is the Jaumann rate of the Kirchhoff stress and D is the deforma-
tion rate tensor. The consistent tangent modulus tensor requires, among others, the explicit expression for the 
4th-order tensor (see, for example,57)

(141)c =
1

√

1+ �
2
1

, s =
�1

√

1+ �
2
1

.

(142)CT =
1

J

∂τ (J)

∂D

Figure 10.  Fitting of our theory with the experiment of Dokos et al.54 simple shear data in various sheet/
fibre directions. ρ0 = 3.416, ρ1 = 0.437, n(1) = 0.353, n(2) = −0.534, n(3) = 0.218, n(5) = 47.612,

n(6) = 4.3865, n(7) = −25..
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where W(e) represents a strain energy function. Until recently, only consistent tangent modulus tensors for W(e) 
containing “classical” tensor invariants that can be written explicitly in terms of C were obtained in the literature; 
this due to the fact that the second derivative of the classical invariants with respect to C (a 4th order tensor) is 
easily obtained because they can be expressed explicitly in terms of C . However, the consistent tangent modulus 
tensor for a potential function W(e) , containing spectral invariants that cannot be written explicitly in terms of 
C but can be written explicitly in terms of the eigenvalues and eigenvectors of C , has only recently developed by 
 Shariff11 and, in view of this, the spectral formulation of the consistent tangent modulus tensor, developed by 
 Shariff11, is not so well-known; hence, it may be mistakenly assumed that the spectral consistent tangent modulus 
tensor cannot be explicitly evaluated and that the proposed model cannot be used in a Finite Element commercial 
software. So the objective of this section is to report that the spectral consistent tangent modulus tensor can be 
evaluated using the results given in  Shariff11.

For isotropic, transversely isotropic and two-preferred direction materials, described above, the strain energy 
function W(e) contains, invariants of the form

where G is a second order tensor. In  Shariff11, the tangent modulus tensor (142) for a strain energy function that 
contains invariants of the form (144) is explicitly formulated. In the case of the strain energy function W(G) , given 
in (103), for a general anisotropic material, the corresponding tangent modulus tensor (142) can be derived using 
the results given in  Shariff10; however, due to its complex derivation, we will not derive it here.

Conclusion
In this contribution, we define a generalized strain function that is similar to the Hill’s1 strain function and a volu-
metric function, where they are used to characterize strain energy functions in isotropic or anisotropic elasticity. 
These strain functions are single variable functions that depend on an invariant with a clear physical meaning, 
which facilitates the construction of specific forms of the strain energy function, in the sense that a function of 
a single variable with a clear physical interpretation is easily manageable and this is indicated in “Example of 
specific forms of fα and gα used in experimental fitting” section; they also facilitate the construction of strain 
energy functions that are consistent with infinitesimal elasticity as described in sections “Isotropic” to “General 
anisotropy”. The proposed generalized strain functions enable the development of a strain energy function for a 
general anisotropic material that contains the general 4th order classical stiffness tensor. Having a clear physical 
interpretation, the spectral invariants are attractive in aiding experiment design. Some previous strain energy 
functions that appeared in the literature can be considered as special cases of the proposed generalized strain 
energy functions. The proposed constitutive equations can be easily converted to allow the mechanical influence 

(143)∂2W(e)

∂C∂C
,

(144)I =
3

∑

i=1

(ui · Gui)g(�∗i ) and J ,

Figure 11.  Prediction of fibre/sheet([0, 0, 1]T/[1, 0, 0]T ) directions of the simple shear Dokos et al.54 
experiment. ρ0 = 3.416, ρ1 = 0.437, n(1) = 0.353, n(2) = −0.534, n(3) = 0.218, n(5) = 47.612,

n(6) = 4.3865, n(7) = −25.
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of compressed fibres to be excluded or partial excluded and to model fibre dispersion in collagenous soft tissues, 
and they can be easily implemented in a Finite Element software. In “Example of specific forms of fα and gα 
used in experimental fitting” section, we show that the suggested crude specific strain function forms fitted well 
with experimental data and managed to predict several sets of experimental data. The single-variable-function 
constitutive equations are expected to set a platform for future modelling of various types of anisotropic elastic 
solids; future modellers only require to construct specific forms of the functions fα and gα to model their strain 
energy functions. The extent of the proposed model applicability to different anisotropic needs to be assessed by 
comparing it with relevant experimental data of a much wider class of anisotropic materials.
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