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Electron‑phonon decoupling in two 
dimensions
George McArdle & Igor V. Lerner*

In order to observe many-body localisation in electronic systems, decoupling from the lattice phonons 
is required, which is possible only in out-of-equilibrium systems. We show that such an electron-
phonon decoupling may happen in suspended films and it manifests itself via a bistability in the 
electron temperature. By studying the electron-phonon cooling rate in disordered, suspended films 
with two-dimensional phonons, we derive the conditions needed for such a bistability, which can be 
observed experimentally through hysteretic jumps of several orders of magnitude in the nonlinear 
current-voltage characteristics. We demonstrate that such a regime is achievable in systems with an 
Arrhenius form of the equilibrium conductivity, while practically unreachable in materials with Mott or 
Efros–Shklovskii hopping.

Tremendous experimental progress in isolating quantum many-body systems from the environment (see1 and2 
for reviews) led to the observation of many-body localization (MBL) in ultracold atomic systems3,4. The question 
remains, however, whether MBL can be observed in disordered electronic systems for which it was originally 
predicted5,6. In the absence of interaction, disorder localizes all electron states in low-dimensional systems7 so 
that the dc electronic current vanishes without inelastic processes. The essence of MBL is that inelasticity due 
to the electron-electron (e-e) interaction alone does not lead to thermal equilibration of the system, as was first 
suggested for interacting electrons in a chaotic quantum dot8. Hence in the absence of other mechanisms of 
inelasticity all states would remain localized so that finite-temperature conductivity would remain zero.

The main obstacle to the observation of this effect in electronic systems lies in the coupling of the elec-
tron system to the environment via the electron-phonon (e-ph) interaction. In equilibrium, such a coupling 
equilibrates all electron states with the underlying lattice leading to their delocalization. This results in nonzero 
finite-temperature conductivity, which is driven, in the absence of the electron-electron interaction, by Mott’s 
variable-range hopping9,10 and given, at temperatures lower than some constant T0 , by

where γ = 1/(d + 1) for a d-dimensional system, and σ0 is a constant, temperature-independent prefactor. The 
presence of an electron-electron interaction changes the mechanism of equilibration at sufficiently low tempera-
tures due to the emergence of a so-called Coulomb gap in the single-electron density of states11 resulting in the 
change of the exponent in Eq. (1) to γ = 1/2 , independent of dimensionality.

Although the electron-phonon coupling makes it impossible to observe MBL in electronic systems equili-
brated with the lattice, in out-of-equilibrium systems electrons and phonons might decouple even in the presence 
of a weak electron-phonon interaction. For MBL to be observable, the interacting electrons should be at internal 
equilibrium but not equilibrated with the underlying lattice. It has been suggested12 that such an out-of-equi-
librium decoupling could manifest itself via a bistability in the nonlinear current-voltage (I-V) characteristics. 
It has been shown later13 that such a bistability, caused by the electrons overheating, occurs at low tempera-
tures, T � 0.1T0 , provided that the equilibrium conductivity is close to the Arrhenius law, i.e. γ ≈ 1 in Eq. (1). 
The quantitative description of this bistability13, based on an earlier developed analysis of the electron-phonon 
equilibration rate in bulk disordered systems14–16, allowed a full explanation of giant jumps (up to six orders 
in magnitude) of resistivity experimentally observed17–20 in various materials with the Arrhenius equilibrium 
conductivity where T0 is of order of a few kelvins.

The presence of a bistability in the I-V characteristics below a critical temperature is not, by itself, necessarily 
a signature of MBL but its absence would mean electron-phonon equilibration and hence the absence of MBL. 
Intuitively, it seems that the electron-phonon decoupling would be easier to achieve in suspended disordered 2d 
films. Hence, such films might be promising for observing MBL provided that they are sufficiently disordered 
for the one-electron Anderson localization on the length scale smaller than the film dimensions.

(1)σ(T) = σ0 exp
[

−(T0/T)
γ
]
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In this paper, we derive the electron-phonon equilibration rate in such films and use it to analyze a possible 
bistability of the I-V characteristics on the insulating side where the equilibrium conductivity is governed by 
Eq. (1). We found that in suspended films with the Arrhenius equilibrium conductivity, the bistability occurs at 
lattice temperatures T � 0.1T0 similar, albeit quantitatively different, to bulk systems or thick multilayered films. 
On the other hand, for disordered films with γ � 1/2 , i.e. those with either Mott9,10 or Efros-Shklovskii11 con-
ductivity, the bistability could take place at much lower temperatures. Hence only materials with the Arrhenius 
resistivity at low temperatures could be potentially promising for detecting MBL. While the origin of a small 
Arrhenius gap, T0 ∼ 1 K, is quite an interesting problem by itself, we do not consider it here noticing only that 
there is a variety of materials with such a gap21–25 which typically have granular disorder.

Model
We consider electron-phonon relaxation in a suspended disordered film where both electron and phonon degrees 
of freedom are two-dimensional. Electrons can thermally decouple from phonons when a finite source-drain 
voltage, V, drives the system out of equilibrium. The decoupling might reveal itself in a nonlinear, non-Ohmic 
regime when the electron-phonon interaction is too weak to effectively dissipate the power supplied to the 
electron system. Assuming the electron-electron interaction to be sufficiently strong for thermalizing electrons 
between themselves at a temperature Tel , the energy dissipation from the electronic system to the phonon bath 
(or equivalently the lattice), which is at a temperature Tph , can be described by the phenomenological heat bal-
ance equation13,

Here the temperature-dependent part of the total electron energy is given by E(T) = π2νAT2/6 (where A 
is the sample area and ν is the density of states at the Fermi surface), and R(Tel) is the sample resistance at equi-
librium, which is equal to the inverse conductivity σ−1(Tel) , see Eq. (1), assuming for simplicity a square shape 
of the film. As the electron energy is conserved in e-e collisions, the heat balance is fully determined by the e-ph 
interaction with the scattering time τe-ph(T) which is energy-independent at the low temperatures at which MBL 
might occur, as the relevant part of the dispersion for both the electrons and phonons is linear. In the presence 
of disorder, the e-ph interaction is modified by the effect of phonon-induced impurity displacements14–16,26. This 
can occur in two possible ways depending on whether the phonons directly affect the impurities. In the case of 
a suspended film, the impurities oscillate with the lattice so that the Hamiltonian becomes

Here c†, c are the electron creation and annihilation operators, uq is the the Fourier transform of the lattice 
displacement (corresponding to either transverse or longitudinal phonons), gq = iCq is the standard electron-
phonon vertex with the deformation potential C equal to the Fermi energy εF for two-dimensional phonons, and 
g
imp
k = −iU(k)k is the vertex corresponding to the phonon-displaced impurities, with U(k) being the Fourier 

transform of the impurity potential. For electron scattering from impurities we assume the standard model of 
uncorrelated s-scatterers27, which is equivalent to the Gaussian potential with zero average and δ-correlations,

where τ is the mean scattering time.

Results
We show that electrons can decouple from the phonon bath in thin suspended films provided that the equilibrium 
finite-temperature conductivity is close to the Arrhenius law, i.e. γ ≈ 1 in Eq. (1), and the bath temperature is 
much lower than the Arrhenius “gap” T0 . This conclusion is based on our analysis of the electron-phonon cooling 
rate for 2d phonons similar to that for the phonons in bulk materials (see, e.g.,14–16). Using the quantum kinetic 
equation derived in the Keldysh formalism (see, e.g.,28), we derive the following expression for the electron-
phonon cooling rate due to transverse phonons:

where kF is the Fermi wave vector, ℓ is the electron mean free path, ut is the transverse phonon speed of sound, 
nel = k2F/(2π) is the 2d electron density, ρ2d is the 2d material density and ζ is the Riemann-zeta function. This 
result corresponds to the τ-approximation for the e-ph relaxation rate in Eq. (2) with the temperature depend-
ence 1/τe-ph(T) ∝ T3 and is similar to that for the case of 3d phonons13, where Ė ∝ T6

el − T6
ph , with the difference 

being caused by the weaker dependence of the phonon density of states on the phonon frequency, which goes as 
ωd−1 . As in the 3d case, the leading contribution to the cooling rate is due to the impurity-facilitated interaction 
of electrons with transverse phonons, which is absent in a clean metal. The contribution from the interaction 
with longitudinal phonons has the same form as Eq. (5) with the change ut → ul . Since the longitudinal speed of 
sound, ul , is typically a few times larger than its transverse counterpart29, the longitudinal-phonon contribution 
contains a small factor of (ut /u l)

4 in comparison to the leading contribution given by Eq. (5). It is worth noting 

(2)
V2

R(Tel)
= dE
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= E(Tel)

τe-ph(Tel)
−
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that the overall low-temperature suppression of the e-ph relaxation rate in disordered semiconductors, as com-
pared to a clean metal, is given by a factor of n∗Tℓ/�ut(ul /u t)

3 , reflecting Pippard’s ineffectiveness condition30. 
Here n∗ is the number of electrons per unit cell, which is small in semiconductors most promising for MBL so 
that, with a typical ut of order of 103m/s , the cooling rate could be several orders in magnitude smaller than in a 
dense clean metal in spite of the factor (ul /u t)

3 ∼ 10.
Next, we substitute the cooling rate (5) into the heat balance equation (2). Assuming the usual Drude prefac-

tor for the equilibrium resistance,

we find that the heat balance equation is independent of the mean free path, ℓ . This allows us to extend the results 
for the electron-phonon cooling rate we have obtained in the metallic regime, kFℓ ≫ 1 , to the transition regime, 
kFℓ ∼ 1 , and beyond. This is empirically justified by experiments20 made in the vicinity of the superconducting-
insulating transition, where kFℓ < 1 , as the results obtained were in excellent quantitative agreement with the 
results for the bistability13 obtained using the cooling rate via interactions with bulk phonons which had been 
calculated in the metallic regime14–16.

It is convenient to represent the heat balance equation, obtained by substituting the equilibrium resist-
ance (6) and the cooling rate (5) into Eq. (2), in terms of a dimensionless temperature and voltage, defined by 
tel,ph = Tel,ph/T0 and v = V/V0 with V2

0 = α2k2FAT5
0/(e

2�3
0) , as follows:

For any given voltage, the electron temperature must be higher than the bath temperature to satisfy this equa-
tion. By itself this does not signify the electron-phonon decoupling. On the other hand, we can see clear evidence 
of decoupling in the presence of a bistability where, below a critical bath temperature and in a certain range of 
the applied voltage, electrons can mutually equilibrate at two distinct temperatures, “cold” t<el  and “hot” t>el  . It is 
in the regime of overheating, at temperature t>el  which is practically independent of the lattice temperature tph , 
that the electrons become fully decoupled from the phonons.

Such a bistability occurs when Eq. (7) has, for a given voltage and bath temperature, two stable solutions 
for tel . This happens below the critical phonon bath temperature tcrph when the r.h.s. of this equation becomes 
a non-monotonic function of the electron temperature. An elementary analysis shows that the critical bath 
temperature is given by

For tph < tcrph Eq. (7) has three solutions in a certain region of the source-drain voltage, as illustrated in Fig. 1 
for the Arrhenius case, γ = 1 . For a given voltage within this region, both the “cold” and “hot” states, at elec-
tronic temperatures t<el  and t>el  respectively, are stable. The middle solution, however, corresponds to an unstable 
electronic state.

(6)R(Tel) = R0 exp

[(

T0

Tel

)γ ]

≡ �kF

nele2ℓ
exp
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T0

Tel

)γ ]

,

(7)v2 =
[

t5el − t5ph

]

exp
[

(1/tel)
γ
]

.
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Tcr
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(

1+ 5

γ
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(

1
γ
+ 1

5

)

.

Figure 1.   (a) The bistability region, where two stable solutions for tel exist in a certain range of the applied 
voltage, is shown for tph = 0.75tcrph for the Arrhenius equilibrium resistance, γ = 1 . The blue dots correspond to 
cold and hot electron states at temperatures t<el and t>el , respectively, and the red dot to an unstable solution. (b) 
The dependence of tel on v2 for different phonon bath temperatures is shown as follows from Eq. (7). Above the 
critical bath temperature this corresponds to the actual tel(v) dependence while below tcrph the electronic system 
will fall either to t<el or to t>el , making temperatures in between experimentally inaccessible.
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Formally, a similar bistability takes place also for the Mott ( γ = 1/3 ) and Efros-Shklovskii ( γ = 1/2 ) hopping 
regimes. However, a faster than exponential dependence of the critical phonon bath temperature on 1/γ , Eq. (8), 
pushes the bistability in these regimes to very low temperatures: while tcrph ≈ 0.12 in the Arrhenius case, it is about 
5 · 10−3 in the Efros-Shklovskii regime, and 10−4 in the Mott regime. With T0 ∼ 1 K in materials of interest, the 
bistability regime would be practically unreachable in the systems with the Mott or Efros-Shklovskii conductivity, 
while the experimentally observed bistability in an Arrhenius material20 was in a quantitative agreement with 
the theoretical description13 similar to that developed here but with the electrons interacting with bulk phonons. 
Due to this fact we conclude that for γ ≈ 1 the bistability occurs for T � 0.1T0.

At the bistability boundaries for a given tph , the derivative of the r.h.s. of Eq. (7) vanishes, so that the bounda-
ries are determined in the Arrhenius case by the following equation

which for tph < tcrph has two solutions, hot, thel , and cold, tcel , depicted in Fig. 2(a). The corresponding temperature 
dependence of the voltage boundaries of the bistability, v> for the cold state and v< for the hot one, obtained by 
substituting tc,hel  into Eq. (7), is shown in Fig. 2(b). As previously mentioned, in order to satisfy the heat balance, 
Eq. (2), the electron temperature must always be higher than the phonon bath. However, while in the cold state 
tcel almost follows tph , in the overheated hot state thel is almost independent of the bath temperature, and so is the 
voltage boundary of this state, v< . Since the electrons in the overheated state are practically decoupled from the 
phonon bath, it is the state most suitable for a possible observation of MBL.

It is important to understand the experimental signatures of the bistability as this will confirm with certainty 
that electron-phonon decoupling is present. A relatively simple experimental signature is the presence of a 
region of excluded temperatures corresponding to the unstable states, which are those enclosed by the curve in 
Fig. 2(a). Such a region was experimentally observed in20 and turned out to be in quantitative agreement with 
the theoretical prediction13 made for films on a substrate with electrons interacting with bulk phonons. But the 
most striking feature due to bistability is giant hysteretic jumps in the I-V characteristics: due to the exponential 
dependence of resistance on the inverse electron temperature, a switch between the cold and hot electron states 
under a given voltage V leads to abrupt changes in the current I that can be of many orders in magnitude.

To see this, we solve numerically the equation for the non-linear conductance in the Arrhenius regime,

where R0 is the Drude resistivity, Eq. (6). The solution has an S-shape, as shown in Fig. 3(a), with the dotted part 
being unstable. This makes hysteretic jumps between the low conductance (cold electron) state and the high 
conductance (hot electron) state inevitable.

These jumps are illustrated in Fig. 3(b). Let us stress that exact positions of the jumps are random as the 
boundaries here are simply bounds on the true jumps; where the actual jumps occur depends on the decay 
mechanisms of the states, as discussed in13,31. Moreover, we do not estimate numerical values for these bounda-
ries, because in order to obtain an accurate value for the voltage scale, V0 , we would also need to include the 
effects of localisation into the electron-phonon cooling rate32, which goes beyond the aim of this work. Despite 
this, the temperature dependence of the positions of the jumps should be experimentally observable, as in the 
case of electrons interacting with bulk phonons17–20. Namely, one expects to see a strong temperature dependence 

(9)5tel = 1− (tph/tel)
5,

(10)G = I

V
= 1

R(tel)
= 1

R0
e−1/tel(v),

Figure 2.   Dependence of the bistability boundaries on the phonon temperature for (a) the electron temperature 
and (b) the source-drain voltage, for γ = 1 . The region of electron temperatures inside the curve (a) is 
experimentally inaccessible as it corresponds to the unstable states.
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of the boundary for the cold electron states (v>) and almost no temperature dependence of the boundary for the 
hot states (v<) , as well as the inaccessible region of electron temperatures as in Fig. 2(a).

Discussion
To summarise, we have shown that for films with an equilibrium conductivity exhibiting an Arrhenius (or 
Arrhenius-like) law, R(T) = R0 exp [(T0/T)

γ ] with γ ≈ 1 , electrons can decouple from phonons in a nonlinear 
regime. Such an electron-phonon decoupling manifests itself as a bistability in the electron temperature that 
can be observed via the I-V characteristics. This bistability occurs in a certain region of source-drain voltages 
for a lattice temperature T � 0.1T0 , while T0 is known to be of order of a few kelvins in numerous materials. On 
the contrary, in systems where the equilibrium conductivity is of the form of either Mott (γ = 1/3) or Efros-
Shklovskii (γ = 1/2) hopping, the lattice temperature required for the bistability is much lower and practically 
not accessible. Therefore, for achieving the electron-phonon decoupling necessary for MBL, materials with an 
Arrhenius conductivity, such as those recently seen in33, are most promising.

The bistability in the electron temperature means that there exist stable ‘cold’ and ‘hot’ electron states. The 
former have a temperature proportional to (but slightly higher than) that of the lattice while the latter have a 
temperature which is almost independent of the lattice temperature. It is in this state that the electrons are fully 
decoupled from the phonons, making it most promising for observing MBL. The most significant experimental 
signature of the bistability is giant jumps in the non-linear I-V characteristics between the cold (low conduct-
ance) and the hot (relatively high conductance) states. Such jumps have been previously associated, in the 3d 
case, with a possible transition to MBL34. We emphasise, however, that while these jumps provide the evidence 
for electron-phonon decoupling, further evidence would be needed to confirm the existence of the MBL state.

Methods
In order to calculate the electron-phonon cooling rate in two-dimensional systems, Eq. (5), we used the Keldysh 
formalism (see, e.g.,28) in the form similar to that used in calculating the cooling rate in 3D systems16. The quan-
tum kinetic equation can be written as

where (after setting � = 1 ) the collision integral for the electron-phonon interaction modified by disorder is 
given by16,

Here the brackets �· · · � stand for averaging over the disorder potential, Eq. (4), Nω = 1+ 2nB(ω) and 
fε = 1− 2nF(ε) , with nB(ω) and nF(ε) being the standard Bose and Fermi distributions respectively; ĝα,β can 

(11)∂t fε(t) = I[f ],

(12)
I[f ] = i

4πνA

〈
∫ ∞

−∞

dω

2π

∫

drdr′�G(r, r′, ε)ĝα(r
′)�G(r′, r, ε − ω)�Dαβ(r

′ − r,ω)ĝβ(r)

× [(fε − fε−ω)Nω + fεfε−ω − 1]
〉

.

Figure 3.   (a) The S-shape solution to the equation for the non-linear conductance, Eq. (10), for tph = 0.75tcrph . 
The dotted part corresponds to unstable states, resulting in hysteretic jumps, denoted by the arrows. Note that 
the jumps do not necessarily occur at the boundaries of the bistability (dashed lines). (b) The numerically 
predicted I-V characteristics for various lattice temperatures. The jumps here are shown to be at the bistability 
boundaries, though this may not be the case in reality. The V > 0 side of the graph illustrates the transition from 
the cold electron (low conductance) state to the hot electron (high conductance) state, which occurs when the 
source-drain voltage is increased. The V < 0 side displays the opposite transition when the voltage is decreased, 
going from the hot to cold electron states. In both (a) and (b) the voltage is measured in units of V0 and the 
current is in units such that the resistance is measured in units of R0.
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be either gq or g imp
k  , see Eq. (3); �G ≡ GR − GA and �D ≡ DR − DA are the differences between the retarded 

and advanced Green’s functions for electrons and phonons, respectively.
The phonon Green’s functions are not directly affected by impurities so that their Fourier transforms, which 

include contributions from the longitudinal, j = l , and transverse, j = t , phonons, �Dαβ(q,ω) =
∑

j �D
(j)
αβ(q,ω) , 

are given by the standard expressions

where η(l)αβ = qαqβ/q
2 and η(t)αβ = δαβ − qαqβ/q

2 , and we assume the Debye model for the phonon dispersion, 
ωj(q) = uj|q|�(q0 − |q|) , where q0 is the Debye momentum.

The disorder-averaged electron Green’s functions GR,A(r, r′, ε) depend only on the difference of their spatial 
arguments, and the appropriate Fourier transforms are given by

A further contribution of disorder in the collision integral (12) is described by vertex corrections. Including only 
the leading transverse phonons contribution, these corrections are shown in the metallic regime, kFℓ ≫ 1 , in 
Fig. 4. In the absence of disorder, transverse phonons do not alter the local charge density and so cannot couple 
directly to the electrons. However, in disordered materials they contribute via the vertices g imp

k  , Eq. (3), which 
describe the effect of phonon-induced impurity displacements.

The longitudinal-phonons contribution to the cooling rate turns out to be functionally the same as that of 
the transverse phonons, given in Eq. (5), with ul substituted for ut . It is much smaller as (ut/ul)4 ≪ 1 . Note that 
this contribution, which exists also in clean systems, involves more cumbersome diagrams that include diffuson 
propagators similar to the 3d case16. We do not give any further detail of calculating the longitudinal-phonons 
contribution as it is not relevant for the final results.

The calculation of the diagrams depicted in Fig. 4 is relatively straightforward. We assume that the electron-
electron interaction is sufficiently strong such that the electrons mutually thermalise and can be assigned a 
single temperature, Tel which is higher than the phonon bath (lattice) temperature, Tph . This results in a quasi-
equilibrium situation where fε = tanh(ε/2Tel(t)) and Nω(Tph) = coth(ω/2Tph) . Then the spatial integral in 
Eq. (12) is calculated after the Fourier transform and using the fact that qTℓ ≪ 1 (where qT ∼ T/ut is a typical 
phonon momentum at temperature T) and the identity fεfε−ω − 1 = −Nω(Tel)(fε − fε−ω) , one reduces the 
collision integral to

where K(ω) is expressed in terms of a dimensionless electron-phonon coupling constant, βt =
νε2F

2ρ2du
2
t

, as

Substituting the result of Eq. (15) into Eq. (11) and multiplying both sides by ε , one finds after integrating 
with to respect to ε that the cooling rate (restoring factors of � ) is given by

(13)�D
(j)
αβ(q,ω) =

[

DR
αβ(q,ω)− DA

αβ(q,ω)
](j)

= −
π iη

(j)
αβ

ρ2dωj(q)

[

δ
(

ω − ωj(q)
)

− δ
(

ω + ωj(q)
)]

,

(14)GR,A(p, ε) = 1

ε − ξp ± i/2τ
, ξp = εp − εF.

(15)I[f ] =
∫

dωK(ω)
[

Nω(Tph)− Nω(Tel)
][

(fε+ω − fε)+ (fε−ω − fε)
]

,

(16)K(ω) = βtsgn(ω)

8kFℓ

(

ωℓ

ut

)2

.

Figure 4.   The two lowest-order diagrams that contribute to the collision integral in Eq. (12) due to the 
interaction of electrons with transverse phonons via impurity scattering: the smaller squares correspond to g imp

k  , 
the straight lines are the electron Green’s functions, the wavy lines are the phonon Green’s functions and the 
dashed lines describe the standard averaging over impurities.
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Performing the integration leads to the result in Eq. (5).
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