
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24328  | https://doi.org/10.1038/s41598-021-03246-3

www.nature.com/scientificreports

Phosphate group functionalized 
magnetic metal–organic 
framework nanocomposite 
for highly efficient removal of U(VI) 
from aqueous solution
Changfen Bi1,4, Baoxin Zheng2,4, Ye Yuan1, Hongxin Ning1, Wenfeng Gou1, Jianghong Guo1, 
Langxing Chen3*, Wenbin Hou1* & Yiliang Li1*

The phosphate group functionalized metal-organic frameworks (MOFs) as the adsorbent for 
removal of U(VI) from aqueous solution still suffer from low adsorption efficiency, due to the low 
grafting rate of groups into the skeleton structure. Herein, a novel phosphate group functionalized 
metal–organic framework nanoparticles (denoted as Fe3O4@SiO2@UiO-66-TPP NPs) designed and 
prepared by the chelation between Zr and phytic acid, showing fast adsorption rate and outstanding 
selectivity in aqueous media including 10 coexisting ions. The Fe3O4@SiO2@UiO-66-TPP was properly 
characterized by TEM, FT-IR, BET, VSM and Zeta potential measurement. The removal performance 
of Fe3O4@SiO2@UiO-66-TPP for U(VI) was investigated systematically using batch experiments 
under different conditions, including solution pH, incubation time, temperature and initial U(VI) 
concentration. The adsorption kinetics, isotherm, selectivity studies revealed that Fe3O4@SiO2@
UiO-66-TPP NPs possess fast adsorption rates (approximately 15 min to reach equilibrium), high 
adsorption capacities (307.8 mg/g) and outstanding selectivity (Su = 94.4%) towards U(VI), which in 
terms of performance are much better than most of the other magnetic adsorbents. Furthermore, 
the adsorbent could be reused for U(VI) removal without obvious loss of adsorption capacity after 
five consecutive cycles. The research work provides a novel strategy to assemble phosphate group-
functionalized MOFs.

Uranium is not only a sustainable fuel source, but also a chemically toxic and radioactive pollutant for both the 
ecological environment and human beings1,2. Large amounts of uranium-containing waste have been released 
to natural water in a variety of ways, such as incorrect uranium mining, nuclear fuel fabrication and natural 
weathering3–5. Due to long-term radiation toxicity, uranium can not only cause carcinogenic, teratogenic or 
mutagenic radiation damage to human organs such as liver, kidney, skin and bone, but also result in a lasting 
and disastrous impact on the ecological environment6–8. Therefore, the removal and recovery of uranium from 
wastewater is very significant not only for ecological stability and human health, but also for nuclear sustainable 
development9,10.

Several strategies have been developed for radioactive wastewater treatment including coagulation11, mem-
brane separation12,13, ion-exchange14,15, reductive precipitation16,17 and adsorption9,18,19. Among these strategies, 
adsorption has been proven to be the most effective treatment method owning to its low cost, simple opera-
tion and environment compatibility20–22. In the past decades, various adsorption materials such as silica nano-
spheres, polymeric nanoparticles, carbon-based materials, and advanced porous materials have been extensively 

OPEN

1Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, 
Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin  300192, People’s Republic of 
China. 2College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, 
People’s Republic of China. 3Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key 
Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, College of Chemistry, Nankai 
University, Tianjin 300071, People’s Republic of China. 4These authors contributed equally: Changfen Bi and Baoxin 
Zheng. *email: lxchen@nankai.edu.cn; houwenbin@irm-cams.ac.cn; liyiliang@irm-cams.ac.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-03246-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24328  | https://doi.org/10.1038/s41598-021-03246-3

www.nature.com/scientificreports/

developed for U(VI) removal23–28. Metal–organic frameworks (MOFs) are a particular class of porous materials 
constituted by metallic cations/clusters with organic ligands, and have superior intrinsic properties including 
tunability, crystallinity, stability and chemical versatility29–31. And as a result, they has been widely applied in 
various fields, such as gas storage32,33, catalysis34–38, drug delivery39,40 sensing41,42 and separation43–46. At present, 
a variety of MOFs (i. e. ZIF-8, MIL-101, UiO-66) have been already designed and synthesized for U(VI) capture 
from aqueous solution47–49.

Since in many cases of radioactive pollution, the wastewater is acidic, which requires adsorbents to have an 
adequate stability in acidic aqueous solutions. Based on this consideration, a zirconium-based MOF (UiO-66 
and UiO-66-NH2) composed of a Zr6(µ3-O)4(µ3-OH)4 or 12-connected Zr6(µ3-O)4(µ3-OH)4(NH2-COO)12 cluster 
that possess strong Zr–O bonds was selected as a potential adsorbent due to its exceptional stability in acidic 
solutions50–55. Hierarchical porous and functional group (–OH, –NH2, –COOH, =N–OH) post-modified UiO-66 
have been prepared and studied in rapid U(VI) removal from an aqueous solution53–58. It is also a wise strategy 
to modify phosphate groups on MOFs, due to strong coordination ability of phosphate groups with U(VI)59–61. 
However, owning to the low grafting rate of phosphate groups into the skeleton structure, reported MOFs dotted 
with the phosphate group (UiO-68-P(O)(OEt)2, UiO-68-P(O)(OH)2, MIL-101-ship, Zr7P8) have low adsorption 
efficiency towards U(VI), which seriously affect their further application62–64.

Phytic acid, as myoinositol hexaphosphate extracted from plants, has strong complexation ability to metal 
ions65–67. In this study, we developed a phosphate group functionalized metal–organic framework nanoparticle by 
the chelation between Zr(IV) and phytic acid, and loaded Fe3O4 nanoparticles to achieve fast magnetic separation 
of U(VI) from an aqueous solution (denoted as Fe3O4@SiO2@UiO-66-TPP). The nanoparticle was synthesized by 
simple steps and properly characterized by transmission electron microscopy (TEM), Fourier transform infra-
red (FT-IR) spectroscopy, Brunauer–Emmett–Teller (BET) measurements and vibrating sample magnetometer 
(VSM). The removal performance of Fe3O4@SiO2@UiO-66-TPP for U(VI) was evaluated using batch experi-
ments under different adsorption conditions, including solution pH, incubation time, temperature and initial 
U(VI) concentration. Fortunately, the nanoparticle possessed fast adsorption rates (approximately 15 min to 
reach equilibrium), high adsorption capacity (307.8 mg/g) and selectivity (94.4%) towards U(VI). Finally, the 
adsorption dynamics, isotherms and mechanism of Fe3O4@SiO2@UiO-66-TPP for U(VI) were also discussed.

Experimental section
Materials.  Cobaltous nitrate hexahydrate (Co(NO3)2·6H2O), gadolinium nitrate hexahydrate 
(Gd(NO3)3·6H2O), lanthanum nitrate hexahydrate (La(NO3)3·6H2O), neodymium nitrate hexahydrate 
(Nd(NO3)3·6H2O), ytterbium nitrate pentahydrate (Yb(NO3)3·5H2O) and samarium nitrate hexahydrate 
(Sm(NO3)3·6H2O) were obtained from Sigma-Aldrich (USA). Nickel nitrate hexahydrate (Ni(NO3)2·6H2O), 
strontium nitrate (Sr(NO3)2) and zinc nitrate hexahydrate (Zn(NO3)2·6H2O) were obtained from Damao Chem-
ical Reagent Factory (Tianjin, China). Uranium nitrate oxide (UO2(NO3)2) was obtained from Chemical Rea-
gent Purchasing and Supply Station (Shanghai, China). Zirconium chloride (ZrCl4)) and 2-aminoterephthalic 
acid were obtained from Heowns Biochemical Technology Co., Ltd (Tianjin, China). Phytic acid sodium salt 
were purchased fromSolarbio Science & Technology Co., Ltd (Beijing, China). Tetraethoxysilane (TEOS) was 
obtained from J&K Chemicals Ltd (China). Iron (III) chloride hexahydrate (FeCl3·6H2O), Sulfuric acid (H2SO4), 
nitric acid (HNO3), hydrochloric acid (HCl), ethylene glycol (EG), N, N-dimethylformamide (DMF), methanol 
(MeOH), ethanol (EtOH), and other reagents were obtained from Tianjin Chemical Reagent No. 6 Factory 
(China). High-purity deionized water (18.2 MΩ cm) was obtained from a Millipore Milli-Q direct water puri-
fication system (USA).

Preparation of silica layer coated magnetic nanoparticles (Fe3O4@SiO2).  Naked Fe3O4 NPs were 
prepared by a the facile solvothermal method. Typically, 2.70 g FeCl3·6H2O, 7.71 g ammonium acetate, 0.8 g 
sodium citrate were dissolved in 140 mL EG solution under sonication to form a homogenous solution. Then 
the mixture was heated at 200 °C for 16 h after transferring to a Teflon-lined stainless-steel autoclave (200 mL). 
Under an external magnetic field, the prepared Fe3O4 NPs were separated from the reaction solvent, washed with 
water and EtOH for several times in turn, and dried in vacuum at 40 °C.

300 mg Fe3O4 NPs were dispersed in the mixed solution of 0.75 mL ammonium hydroxide, 12 mL water and 
46 mL EtOH under sonication, and then 0.9 mL TEOS in 3 mL EtOH was added dropwise to the above mixed 
solution. The mixture was stirred magnetically for 12 h at room temperature. Under an external magnetic field, 
the prepared Fe3O4@SiO2 NPs were separated from the reaction solvent and washed with water and EtOH for 
several times in turn, and dried in vacuum at 40 °C.

Preparation of magnetic UiO2‑66‑NH2 (Fe3O4@SiO2@UiO2‑66‑NH2).  200  mg Fe3O4@SiO2 NPs 
and 466 mg ZrCl4 were dispersed in 30 mL DMF under sonication for 30 min, and then 362 mg dissolved in 
30 mL DMF was added to the solution. The mixture was heated at 120 °C for 6 h. Under an external magnetic 
field, the prepared Fe3O4@SiO2@UiO2-66-NH2 NPs were separated from the reaction solvent and washed with 
DMF and MeOH, immersed in MeOH for 3 d, and finally dried in vacuum at 40 °C.

Preparation of phosphate group functionalized magnetic metal–organic frameworks nano-
particles (Fe3O4@SiO2@UiO2‑66‑TPP).  15 mg phytic acid sodium salt was dissolved in the mixed solu-
tion of 4 mL water and 20 mL CH3COOH (2%, v/v), and then 40 mg Fe3O4@SiO2@UiO-66-NH2 was dispersed 
in the above solution under sonication. After pH value of the reaction system was adjusted to 5, the mixture 
was heated at 50 °C for 30 min, and then kept at 115 °C for 12 h. Under an external magnetic field, the prepared 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24328  | https://doi.org/10.1038/s41598-021-03246-3

www.nature.com/scientificreports/

Fe3O4@SiO2@UiO2-66-TPP NPs were separated from the reaction solvent and washed with water to neutral, and 
dried in vacuum at 40 °C.

Characterizations
The synthesized nanoparticles were systematically characterized through diverse techniques including trans-
mission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibration sample 
magnetometer (VSM). The specific surface area, total pore volume, pore size and the Zeta potentials were also 
measured.Transmission electron microscopy (TEM) and composition mapping images were taken with a JEM-
2100 (Japan) transmission electron microscope. Fourier transform infrared (FT-IR) spectra (4000–400 cm−1) 
were obtained on a BRUKER TENSOR 27 (Germany) Fourier transform infrared spectrophotometer in KBr 
pellets. The N2 adsorption–desorption isotherms were analyzed on a Micromeritics ASAP (USA) 2010 apparatus. 
The magnetic properties were characterized using a LDJ9600-1 (USA) vibrating sample magnetometer (VSM). 
The zeta potentials under different pH conditions were measured with a Brookhaven ZetaPALS (USA) analyzer 
at room temperature.

Batch experiments.  To evaluate the performance of the magnetic adsorbents for the removal of U(VI) 
from aqueous solution, batch sorption experiments were carried out in 45 mL polyethylene tubes. Briefly, 10 mg 
magnetic adsorbents were dispersed in 25 mL uranium solution or multi-ion solution at a certain pH value 
adjusted by adding negligible volume of dilute HCl or NaOH solution. After being incubated for a given time 
at a certain temperature, the magnetic nanocomposites loaded with U(VI) were separated under an external 
magnetic field. The concentration of UO2

2+ in the supernatant was calculated by determining absorption of its 
complex with arsenazo(III) at 656 nm using an ultraviolet–visible spectrometer (SHIMADZU UV-1750). The 
concentration of metal ions including U(VI) was analyzed by inductively coupled plasma mass spectrometry 
(ICP-MS), when investigating the effect of coexisting ions and ionic strength on adsorption capacity of the mag-
netic adsorbent for U(VI). The adsorption capacity (qe (mg/g)) and adsorption percentage (% adsorption) were 
calculated according to the following two equations:

where C0 and Ce (mg/L) are the initial and equilibrium concentrations of UO2
2+ in the solution, respectively; V 

(L) is the volume of solution; and m (g) is the weight of the magnetic adsorbents.
Uranium-selectivity (Su) to reflect the level of adsorption selectivity of the magnetic adsorbent towards U(VI), 

which was calculated according to the following equation:

where qe(U) and qe(tol) are the U(VI) sorption capacity and all metal ions including U(VI) for the magnetic adsor-
bent, respectively.

For acquisition of the optimal adsorption performance of Fe3O4@SiO2@UiO-66-TPP NPs towards U(VI), the 
influence factors, including pH (1.5–5.5), contact time (1–180 min), C0 (20–400 mg/L), temperature (298–318 K), 
and ionic strength were also investigated by batch method.

The desorption study was carried out by using three kinds of acid solution (0.01 M H2SO4, HNO3, and HCl). 
10 mg Fe3O4@SiO2@UiO-66-TPP NPs were shaken with 25 mL uranium solutions at pH 5.0 under ambient 
temperature (298 K) for 1 h. Under an external magnetic field, uranium loaded Fe3O4@SiO2@UiO-66-TPP 
NPs were separated and washed with water. Finally, the U(VI) captured by Fe3O4@SiO2@UiO-66-TPP NPs was 
released by the above-mentioned acid solutions (25 mL) at 298 K for 1 h. The nanoparticles were separated, and 
the U(VI) was analyzed by ICP-MS.

Results and discussions
Characterization of nanoparticles.  The assembly process of phosphate group functionalized magnetic 
metal–organic frameworks nanoparticles (Fe3O4@SiO2@UiO2-66-TPP) is illustrated in Fig.  1. Firstly, mag-
netic iron oxide nanoparticles are coated with a silica layer via sol–gel emulsion method. The surface hydroxyl 
groups coordinate with Zr4+, which assists UiO2-66-NH2 to settle on the surface of the nanoparticles. Finally, the 
nanoparticles were dotted with phytic acid through intermolecular hydrogen bonding. To investigate whether 
Fe3O4@SiO2@UiO2-66-TPP shown in Fig. 1 proceed successfully and the properties of the nanoparticles, TEM 
and composition mapping images, FT-IR, N2 adsorption–desorption, VSM and Zeta potential were analyzed in 
this work.

The size and morphology of the as-prepared nanoparticles were examined by TEM. As shown in Fig. 2a, the 
diameter of magnetic iron oxide was 150–270 nm, which was wrapped by a 30-nm-thick silicon layer. The SiO2 
layer was coated with MOF (UiO-66-NH2) layer. Zr element are uniformly dispersed on the nanoparticles. After 
the modification of phytic acid, the phosphate group was successfully modified on the surface of the material 
(Fig. 2b). In addition, Fig. 2c showed that P, Zr, and U elements are evenly distributed on nanoparticles after the 

(1)qe =
(C0 − Ce)× V

m

(2)% adsorption =
C0 − Ce

C0
× 100

(3)Su =
qe(U)

qe(tol)
× 100%
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sorption process, which indicated that U(VI) was successfully captured by Fe3O4@SiO2@UiO2-66-TPP NPs and 
the structure of the nanoadsorbent remained stable.

The FT-IR spectra of obtained nanoparticles (Fe3O4@SiO2, Fe3O4@SiO2@UiO-66-NH2 and Fe3O4@SiO2@
UiO-66-TPP) were shown in Fig. 3a. In the spectrum of Fe3O4@SiO2, the peak located at 590 cm−1 was assigned 
to the stretching vibration of Fe–O bond, the peak at 1086 cm−1 was ascribed to the Si–O–Si vibration, and the 
peak at 1628 cm−1 and the broad peak centered at 3431 cm−1 were ascribed to the stretching vibration of C=O 
bond and the stretching vibration of O–H and/or N–H bond, respectively. Compared to the above spectrum, 
there are some new peaks in the spectrum of Fe3O4@SiO2@UiO-66-NH2. The additional peak at 1428 cm−1 
was assigned to the symmetrical stretching vibration of C–O bond, the peaked at 1506 cm−1 was assigned to 
the stretching vibration of C=C bond, and the peak at 1572 cm−1 was assigned to the deformation vibration of 
N–H bond. These bonds all come from the organic monomer (2-aminpterephthalic acid) that constructed the 
MOF layer. In the spectrum of Fe3O4@SiO2@UiO-66-TPP, the peak at 1055 cm−1 was ascribed to the stretching 
vibration of P=O bond.

The powder XRD pattern of Fe3O4@SiO2@UiO-66-TPP NPs is given in Fig. 3b. UiO-66-NH2 was assembled 
sucessfully on the surface of Fe3O4@SiO2 with characteristic peaks of UiO-66-NH2 (2θ = 7.48, 8.62 and 25.81). 
The crystal size of the lattice calculated from the XRD pattern by Debye–Scherrer equation was about 39.59 nm.

The N2 adsorption–desorption isotherms were employed to characterize the specific surface areas of Fe3O4@
SiO2@UiO2-66-NH2 and Fe3O4@SiO2@UiO2-66-TPP (Fig. 3c). The N2 sorption isotherms showed typical type 
I curves, suggesting a mesoporous structure. The BET surface areas of the as-synthesized nanoparticles were 
calculated to be 515.3 and 600.9 m2/g, respectively. On account of the presence of the Fe3O4@SiO2 core, the BET 
surface areas of the as-synthesized nanoparticles is lower than that for UiO-66-NH2. The high specific area of 
Fe3O4@SiO2@UiO2-66-TPP NPs was beneficial for the effective removal of U(VI) from solution.

The magnetic property of Fe3O4@SiO2@UiO2-66-TPP NPs was characterized by VSM. As shown in Fig. 3d, 
the nanoparticles were superparamagnetic, the saturation magnetization (Ms) value was 10.15 emu g−1, and the 
magnetic coercivity (Hc) value was 3.67 Oe (Fig. 3 inset). The Fe3O4@SiO2@UiO2-66-TPP NPs can be separated 
and redispersed effectively in aqueous solution with/without an external magnetic field, which is beneficial to 
its application in U(VI) removal from aqueous solution.

The surface charge properties of Fe3O4@SiO2@UiO-66-NH2 and Fe3O4@SiO2@UiO-66-TPP NPs were evalu-
ated through the measurement of Zeta potentials over pH range 1.5–5.5. As shown in Fig. 4, the surface charges 
of Fe3O4@SiO2@UiO-66-NH2 NPs changed little over a large pH region, while the surface charge of Fe3O4@SiO2@
UiO-66-TPP NPs changed greatly, which is due to the decoration of phosphate groups on the nanoparticles. The 
isoelectric point for Fe3O4@SiO2@UiO-66-TPP NPs was about 3.1. When the pH value was higher than 3.1, the 
surface of the nanoparticles was negative, and the Zeta potential was − 23.3 mV at the pH 5.0. The high negative 
charge is beneficial for dispersion of Fe3O4@SiO2@UiO-66-TPP NPs, and diffusion of U(VI) ions towards the 
surface of the magnetic adsorbents.

Effect of solution pH.  The solution pH is an important parameter that affects the adsorption performance 
of adsorbents towards U(VI), because it closely related to the speciation of U(VI), the surface charges and bind-
ing sites of adsorbents. Herein, the sorption studies of U(VI) on magnetic adsorbents (Fe3O4@SiO2@UiO-66-
NH2,Fe3O4@SiO2@UiO-66-TPP) were carried out over pH range 1.5–5.5. As shown in Fig. 5a, the adsorption 
capacity of Fe3O4@SiO2@UiO-66-TPP NPs increased rapidly with increasing pH value up to 5.0 for U(VI), 
followed by a decline at pH 5.5. The Fe3O4@SiO2@UiO-66-TPP NPs reached maximum adsorption capacity at 
pH 5.0, and the qe values was 247.7 mg/g. Meanwhile, the adsorption capacity of Fe3O4@SiO2@UiO-66-NH2 for 
U(VI) had no obvious change with the increase of pH, and the maximum adsorption capacity was 32.51 mg/g 
at pH 5.0.

Figure 1.   Schematic illustration of the fabrication of Fe3O4@SiO2@UiO-66-TPP NPs.
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Uranium mainly exists in the form of UO2
2+ in aqueous solution at or below pH 4.068. When pH < 3.1, the 

phosphate groups of Fe3O4@SiO2@UiO-66-TPP NPs were positive, and intense competition between H+ and 
UO2

2+ for bindng sites resulted in lower adsorption capacity of the adsorbent. As pH increased, the deprotona-
tion of phosphate groups was promoted, and U(VI) still existed in the form of positive ions, therefore the high 
and rapid adsorption efficiency could be attributed to the strong electrostatic interaction and chelation between 
phosphate groups and U(VI). At pH 5.5, the pH environment of solution is not conducive to the chelation 
between phosphate groups and U(VI), which resulted in the decrease of the adsorption efficiency of the adsorbent 
for U(VI). When pH is 6, schoepite precipitation (UO3·2H2O) appeared in the solution, so further adsorption 
experiments were conducted at pH 5.0.

Figure 2.   TEM and composition mapping imagesof Fe3O4@SiO2@UiO2-66-NH2 (a), Fe3O4@SiO2@UiO2-66-
TPP (b) NPs before and after (c) U(VI) sorption.
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Figure 3.   (a) FT-IR spectra of Fe3O4@SiO2 (blue line), Fe3O4@SiO2@UiO-66 (green line) and Fe3O4@SiO2@
UiO-66-TPP (pink line) NPs. (b) XRD pattern of Fe3O4@SiO2@UiO-66-TPP NPs. (c) N2 adsorption/desorption 
isotherms of Fe3O4@SiO2@UiO-66-NH2 and Fe3O4@SiO2@UiO-66-TPP NPs. (d) Magnetization curve of 
Fe3O4@SiO2@UiO-66-TPP NPs.
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Effect of contact time and kinetic studies.  Figure 5b showed the influence of contact time on the sorp-
tion of U(VI) onto magnetic adsorbents (Fe3O4@SiO2@UiO-66, Fe3O4@SiO2@UiO-66-TPP). The adsorption 
of Fe3O4@SiO2@UiO-66-TPP towards U(VI) quickly reached equilibrium within 15 min, which is due to the 
strong complexation of phosphate group on the Fe3O4@SiO2@UiO-66-TPP with U(VI).

The pseudo-first-order, pseudo-second-order, mixed 1,2 order, intraparticle diffusion and Avrami kinetic 
models were used to further explore the interaction mechanism (Fig. 6).

Pseudo-first-order equation:

Figure 4.   Zeta potential of Fe3O4@SiO2@UiO-66 (blue line) and Fe3O4@SiO2@UiO-66-TPP (red line) NPs.

Figure 5.   Effects of initial solution pH and contact time (pH 5.0 ± 0.1) on adsorption of U(VI) by Fe3O4@SiO2@
UiO2-66-NH2 and Fe3O4@SiO2@UiO2-66-TPP NPs (C0 = 100 mg/L, m/V = 0.4 g/L and T = 298 K).
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Pseudo-second-order equation:

Mixed 1,2 order equation:

Intraparticle diffusion equation:

Avrami equation:

where qe and qt (mg/g) are the sorption amounts of U(VI) on Fe3O4@SiO2@UiO-66-TPP at equilibrium and at 
time t (min), respectively; k1 (1/min) and k2 (1/min) represent the rate constants of the pseudo-first-order model 

(4)qt = qe

(

1− e−k1t
)

(5)qt =
q2e k2t

1+ qek2t

(6)qt = qe
1− exp(−kt)

1− f2 exp(−kt)

(7)qt = kip
√
t + cip

(8)qt = qe
[

1− exp(−kavt)
nav

]

Figure 6.   Adsorption kinetic models (C0 = 100 mg/L, m/V = 0.4 g/L, pH = 5.0 ± 0.1, and T = 298 K).

Table 1.   Kinetic model constants for the adsorption of U(VI) onto Fe3O4@SiO2@UiO2-66-TPP NPs.

Kinetic models Parameters Fe3O4@SiO2@UiO-66-TPP

Pseudo first order

K1 0.206

qe 248.72

R2 0.987

Pseudo second order

K2 0.00145

qe 258.83

R2 0.947

Mixed 1, 2 order

K 0.290

qe 247.760

f2 − 0.889

R2 0.989

Avrami

qe 247.67

kav 1.0

nav 0.209

R2 0.987

Intraparticle difusion

Kip 10.217

Cip 144.136

R2 0.439
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and pseudo-second-order model, respectively; k (mg/(g min)) is the adsorption rate constant, f2 (dimension-
less) and Kip (mg/(g min0.5)) are the coefficient of mixed 1,2 order and intraparticle diffusion, respectively; cip 
(mg/g) is the intraparticle diffusion constant; kav (1/min) is the Avrami rate constant; nav (dimensionless) is the 
Avrami component.

Table 1 listed the fitting parameters calculated from these kinetic models (Fig. 6). The pseudo-first order, 
pseudo-second order, mixed 1, 2-order and Avrami models with a high correlation coefficient (R2 > 0.98) 
described the adsorption process of U(VI) better than the intrsparticle difusion kinetic model (R2 = 0.44).

Effect of initial U(VI) concentration and isotherm studies.  The adsorption behavior of U(VI) 
on Fe3O4@SiO2@UiO-66-TPP NPs was investigated by changing the initial U(VI) concentration from 1.6 to 
280 mg/L. As shown in Fig. 7a, the adsorption amounts increased quickly with the enhancement of the initial 
U(VI) concentration from 1.6 to 78.5 mg/L. Then the adsorption reached the maximum capacity when the initial 
U(VI) concentration was above 200 mg/L, which is ascribed to the saturation of phosphate group binding sites 
embellished on Fe3O4@SiO2@UiO-66-TPP NPs. The most widespread isotherm models (Langmuir, Freundlich, 
Temkin, Sips, Toth and Langmuir–Freundlich,) were applied to describe the adsorption behavior (Fig. 7a).

Langmuir isotherm equation:

Freundlich isotherm equation:

Temkin isotherm equation:

Toth isotherm equation:

(9)qe =
qmKLCe

1+ KLCe

(10)qe = KF × C
1/n
e

(11)qe =
RT

bT
In(ATCe)

Figure 7.   (a) Adsorption isotherm models of U(VI) on Fe3O4@SiO2@UiO2-66-TPP NPs (pH = 5.0 ± 0.1, 
T = 298 K and t = 60 min). (b) Effects of temperature on adsorption capacity of the adsorbent towards U(VI).
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Langmuir–Freundlich isotherm equation:

where qe (mg/g) is the equilibrium adsorption capacity (mg/g), qm and qMLF (mg/g) are the maximum adsorption 
capacities, KL is the adsorption equilibrium constant (L/mg), KF (mg/g)/(mg/L) is the Freundlich parameter, n 
is the Freundlich intensity parameter, Ce (mg/L) is the equilibrium concentration, bT and AT (L/g) represent the 
constant and equiliburium constant of Temkin isotherm model, respectively, R (8.314 J/(mol K)) is the universal 
gas constant, T is the absolute temperature at 298 K, n and KLF are the isotherm constants, MLF represent the 
heterogeneous parameter.

The Langmuir and Freundlich isotherm models describes a monolayer and multilayer adsorption of targeted 
molecules on adsrobent surfaces69–71. Temkin model incorporates a linear variation of the adsorption enthalpy, 
which is an extension of Langmuir model72. Toth model is also an extension of traditional Langmuir model, 
which takes into account of heterogeneity and non-uniformity of the binding sites on the adsorbent surface73. 
Langmuir–Freundlich model represents a combination of Langmuir and Freundlich isotherm models, at low 
concentration it reduces to Freundlich isotherm, it predicts a Langmuir monolayer adsorption74. The model 
isotherm parameters obtained from fitting curves (Fig. 7a) were summarized in Table 2. Obviously, the adsorp-
tion process followed Langmuir–Freundlich and Langmuir isotherm models due to high correlation coefficients 
(R2). The maximum adsorption capacities calculated from Langmuir–Freundlich and Langmuir isotherm models 
were very close (310.1 and 308.9 mg/g, respectively) to practical adsorption amount (307.8 mg/g).

To investigate the effect of temperature on the U(VI) adsorption capacity of the Fe3O4@SiO2@UiO-66-TPP 
NPs, the adsorption isotherms of U(VI) on Fe3O4@SiO2@UiO-66-TPP NPs were conducted at three tempera-
tures (298, 313, 328 K) at pH 5.0 (Fig. 7b). The thermodynamic parameters, including ∆S0 (entropy change), 
∆H0 (enthalpy change) and ∆G0 (Gibbs free energy change), were calculated by Van’t Hoff equation and Gibb’s 
free energy function, to reveal whether the adsorption process was endothermic and exothermic, spontaneous 
or nonspontaneous.

Van’t Hoff equation:

Gibb’s free energy function:

where Kd is the equilibrium constant at different temperature, R is the gas constant (8.314 J/(mol K)), ∆S0 
(J (mol K)), ∆H0 (kJ/mol), ∆G0 (kJ/mol) are the entropy, enthalpy and Gibbs free energy change, respectively.

(12)qe =
KeCe

[1+ (KLCe)n]
1/n

(13)qe =
qMLF(KLFCe)

MLF

1+ (KLFCe)MLF

(14)InKd =
�S0

R
−

�H0

RT

(15)�G0 = �H0 − T�S0

Table 2.   Adsorption isotherm model constants derived from Langmuir and Freundlich isotherms.

Isotherm models Parameters Fe3O4@SiO2@UiO-66-TPP

Langmuir

qm 308.9

KL 0.118

RL 0.0782

R2 0.991

Freundlich

Kf 99.036

1/n 4.522

R2 0.778

Temkin

bT 47.010

AT 2.376

R2 0.895

Toth

Ke 308.0

KL 0.731

n 0.414

R2 0.909

Langmuir–Freundlich

qMLF 310.1

KLF 0.136

MLF 1.265

R2 0.996
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The thermodynamic parameters were listed in Table 3. The positive ∆H0 value proved that the adsorption 
of U(VI) on Fe3O4@SiO2@UiO-66-TPP was endothermic. The positive ∆S0 value revealed an increase in the 
randomness at the solid–liquid interface during the adsorption process. The negative ∆G0 value indicated that 
the adsorption process was spontaneous and Fe3O4@SiO2@UiO-66-TPP owned high affinity toward U(VI) in 
aqueous solution. ∆G0 values decreased with temperature increasing, indicating that higher temperature, the 
higher the spontaneous trend of spontaneous adsorption of U(VI) on Fe3O4@SiO2@UiO-66-TPP.

Effect of ionic strength and coexisting ions.  Nuclear industrial wastewater and seawater contain 
many kinds of ions, which may affect the mutual interaction between Fe3O4@SiO2@UiO-66-TPP and U(VI). 
Therefore, the effects of ionic strength and coexisting ions on the adsorption selectivity and capacity of Fe3O4@
SiO2@UiO-66-TPP for U(VI) should be further investigated. Figure 8 shows the influence of ionic strength on 
the adsorption capacity of Fe3O4@SiO2@UiO-66-TPP. As shown in Fig. 8a, the adsorption capacity decreased 

Table 3.   Thermodynamic parameters for the U(VI) adsorption onto Fe3O4@SiO2@UiO-66-TPP NPs.

�H0(kJ/mol) �S0[J/(mol K)]

�G0(kJ/mol)

298 K 308 K 313 K

35.64 172.89 − 15.87 − 17.61 − 19.33

Figure 8.   (a) Effect of ionic strength on removal of U(VI) by Fe3O4@SiO2@UiO2-66-TPP NPs (C0 = 100 mg/L, 
m/V = 0.4 g/L, pH = 5.0 ± 0.1, and T = 298 K). (b) Effect of competitive ions on the selective sorption of U(VI) 
onto the sorbent (C0 = 0.5 mmol/L for all ions, pH = 5.0 ± 0.1, T = 298 K, V = 25 mL, t = 60 min, and m = 10 mg).
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slightly by about 18% in the NaCl concentration range of 0.1–0.5 mol/L, which may be attributed to the decrease 
of ion transfer rate and the interference of electrostatic interaction caused by higher NaCl concentration.

As shown in Fig. 8b, the adsorption capacity of Fe3O4@SiO2@UiO-66-TPP for U(VI) is significantly higher 
than that of other coexisting ions. The uranium-selectivity (Su) of Fe3O4@SiO2@UiO-66-TPP was 94.4% calcu-
lated according to the Eq. (3), exhibiting an excellent selectivity of the magnetic adsorbent for U(VI). The mutual 
interaction of Fe3O4@SiO2@UiO-66-TPP and U(VI) depends on the chelation of U(VI) with phosphate groups 
grafted on the magnetic adsorbent. Phosphate group is more inclinded to coordinate with actinides than other 
metal ions in aqueous solutions, leading to the excellent selectivity of Fe3O4@SiO2@UiO-66-TPP for U(VI). 
Meanwhile, the phosphate group endowed Fe3O4@SiO2@UiO-66-TPP with high adsorption capacity (320.3 mg/g) 
and fast adsorption rate (15 min). The adsorption selectivity, capacity and rate of Fe3O4@SiO2@UiO-66-TPP are 
higher than other magnetic adsorbents listed in Table 4.

Desorption analysis.  The selection of suitable eluent for desorption of U(VI) from the uranium-loaded 
Fe3O4@SiO2@UiO-66-TPP NPs may provide better recovery of U(VI). The desorption of U(VI) from Fe3O4@
SiO2@UiO-66-TPP NPs was studied in a batch mode using different eluents (HCl, H2SO4, HNO3) at a concentra-
tion of 0.01 M. As shown in Fig. 9a, H2SO4 was the best eluent with a elution rate of 86.0% due to the extensive 
protonation on the adsorbent surface, which was further used for five successive adsorption–desorption cycles 
under identical experimental conditions. As shown in Fig.  9b, the adsorption capacity of U(VI) on Fe3O4@
SiO2@UiO-66-TPP NPs decreased from 248.5 to 217.5 mg/g after five regeneration, which was approximately 
12.5% reduction. Moreover, the XRD analysis result indicated that the utilized Fe3O4@SiO2@UiO-66-TPP NPs 
retained the crystal structure stability after 5 cycles (Fig. 9c). These results indicate the potential reusability of 
Fe3O4@SiO2@UiO-66-TPP NPs for U(VI) removal from aqueous medium.

Application in adsorption of uranium from pre‑treated seawater.  From the experimental results 
obtained, it can be seen that Fe3O4@SiO2@UiO-66-TPP NPs has a high adsorption rate and a high adsorption 
capacity for U(VI) and the adsorption can reach equilibrium in a very short time. Furthermore, the adsor-
bent exhibits a very good selectivity for uranium ions in the presence of coexisting ions. In order to evaluate 
the potential application of Fe3O4@SiO2@UiO-66-TPP NPs for U(VI) removal from seawater, we carried out 
the experiments on adsorption of U(VI) from the uranium-doped seawater. The natural seawater used in the 
adsorption experiments came from near-surface seawater from Tianjin, China. The concentrations of uranium 
ions in the uranium-doped seawater is 100 mg/L, and the pH of the solution was adjusted to 5.0. The adsorption 
capacity of U(VI) on Fe3O4@SiO2@UiO-66-TPP NPs from the pre-treated seawater was 228.6 mg/g, and the 
adsorption rates reached 91.4%, which were only a little bit lower than the adsorption capacity (249.3 mg/g) and 
adsorption efficiency (99.7%) from ultrapure water (Fig. 10). This demonstrates that Fe3O4@SiO2@UiO-66-TPP 
NPs have great potential application in the removal of U(VI) from radionuclide-polluted seawater.

Conclusions
In summary, a novel phosphate group functionalized magnetic metal–organic framework nanocomposite com-
posed of magnetic Fe3O4 NPs and UiO-66-NH2 was successfully prepared and characterized by various tech-
niques. The magnetic nanocomposite was used to remove U(VI) from aqueous solution. The nanocomposite was 
interspersed with phosphate group that forms a stable chelate with U(VI), and the adsorption of Fe3O4@SiO2@
UiO-66-TPP NPs for U(VI) reached equilibrium in 15 min, the maximum adsorption capacity is 307.8 mg/g, 
and the selectivity (Su) is 94.4% in aqueous media including 10 coexisting ions. Fe3O4@SiO2@UiO-66-TPP NPs 
possess high adsorption capacities, outstanding selectivity and excellent recylability towards U(VI), which were 

Table 4.   Comparison of the maximum adsorption capacity of Fe3O4@SiO2@UiO-66-TPP NPs with other 
magnetic adsorbents.

Adsorbents qmax (mg/g) time Su (%) pH References

UiO-66 109.9 4 h Not analyzed 5.5 75

UiO-66-NH2 114.9 4 h Not analyzed 5.5 75

Fe3O4/P(GMA-AA-MMA) < 200 Not analyzed 37 4.5 76

M/SiO2-Si-SBC 114.7 10 h Not analyzed 5.0 77

SβCD-APTES@Fe2O3 286 3 h Not analyzed 6.0 78

MNHA 310 2 h Not analyzed 5.0 79

Fe3O4@C@Ni–Al LDH 227 3 h Not analyzed 6.0 80

AO-Fe3O4/P(GMA-AA-MMA) 255.0 30 min 57 4.5 76

Fe3O4/P(AA-MMA-DVP) 413.2 45 min 95.8 4.5 81

Fe3O4/P(GMA-AA-MMA) 274.7 20 min 77 4.5 82

Fe3O4@AMCA-MIL53(Al) 227.3 1.5 h Not analyzed 5.5 83

Fe3O4@MnOX 106.7 120 min Not analyzed 5.0 84

Fe3O4@SiO2@UiO-66-NH2 27.7 130 min Not analyzed 5.0
This work

Fe3O4@SiO2@UiO-66-TPP 307.8 15 min 94.4 5.0
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Figure 9.   Desorption (a) and recyclability (b) studies of Fe3O4@SiO2@UiO2-66-TPP NPs. (c) XRD pattern of 
the utilized Fe3O4@SiO2@UiO2-66-TPP NPs after 5 cycles.
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endowed with magnetic separation performance by Fe3O4 cores, but the low adsorption efficiency at pH < 3.1 
under anoxic condition limited its practical applications. Neverthless, the research work provides a novel strategy 
to assemble phosphate group-functionalized MOFs.
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