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Elevated serum S14 levels are 
associated with more severe liver 
steatosis by ultrasonography
Wen‑Ti Lin1,2,3, Kuen‑Cheh Yang4,5,6, Yen‑Ting Chen1, Kuo‑Chin Huang4,5,6,8* & 
Wei‑Shiung Yang1,7,8*

S14 has been identified as a potent stimulator of de novo hepatic lipogenesis (DNL) in rodents. 
However, it is unclear how S14 is regulated in humans with non‑alcoholic fatty liver disease (NAFLD). 
The aim of this study was to investigate the relationship between serum S14 and liver steatosis in 
humans with NAFLD. A total of 614 participants were recruited from community. Liver steatosis 
were evaluated according to the Ultrasonographic Fatty Liver Indicator (US‑FLI), which is a semi‑
quantitative liver ultrasound score. Anthropometric and biochemical indices were collected for further 
analysis. The risk of liver steatosis severity was estimated by a cumulative logistic regression model. 
NAFLD was found in 52.2% of the participants. The subjects with NAFLD showed higher levels of 
waist circumference, body mass index, insulin resistance, aspartate aminotransferase, dyslipidemia, 
visceral fat, serum S14 and risk of metabolic syndrome (MetS) than those of controls. Compared with 
the first tertile of serum S14, the odds ratios for the risk of more severe liver steatosis were 1.22 (95% 
confidence interval [CI]: 0.78–1.92) for those of the second tertile and 2.08 (95% CI: 1.28–3.39) for the 
third tertile (P for trend < 0.05) after adjusting for confounding factors. Higher serum S14 level was not 
only found in NAFLD subjects but also was positively correlated with the severity of liver steatosis. 
S14 may play an important role in the mechanism of DNL for NAFLD in humans.

Non-alcoholic fatty liver disease (NAFLD), defined as excess triglycerides accumulation in the liver, has become 
the most common cause for chronic liver disease in developed countries and is estimated to impact at least 30% 
of  Americans1,2 and 23–32% of Asian  people3. Obesity, dyslipidemia and type 2 diabetes are well-known risk 
factors for the development of NAFLD. In subjects with NAFLD, the primary event is over-accumulation of 
triglycerides in hepatocytes. Donnelly et al.4 reported that fatty acid newly made within the hepatocytes through 
de novo lipogenesis (DNL) is one of the major sources of triglycerides in the liver. Other studies have also dem-
onstrated that abnormally upregulated DNL is a distinct characteristic of individuals with  NAFLD4,5. The full 
understanding of the mechanisms between NAFLD and DNL is of extreme importance and may provide new 
insight into identifying new targets for treatment of NAFLD.

Recently, S14 (spot 14) or termed thyroid hormone responsive spot 14 protein (THRSP), was reported to be 
a potent modulator of lipid synthesis. This gene is predominantly expressed in hepatic, adipose and lactating 
mammary tissues, and its expression has been found to respond rapidly to stimulation of thyroid hormones 
and  carbohydrate6–8. Previous studies have shown that S14 plays a key role in the DNL process by modulating 
lipogenic genes such as SREBP-1c and  LXR9. In animal models, overexpression of S14 in C57B2/6 mice pro-
moted hepatic lipogenesis, whereas a decrease in S14 expression by siRNA (small interfering RNA) in db/db 
mice showed an opposite  result9. In addition, S14 knockdown rendered marked inhibition of lipogenic enzyme 
immunoreactivities in primary culture of rat  hepatocytes10. Furthermore, the S14 null mice exhibited resistance 
to diet-induced obesity, improved glucose tolerance and insulin  sensitivity11. Human NAFLD data regarding 
S14 are relatively lacking and focused mainly on obesity, not NAFLD. In studies of obese human, S14 mRNA 
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level in adipose tissue was abnormally  regulated12 and was lower in adipose tissue of obese  subjects13, which 
seemed to be inconsistent with the observation of the S14 null mice  experiment11. Further studies are needed 
to elucidate this controversy issue.

Since S14 plays an important role in lipogenesis, we speculated that S14 may participate in the NAFLD 
development. In fact, novel anti-NAFLD treatment targeting on DNL is in  development14. Zeng et al. reported 
that MiR-451a represented a new potential target for NAFLD through regulating S14 gene  expression15. Further 
research is needed to clarify the contribution of S14 to the development of NAFLD. Therefore, the objective of 
this study was to investigate the relationship between serum S14 concentrations and the severity of liver steatosis 
in NAFLD subjects.

Methods
Subjects and data collection. We recruited 614 healthy volunteers in the community of Hsinchu city, 
Taiwan. The study protocol was approved by the Institutional Review Board of National Taiwan University Hos-
pital (IRB NO. 201210012RIC) and was carried out in accordance with its guideline. All the subjects provided 
written informed consent and the details were described in our previous  study16. All volunteers did not have 
excess alcohol intake (> 30 g and > 20 g for men and women, respectively) or chronic liver  diseases16. Completed 
detailed surveys that included standardized questionnaires and the evaluation of the medical and personal his-
tory were administered by our examiners.

Anthropometric and laboratory measurements. Anthropometric data were collected, and biochemi-
cal analyses were performed in routine health examinations. We calculated body mass index (BMI) as weight/
height2 (kg/m2). Standard body mass index (BMI) was calculated and the cutoffs were defined according to 
the Department of Health in Taiwan: optimal BMI was defined as 18.5 ≤ BMI < 24 kg/m2 (non-obese group), 
overweight and obesity were defined as BMI ≥ 24 kg/m2 (overweight and obese group). Waist circumference was 
measured at the midpoint between the lower border of the rib cage and iliac crest. Blood samples were drawn 
from each participant after 12 h of overnight fasting and were immediately stored at − 80 °C for. The homeostasis 
model assessment estimate of insulin resistance (HOMA-IR) was calculated from plasma insulin and glucose 
values, which were developed by the Diabetes Trials Unit of the Oxford Center for Diabetes, Endocrinology, 
and Metabolism (https:// www. dtu. ox. ac. uk/ homac alcul ator). Trunk fat percentage (0–75%) was measured by 
bioelectrical impedance analysis (BIA) using Tanita AB-140 Viscan (Tanita Corp, Tokyo, Japan). The trunk fat 
percentage are significantly with total abdominal adipose  tissue17 and total subcutaneous abdominal adipose 
 tissue18. Body fat and visceral fat were measured by BIA using Tanita MC-980 (Tanita Corp, Tokyo, Japan) and 
shown by percentage and visceral fat rating (VFR, score ranges from 1–59). A rating between 1 and 12 indicates 
healthy level and a 13–59 indicates excessive level of visceral fat.

S14 immunoassay. We developed an ELISA to measure serum S14 levels in our lab as previously 
 described19. In brief, polystyrene MaxiSorp 96-well plates (Nunc A/S, Roskilde, Denmark) were coated with 
100 μL/well human recombinant S14 proteins (100 ng/mL, diluted in PBS; cat no. ag3721, ProteinTech, Chicago, 
IL). The coated plates were sealed and incubated on an orbital shaker (at 100 rpm; OS701, KS, Taiwan) at 4 °C 
overnight. The liquid was removed and the plates were washed in washing buffer (PBS-Tween (PBS-T), 0.05% 
Tween 20), and were pad-dried on paper towel. The plates were blocked with 100 μL blocking buffer/well (PBS-T 
with 1% BSA), and incubated at 4 °C overnight at 100 rpm on the orbital shaker. After washing with PBS-T three 
times and dried, 50 μL serum samples were added into each well and incubated for 1 h at room temperature (RT) 
on a rotor at 150 rpm. Subsequently, rabbit anti-S14 polyclonal antibody (diluted in blocking buffer by 1:10,000, 
catalog no. 13054-1-AP, ProteinTech, Chicago, IL) were added (50 μL per well) and incubated for 2 h at RT 
shaken at 150 rpm. After washing with PBS-T three times, horseradish peroxidase-conjugated goat anti-rabbit 
IgG polyclonal antibody (diluted in blocking buffer by 1:10,000; GTX213110-01, Irvine, CA) was added (100 μL 
per well) and shaken (150 rpm) for 1 h at RT. Following five times of washing with PBS-T, color was developed 
using the 100 μL 3,3′,5,5′-tetramethylbenzidine (TMB) solution (catalog no. 53-00-03,KPL, Gaithersburg, MD) 
each well. After 10-min incubation, the reaction was stopped by adding 100  μL 2.0  M  H2SO4 per well. The 
absorbance was measured immediately at 450 nm by microplate reader (VERSA max, Munich, Germany). Four-
parameter logistic model was used to draw the standard curve. For the sensitivity, the minimum detection limit 
was 10 ng/mL. For the intra-assay variability, the coefficient of variance (CV) of 6 replicate sets of one serum 
sample was 7.5%. For the inter-assay variability, the CV of 6 independent assays of one serum sample was 9.5%.

Abdominal ultrasonography for NAFLD. Hepatic ultrasonography was performed in all participants, 
after an 8-h overnight fasting by well-trained physicians with a 3.5–5 MHz transducer and a high-resolution 
ultrasonographic system (Hitachi Aloka ProSound α6). The severity of hepatic steatosis was quantified by Ultra-
sonographic Fatty Liver Indicator (US-FLI)20, a semi-quantitative scoring system, which ranges from 0 to 8. 
Before the study, all of the physicians reached a consensus concerning the standard procedure for ultrasound 
 scanning16. A similar study of US-FLI has demonstrated a good inter-observer agreement (κ = 0.805–0.882, 
P < 0.001)21. The semi-quantitative US-FLI is composed of five indicators: (1) presence of liver-kidney contrast 
graded as mild/moderate (score 2) to severe (score 3); and (2) presence (score 1) or absence (score 0) of poste-
rior attenuation of the ultrasound beam, vessel blurring, difficult visualization of the gallbladder wall, difficult 
visualization of the diaphragm and areas of focal sparing (each score 1). Subjects were divided into three groups 
according to the severity of ultrasonographic liver steatosis by the US-FLI score: normal (score 0–1), mild stea-
tosis (score 2–4), and moderate-to-severe steatosis (score ≥ 5). Consistency of various severity of liver steatosis 
between US-FLI and histological findings was demonstrated to be  good21.

https://www.dtu.ox.ac.uk/homacalculator
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The definition of metabolic syndrome. The diagnosis of metabolic syndrome (MetS) was based on the 
modified National Cholesterol Education Program Adult Treatment Panel III Criteria (NCEP-ATP III) for the 
Asian population. MetS was present if three or more of the following five criteria were met: (1) a WC of ≥ 90 cm for 
men or ≥ 80 cm for women; (2) a systolic blood pressure ≥ 130 mmHg, or a diastolic blood pressure ≥ 85 mmHg, 
or the use of medications for hypertension; (3) hyperglycemia (FPG ≥ 100 mg/dL) or the use of medications for 
diabetes; (4) hypertriglyceridemia (TG ≥ 150 mg/dL) or the use of medications for hyperlipidemia; and (5) low 
HDL-C (≤ 40 mg/dL in men and ≤ 50 mg/dL in women) or the use of medications for hyperlipidemia.

Statistical analysis. Data are expressed as mean ± standard deviation (SD) and as percentages respectively 
for continuous and categorical variables. Because of skewed distributions, the natural logarithmic (ln) transfor-
mations were performed for S14 values to approximate a normal distribution before analysis. Difference between 
groups were tested using an independent t-test for continuous variables, and the Pearson Chi-squared test for 
categorical variables. The relationships between serum S14 level and metabolic factors were explored by Pearson 
correlation coefficient (r).

The risk of liver steatosis severity for serum S14 level was shown by odds ratios (OR) and 95% confidence 
interval (CI) using a cumulative logistic regression model. It was performed by using liver steatosis severity as a 
dependent variable (normal, mild and moderate-to-severe) and S14 tertile as an independent variable with adjust-
ment for age, sex, HOMA-IR, MetS, CRP, menopause, exercise time, and smoking status. The ranges of the first, 
second and third tertiles of S14 were 11.98–71.8, 71.9–115.1, 115.2–588.3 ng/mL, respectively. The least square 
means (LSMs) of serum S14 level was calculated and compared in the generalized linear model after adjustment 
for above confounding factors. In order to clarify the effect of visceral fat, we further analyzed the LSMs of S14 
in mild and moderate to severe NAFLD subjects stratified by three VFR group [high VFR group (score 10–25), 
medium VFR group (score 6–9), low VFR group (score 1–5)]. All analyses were performed with SPSS 20.0. A P 
value of less than 0.05 indicated statistical significance.

Results
Six participants were excluded because their serum S14 were outlier. From 608 participants, 327 (52.2%) cases 
had NAFLD and among them, 220 (35.5%) and 107 (16.7%) were classified as mild and moderate-to-severe, 
respectively. The clinical and metabolic characteristics of the participants are summarized in Table 1. Waist 
circumference, BMI, insulin, HOMA-IR (homeostasis Model Assessment for Insulin Resistance), ALT (Alanine 
aminotransferase), triglycerides, lower HDL-C (high-density lipoprotein (HDL) cholesterol), trunk fat percent-
age, VFR (visceral fat rating), MetS (metabolic syndrome) were comparatively more abnormal or prevalent in 
NAFLD patients than control group in both non-obese (BMI < 24) and overweight/obese group (BMI ≥ 24). In 
the non-obese group, the serum S14 was 108.5 ± 45.4 ng/dL and 96.3 ± 44.4 ng/dL respectively in subjects with 
and without NAFLD (P = 0.023). Similarly, in the overweight/obese group, the serum S14 was 96.4 ± 45.6 ng/dL 
and 84.2 ± 41.6 ng/dL respectively in subjects with and without NAFLD (P = 0.06).

Table 2 showed the Pearson correlation coefficients between serum S14 and metabolic factors. There were 
significant negative correlations between serum S14 level and age (ρ = − 0.359, P = 0.001), waist circumference 
(ρ = − 0.104, P = 0.014), fasting plasma glucose (ρ = − 0.087, P = 0.031), total cholesterol (ρ = − 0.107, P = 0.009), 
serum triglycerides (ρ = − 0.107, P = 0.008), trunk fat percentage (ρ = − 0.141, P = 0.001) and VFR (ρ = − 0.108, 
P = 0.008). Nevertheless, no significant statistical correlation was observed between S14 level and HOMA-IR 
and body fat percentage.

We performed cumulative logistic regression analysis to examine the relationship between the severity of 
liver steatosis with serum S14 (Table 3). In model 1, adjusted for age, sex and BMI, the subjects in the highest S14 
tertile showed a higher risk for NAFLD compared to those in the lowest S14 tertile (OR 1.86; 95% CI 1.21–2.87; 
P for trend < 0.05). In the models 2 and 3 after further adjustment for a series of confounders such as HOMA-IR, 
CRP, metabolic syndrome, smoking behavior, exercise time and menopause, there was still a dose response for 
higher risk of NAFLD severity with higher level of S14 (P for trend < 0.05). The ORs for more severe NAFLD 
were 1.22 (95% CI 0.78–1.92) and 2.08 (95% CI 1.28–3.39) respectively for the second tertile and the highest 
tertile of S14 as compared to the lowest tertile (Table 3).

The least square means of serum S14 level in mild and moderate to severe NAFLD groups after adjusting 
confounding factors (age, sex, obesity, HOMA-IR, CRP, metabolic syndrome, exercise time, menopause, smoking 
behavior) were significantly higher than the control group (adjusted means ± SE: 102.06 ± 2.81, 102.16 ± 4.56 vs. 
86.67 ± 3.09; 95% CI 95.53–107.59, 93.21–111.11 vs. 80.60–92.74, respectively. P < 0.0001) in Fig. 1A.

The least square means of serum S14 level were estimated after adjustment for potential confounding factors 
(age, sex, BMI, HOMA-IR, CRP, metabolic syndrome, exercise time, menopause, smoking behavior) with dif-
ferent visceral fat level stratification (Fig. 1B). The serum S14 levels were lower in the subjects of higher visceral 
fat. However, we found that serum S14 level remained significant higher in more severe NAFLD (P < 0.05) across 
all VFR groups.

Discussion
In our study, we demonstrated that with increasing severity of liver steatosis, there were statistically significant 
increase in serum S14 levels after considering the insulin resistance, BMI and metabolic syndrome. To the best 
of our knowledge, this is the first study to investigate the relationship between serum S14 levels and NAFLD in 
human subjects.

NAFLD is now the leading cause of liver disease in developed countries. Despite its high prevalence, knowl-
edge on the pathogenesis of NAFLD was still incomplete. The widely accepted “multiple hit theory” provides the 
explanation for NAFLD development. It is postulated that the primary event is over-accumulation of triglycerides 
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in  hepatocytes22. According to previous studies, the contribution of DNL to the hepatic total TG content in the 
fasting status was very small (less than 5%) and elevated following meals (23%) in healthy human  subjects23. 
In contrast, DNL activity in subjects with NAFLD is already elevated in the fasting status (26% ± 7%)4. Accord-
ingly, enhanced liver DNL appears to be one of the major abnormalities of hepatic fat metabolism in subjects 
with NAFLD.

S14 has been reported to closely link to DNL. It is a 17-kDa nuclear protein mainly expressed in lipogenic 
tissues and is postulated to transduce hormone-related or nutrient-related signals to lipogenic genes through a 
molecular mechanism not yet elucidated. S14 gene may act as a key lipogenic transcriptional  cofactor24 and is 
induced rapidly by thyroid hormone, carbohydrate intake, adipose tissue differentiation, insulin and  lactation6,25. 
Studies have shown that S14 is important for the biosynthesis of triglycerides with medium-length fatty acid 
chain and is regulated through interactions with lipogenic factors such as thyroid receptor, ACC (acetyl‐CoA 
carboxylase)26, SREBP-1c27, PXR (the pregnane X receptor)28, LXR (liver X receptor)9 and CAR (constitutive 
androstane receptor)29. In animal model, rat hepatocytes with S14 knockdown showed marked reduction of tri-
glycerides  formation10. Overexpression of S14 led to increased triglyceride accumulation via enhanced lipogenic 
genes expression (SREBP-1c, FAS, DGAT) in livers of C57Bl/6  mice9. In our study, higher S14 level predicted 
more severe NAFLD after adjusting potential confounding factors (Table 3), our data implied that DNL was 
abnormally upregulated in NAFLD subjects, which is consistent with previous  studies4,5.

The serum S14 was negatively linked to visceral fat. However, BMI and total body fat percentage showed 
negative associations with serum S14 without statistical significance, which implied that S14 may be related to 
abdominal adiposity than general obesity. Similar to our findings, Ortega et al. showed that S14 mRNA level in 
abdominal omental adipose tissue was negatively associated with BMI and percentage of fat  mass13. Kirschner 
et al. also found that S14 gene expression level was strongly down-regulated in the abdominal adipose tissue of 
non-obese subjects in response to fasting, but only minimally down-regulated in obese  individuals12. Our prior 
study and this  study30 both supported that patients with metabolic syndrome had lower serum S14 level than 
those without.

Previous studies exploring lipogenic genes expression in obese subjects may partly explain this contradictory 
finding between lower serum S14 level and cardiometabolic factors. After a large and long-lasting fat excess, the 

Table 1.  Baseline characteristics and clinical variables stratified by the presence of NAFLD and BMI level. 
BMI body mass index, FPG fasting plasma glucose, HOMA-IR homeostasis model assessment of insulin 
resistance, AST aspartate aminotransferase, ALT alanine aminotransferase, TCHO total cholesterol, HDL high-
density lipoprotein, LDL low-density lipoprotein, US-FLI Ultrasonography Fatty Liver Index (score: 0–8), VFR 
visceral fat rating (score: 1–59).

Variable All (N = 608)

Non-obese group (BMI < 24) Overweight and obese group (BMI ≥ 24)

Non-NAFLD 
(N = 226) NAFLD (N = 107) P-value

Non-NAFLD 
(N = 55) NAFLD (N = 220) P-value

Male (%) 236 (38.8) 48 (21.2) 38 (35.5) 0.005 26 (47.3) 124 (56.4) 0.226

Age (years) 42.7 ± 11.5 41.1 ± 11.0 42.9 ± 11.9 0.185 44.8 ± 11.4 43.7 ± 11.7 0.512

Waist (cm) 81.1 ± 10.7 73.0 ± 6.2 77.6 ± 6.5 0.000 85.4 ± 6.2 91.0 ± 8.3 0.000

BMI (kg/m2) 24.0 ± 4.4 20.6 ± 1.9 21.9 ± 1.5 0.000 26.0 ± 1.7 28.2 ± 3.9 0.000

FPG (mg/dL) 88.1 ± 17.3 83.8 ± 13.0 85.2 ± 8.6 0.244 87.0 ± 10.3 94.3 ± 23.0 0.021

Insulin (μU/mL) 8.3 ± 7.2 5.3 ± 4.3 6.8 ± 5.2 0.021 7.0 ± 3.8 11.5 ± 8.9 0.001

HOMA-IR 1.07 ± 0.9 0.68 ± 0.6 0.86 ± 0.65 0.022 0.9 ± 0.5 1.5 ± 1.1 0.001

AST (U/L) 22.7 ± 8.5 20.4 ± 6.8 21.8 ± 7.0 0.080 21.6 ± 10.6 36.5 ± 27.7 0.000

ALT (U/L) 25.8 ± 21.0 17.2 ± 9.4 24.1 ± 16.4 0.000 21.7 ± 6.0 25.8 ± 10.2 0.000

TCHO (mg/dL) 196.1 ± 35.4 190.4 ± 33.7 197.8 ± 39.9 0.076 194.4 ± 29.1 201.5 ± 35.7 0.174

Triglycerides (mg/
dL) 113.8 ± 88.3 74.4 ± 37.2 110.2 ± 78.9 0.000 96.0 ± 43.7 160.6 ± 113.3 0.000

HDL-C (mg/dL) 58.3 ± 15.6 66.8 ± 15.1 57.2 ± 13.2 0.000 59.6 ± 13.4 49.8 ± 12.7 0.000

LDL-C (mg/dL) 123.6 ± 33.3 114.7 ± 31.1 126.4 ± 37.1 0.003 122.7 ± 29.0 131.5 ± 32.5 0.052

Creatinine (mg/
dL) 0.84 ± 0.18 0.78 ± 0.16 0.82 ± 0.17 0.036 0.89 ± 0.20 0.91 ± 0.18 0.554

US-FLI score 2.1 ± 2.2 0.1 ± 0.3 2.7 ± 1.1 0.000 0.2 ± 0.4 4.2 ± 1.7 0.000

Mild (%) 327 (53.8) – – – – – –

Moderate-and-
severe (%) 105 (17.3) – – – – – –

Body fat (%) 28.5 ± 7.9 25.4 ± 6.3 26.5 ± 6.0 0.122 29.9 ± 7.8 32.5 ± 8.4 0.038

Truncal fat 31.7 ± 8.7 27.3 ± 8.1 30.7 ± 7.3 0.000 33.9 ± 7.0 36.3 ± 7.9 0.027

VFR 7.8 ± 4.5 4.4 ± 2.5 6.1 ± 2.7 0.000 9.5 ± 2.7 11.8 ± 3.6 0.000

Metabolic syn-
drome (%) 108 (17.8) 4 (1.8) 9 (8.4) 0.003 5 (0.1) 90 (40.9) 0.000

S14 (ng/mL) 97.4 ± 45.1 96.3 ± 44.4 108.5 ± 45.4 0.023 84.2 ± 41.6 96.4 ± 45.6 0.06
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decreased expression level of lipogenic genes could be a late and adaptive process, aiming at limiting adipocyte 
hypertrophy and further development of fat mass, including liver fat accumulation. The supportive evidence is 
that a remarkable reduction in the expression of genes coding for lipogenic factors such as SREBP-1c, FASN, 
ACC, PEPCK, ATP Citratelyase, or Pyruvate  Carboxylase31–33 or involved in adipocyte  differentiation34 has been 
found in obese subjects. As S14 regulates lipogenesis partly via interaction with lipogenic factors, we speculate 
that, as the fat mass increases and the cardiometabolic risk factors develop, downregulation of S14 in adipose 
tissue initiates to limit its expansion. Although NAFLD and some of the cardiometabolic factors share similar 
pathophysiology, there is no direct evidence whether this negative feedback of lipogenic factors also occurs in 
NAFLD as cardiometabolic factors do. In our study, we observed that serum S14 level in subjects with NAFLD 
remained high and was positively associated with NAFLD severity. Additionally, subjects with NAFLD had 
significantly higher serum S14 levels despite their visceral fat severity (Fig. 1B).

Interestingly, the serum S14 was negatively linked to cardiometabolic factors including increased age, waist 
circumference, fasting plasma glucose, serum total cholesterol, triglycerides and visceral fat, all of which were 
reported risk factors of NAFLD. This paradox in our results was the apparent selective nature of S14—wherein 
S14 seemed to be negatively associated with abnormal cardiometabolic factors yet correlated positively with 
hepatic steatosis. One of the explanations may be that the negative feedback between S14 and excess liver fat 
was impaired in NAFLD subjects.

Our study has several limitations to be considered. First, it was a cross sectional study and could not deter-
mine the causality. Second, we did not have thyroid hormone data since it served as a confounding factor of 

Table 2.  Correlation coefficients between S14 and anthropometric and metabolic factors. BMI body mass 
index, FPG fasting plasma glucose, HOMA-IR homeostasis model assessment of insulin resistance, AST 
aspartate aminotransferase, ALT alanine aminotransferase, TCHO total cholesterol, HDL high-density 
lipoprotein, LDL low-density lipoprotein, US-FLI Ultrasonography Fatty Liver Index (score: 0–8), Mild (≥ 2), 
Moderate-and-severe (> 4), VFR visceral fat rating.

Impendent variables

All (male and 
female, N = 608)

R P

Age (years) − 0.359 0.000**

Waist (cm) − 0.104 0.014*

Body weight (kg) − 0.021 0.613

BMI (kg/m2) − 0.044 0.281

Creatinine (mg/dL) 0.002 0.966

FPG (mg/dL) − 0.087 0.031*

Insulin (μU/mL) 0.007 0.874

HOMA-IR 0.007 0.866

AST (U/L) − 0.017 0.672

ALT (U/L) 0.032 0.432

TCHO (mg/dL) − 0.107 0.009*

Triglycerides (mg/dL) − 0.107 0.008*

HDL-C (mg/dL) 0.042 0.305

LDL-C (mg/dL) − 0.066 0.103

Body fat (%) − 0.035 0.395

Truncal fat (%) − 0.141 0.001**

VFR − 0.108 0.008*

Table 3.  The cumulative risk for more severe non-alcoholic fatty liver disease of serum S14 (N = 608). Model 
1: adjusted for age, sex and obesity (OR = 8.88 [6.14–12.83], P < 0.0001). Obesity is defined by BMI ≥ 27. Model 
2: model 1 plus HOMA-IR (OR: 1.47 [1.15–1.88], P = 0.002), CRP, metabolic syndrome (OR: 4.08 [2.46–6.75], 
P < 0.0001). Model 3: model 2 plus smoking behavior, exercise time per week and menopause (women 
only). † S14 was transformed by nature logarithm; the severity of NAFLD was classified by normal, mild, and 
moderate-to-severe.Ranges of S14 tertile: first tertile (11.98–71.8), second tertile (71.9–115.1), third tertile 
(115.2–588.3).

Tertile of  S14†

Model 1 Model 2 Model 3

OR (95% CI) P for trend OR (95% CI) P for trend OR (95% CI) P for trend

Tertile 1 Reference

< 0.05

Reference

< 0.05

Reference

< 0.05Tertile 2 1.13 (1.34–1.71) 1.18 (0.76–1.84) 1.22 (0.78–1.92)

Tertile 3 1.86 (1.21–2.87) 1.98 (1.23–3.19) 2.08 (1.28–3.39)
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S14 level although we had the past history of thyroid status. Third, we did not perform liver biopsies for the 
diagnosis of NAFLD. Although liver biopsy is regarded as a gold standard for NAFLD diagnosis, it is invasive 
and associated with morbidities and mortality. Fourth, our ELISA kit used a polyclonal antibody against S14, 
it may detect S14-R as well since the S14R protein is 32% homologous to S14 in amino acid sequences. Specific 
monoclonal antibodies should be generated in the future to solve this problem. Lastly, the exact contribution 
of serum S14 from different organs in human remains unknown. Further studies are required to elucidate this 
issue. Advantages of the present study included relatively large sample size and the participants were recruited 
from the community, thus can be applied to the general population. In addition, we used US-FLI score, which is 
known to have good correlation with liver CT and histology providing the quantitative information of liver  fat21.

In conclusion, we showed that serum S14 level increased with the severity of hepatic steatosis. However, the 
serum level was inversely associated with metabolic factors, which probably come from the negative feedback 
or rescue response of S14. The detailed mechanisms of S14 protein involved in DNL needs further research in 
the future.
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