
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23170  | https://doi.org/10.1038/s41598-021-02594-4

www.nature.com/scientificreports

Exogenous application of silicon 
improves the performance 
of wheat under terminal heat stress 
by triggering physio‑biochemical 
mechanisms
Talha Mustafa1, Abdul Sattar1, Ahmad Sher1, Sami Ul‑Allah1*, Muhammad Ijaz1, 
Muhammad Irfan2, Madiha Butt1 & Mumtaz Cheema3*

Due to climate change, temperature in late February and early March raised up which cause heat 
stress at reproductive stage (terminal growth phase of wheat crop) which has become the major 
causative factor towards low wheat production in arid and semiarid regions. Therefore; strategies 
need to be adopted for improving terminal heat stress tolerance in wheat. In this study, we assessed 
whether foliar application of silicon (Si) (2 and 4 mM) at terminal growth phase i.e. heading stage 
of wheat imposed to heat stress (37 ± 2 °C) under polythene tunnel could improve the performance 
of wheat. Results of the study revealed that heat stress significantly reduced the photosynthetic 
pigments (chlorophyll a, b and a + b and carotenoids) leading to a lower grain yield. However, a 4 mM 
Si application (foliar applied) at heading stage prominently increased the chlorophyll a, b and a + b and 
carotenoids of flag leaf by improving the activities of enzymatic antioxidants (catalase, peroxidase 
and superoxide dismutase) and osmoprotectants (soluble sugar protein and proline) under terminal 
heat stress. Improvements in the performance of wheat (chlorophyll contents, carotenoids, soluble 
sugar and proteins and proline and yield) with foliar application of Si were also observed under 
control conditions. Correlation analysis revealed strong association (r > 0.90) of chlorophyll contents 
and carotenoids with grain and biological yield. Negative correlation (−0.81 < r > −0.63) of physio-
biochemical components (antioxidants, proline, soluble sugars and proteins) with yield revealed that 
under heat stress these components produced in more quantities to alleviate the effects of heat, and 
Si application also improved these physio biochemical components. In crux, foliar application of Si 
alleviates the losses in the performance of wheat caused by terminal heat stress by improving the 
antioxidant mechanism and production of osmoprotectants.

Temperature of the globe is increasing due to climate change which is also affecting crop phenology1. Wheat is 
an important cereal crop of the globe and sensitive to terminal heat stress imposed at reproductive stage2,3. It 
has been observed from couple of decades that temperature in late February has been raised than the normal4,5 
which has become one of the key growths limiting factors during the reproductive stage as it reduces metabo-
lism and photosynthetic partitioning and pollen viability1,6. High ambient temperature at pollination and grain 
filling phases is most harmful to plants; referred to as terminal heat stress, which disturbs metabolic activities3.

Stomatal conductance and photosynthetic processes are badly affected by increased amount of (ROS) in differ-
ent cellular organelles7 in response to the heat stress, resulting in oxidative damage8. Oxidative damage through 
production of reactive oxygen species (ROS) is resulted due to elevated temperatures, mainly in chloroplasts. 
Because of high temperature, chlorophyll molecules undergo over-excitation that results in production of ROS. 
Plants are prepared for ROS scavenging in stressed circumstances with an internal defense mechanism manifested 
with catalase (CAT), peroxidase (POX) and superoxide dismutase-SOD9,10. In addition, heat stress reduces the 
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duration of grain filling, cause oxidative damage to the photosynthetic apparatus and reduces the dry matter 
accumulation in grains resulting in a lower grain yield of wheat11–13. Heat stress during grain filling reduces the 
sink capacity of wheat, thus by affecting hexoses transport across the plasma membrane14 and results in lower 
accumulation of assimilates in the grains and thus results in shorter and shrinked grains15.

Exogenous use of mineral elements, organic and in organic substances plays a critical role in improving the 
growth and production of plants as well as in mitigating the effect of abiotic stress and, as a result, improving 
economic yields16. Several studies have shown the importance of micronutrients in offering resistance to plants 
against different stresses17. Silicon (Si) is one of the mineral elements that is attracting attention due to its essential 
role in enhancing biotic and abiotic stress tolerance. The Si, taken up by the roots, travels through transpira-
tion streams to aerial of plants18. In addition, through control of osmo-protectant, antioxidant, and secondary 
metabolites, Si mitigates the harmful effects of abiotic stress19,20. In early seedlings, Si has been documented to 
induce heat stress tolerance in Salvia splendens21, rice metal tolerance22, tomato salinity tolerance23. Maghsoudi 
et al.24 reported that the photosynthetic pigments in wheat plants were increased by foliar Si application. The 
alleviating role of Si for heat stress tolerance may be attributed to increase Si in leaf and regulates transpiration 
and uptake of other micro and macro nutrients leading to cell homeostasis25. Si, either applied in the form of 
foliar or nano particles, restores heat stress damages in wheat cell organelles especially nucleus and chloroplast 
and thus improves photosynthetic efficiency resulting in more production of assimilates and ultimately more 
biomass26,27. Si provides mechanical strength to the stem by increasing the lignin content which make it withstand 
harsh environmental conditions28. Saha et al.29, reviewed the role of Si in heat stress tolerance and reported direct 
relationship of Si concentration in leaf tissue and heat stress tolerance. They further reported that Si alleviates 
heat stress by improving photosynthesis, membrane stability, water balance and by enhancing the expression of 
heat stress responsive genes.

Concluding the discussion, role of Si in agriculture has been well explored, but in case of wheat most of the 
studies explore its effects on seedling stage or drought stress, effect of Si on alleviation of terminal heat stress 
in wheat have often been ignored. Furthermore, information regarding the regulatory functions of Si in ROS 
metabolism under terminal heat stress by activating antioxidant defense mechanism in wheat is also limited. 
Considering the above facts, major objectives of the study were to explore the potential of Si in ameliorating the 
adversities of terminal heat stress through morphological, physiological and antioxidant defense mechanisms 
in wheat. In addition, to evaluate the effect of the silicon on the yield and yield characteristics of terminal heat 
stress. The tested approach can therefore be revealed as an effective for wheat management that can be readily 
adopted by farmers to avoid the detrimental effects of terminal heat stress and increase wheat productivity to 
ensure global food security.

Materials and methods
Experimental site description.  Pot experiment was conducted in the greenhouse at College of Agricul-
ture, BZU Bahadur Campus Layyah, Pakistan (longitude 70° 56′ 20.5" E, latitude 30° 57′ 40.6" N, and altitude 
151 m) to study the potential of Si to mitigate the adverse effect of terminal heat stress on bread wheat. Wheat 
variety Anaj-17 (developed by Ayub Agriculture Research Institute) obtained from Punjab Seed Corporation, 
Pakistan that is a commonly cultivated variety of wheat in that region was used in the experiment. It has high-
yield, stability, and adaptability and is widely grown in Layyah district of Pakistan. Ten seeds were sown in each 
pot (90 cm in height, 20 cm in diameter) containing 15 kg sandy loam soil. After one week of emergence five 
plants per pot were maintained for the subsequent studies.

Crop husbandry.  The nitrogen (N), phosphorus (P) and potassium (K) fertilizers were applied at the rates 
of 45, 25 and 30 mg kg-1 of soil to sustain the emergence of wheat seedlings. The sources of fertilizers applied 
were urea, di-ammonium phosphate and potassium sulphate. All the fertilizers were thoroughly mixed at the 
time sowing. Irrigation was applied with normal interval to avoid any drought stress during the entire experi-
ment period. The soil used in experiment was sandy loam with pH 8.5, electrical conductivity (EC) 2.56 dSm-1, 
organic matter 0.76%, total nitrogen 0.58 g kg-1, available phosphorous of 9.53 mg kg-1, and available potassium 
of 62.34 mg kg-1, bulk density of 1.71 g cm-3.

Experimental design and treatments.  Experiment was laid out in Completely Randomized Design 
(CRD) with two factors factorial arrangements. One factor was temperature regimes: ambient temperature (con-
trol) and heat stress (polythene tunnel). Second factor was various levels of silicon application: 0 (control), water 
spray, 2 and 4 mM Si. There were 24 treatments in total (2 temperature regimes × 4 Si levels × 4 replicates). There 
were four replicates per treatment and each replicate consisted of two pots with five plants per pot. Thus, there 
were 40 plants in 10 pots for each treatment. At heading stage (BBCH-55), pots were divided into two groups. 
One group was placed under polythene sheet (heat stress). The pots of other group were kept in open normal 
condition served as control (ambient temperature) till reached to harvesting phase. One week (7 days) after the 
imposition of heat stress, Si was applied including 2% tween-20 as a surfactant. In both the pot groups, one set 
of plants was unsprayed and the other was sprayed with distilled water (controls).

Imposition of heat stress.  Heat stress was imposed during BBCH-55 growth stage of wheat. A plastic 
tunnel made of transparent polythene sheet was made above the pots by using bamboo sticks. Tiny holes were 
made in polythene sheet to minimize the humidity. The pots in control treatment were placed under normal 
conditions. Humidity probe (Digital Multimeter-50302) and Digital temperature was used to note temperature 
and humidity. During heat stress, the temperature of control and heat-stressed pots was recorded twice a day and 
averaged. Temperature was 5–8 °C higher inside the polythene sheet than ambient condition during daytime. 
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Minimum and maximum temperature data inside the polythene sheet tunnel and open air ambient condition 
were recorded at alternate interval (Figs. 1, 2).

Plant sampling for biochemical analyses.  Plant leaves samplings were done after 7 days of Si applica-
tion and 14 days after the imposition of heat stress to measure chlorophyll and carotenoid contents, osmolytes 
determination (the total soluble sugars, protein and free proline) and enzymatic antioxidants activities. Healthy 
full expanded and undamaged flag leaf of wheat plant was taken from all experimental units. After cleaning, the 
leaves of wheat plants were frozen with liquid N2 immediately and stored at −80 °C for biochemical analyses. 
While all other attributes like yield and its components were recorded at harvest.

Chlorophyll and carotenoids.  Keeping in view the Arnon’s procedure30, 0.5 g fresh fully expanded flag 
leaves were taken. At 0–4 °C, 80% of 5 mL acetone was used for extraction, overnight. The supernatant was sepa-
rated after centrifugation (10,000×g for 5 min) for absorbance reading at 645 and 663 nm for the chlorophyll a, 

Figure 1.   Minimum and maximum temperature recorded outside (ambient temperature) and inside (heat 
stress) the plastic tunnel when the wheat plants reached to heading stage (75 days after sowing) for 30 days.

Figure 2.   Relative humidity recorded outside and inside the plastic tunnel when the wheat plants reached to 
heading stage (75 days after sowing) for 30 days.
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and chlorophyll b respectively by using the Spectrophotometer (Hitachi-U2001, Tokyo, Japan). However, for the 
determination of carotenoid absorbance reading was recorded at at 480 nm as described by Arnon30.

Osmolytes determination.  Healthy fresh green flag leaves (0.5 g) were taken to determine the total solu-
ble sugars, protein and free proline. Each sample was grounded using 1 mL extraction buffer (pH 7.2) in a pre-
chilled mortar pestle. Before extracting the proteins from the samples, cocktail protease inhibitors having 1 µM 
concentration was added in the saline phosphate buffer containing the 2 mM KH2 PO4,2.7 mM KCl, 10 mM 
Na2HPO4 and 1.37 mM NaCl dissolved in 1 L of di-ionized H2O. HCl was used to adjust buffer pH and auto-
claved. Centrifugation of extracted samples was done at 12,000×g for 5 min. Pellet was discarded, and superna-
tant was stored in centrifuge tube for measuring the quantity of soluble proteins. Bradford31 assay was followed 
for the amount total soluble proteins determination. To construct standard curves, various dilutions (10, 20, 30, 
40, 50, 60, 70,80, 90 and 100 µg µL-1) of Bovine serum albumin were used. Tubes were incubated and vortexed at 
room temperature up to 30 min, after addition of the 400 mL µL Dye stock and DI water. UV 4000 UV–VIS spec-
trophotometer was used to record absorbance of the samples. Proline was determined as described by Simaei 
et al.32 Using10 mL of sulpho salicylic acid (3% w/v), fresh leaf samples of 0.5 g were filtered and homogenized. 
For color development, firstly, filtrate was taken in test tubes. Then it was treated with glacial acetic acid and nin-
hidrine (2.5%). After that these were retained in water bath whose temperature was elevated to 100 °C for period 
of 60 min. After exclusion from water bath, toluene was added to test tubes for chromophores separation. Using 
UV–VIS spectrophotometer, optical density (520 nm) was measured. Following the procedure of Giannakoula 
et al.33, soluble sugar contents were measured in this extract.

Enzymatic antioxidants activities.  For extraction of enzymatic antioxidants from centrifuged fresh leaf 
sample (15,000×g for 20 min), 5 ml of phosphate buffer (50 mM with 7.8pH) was used. As result of photochemi-
cal reduction, superoxide dismutase (SOD) activity was calculated through the prevention of nitroblue tetrazo-
lium (NBT) at 560 nm34. The reactants of the reaction were 1 mL NBT (50 µM), 1 mL riboflavin (1.3 µM), 50 µL 
enzyme extract, 950 µL phosphate buffer (50 mM), 500 µL methionine (13 mM) and 500 µL EDTA (75 mM). 
This process was initiated by holding reaction mixture under illuminations of 30  W fluorescent lamp. After 
5 min of lamp turned off, the reaction was stopped. At 560 nm blue formazane formation was observed that was 
resulted due to NBT photo reduction. Using same reactants but having no enzyme extract, blank reading was 
taken. By measuring the change in the absorbance due to H2O2 produced as a result of enzyme reaction, cata-
lase (CAT) activity was recorded at 240 nm using a UV–visible spectrophotometer. To initiate the reaction, the 
reaction mixture (900 µL H2O2 (5.9 mM) and 2 mL phosphate buffer (50 mM) was added with 100 µL enzyme 
extract. µmol of H2O2 per minute per mg of protein was used to define catalase35. The peroxidase (POD) activity 
was estimated following the procedure of Kar and Mishra36. The reactants used were composed of 5 ml of Tris–
HCL buffer (0.1 M), 5 ml pyrogallol (10 mM), 5 mM of H2O2 (5 mM) and 100 µL enzyme extract. The By noting 
the decline in the absorbance at 425 nm which was due to H2O2 dependent oxidation of pyrogallol, POD activity 
was measured. This was further expressed as POD IU per minute per mg of the protein.

Yield and yield‑related traits.  At maturity, plant height and spike length of individually selected plant 
from each pot was measured from soil surface to the tip of the ear, with the help of meter rod. From each pot 
number of fertile tillers per plant was counted at maturity. Plants were harvested and threshed manually to 
record the number of spikelets per spike, number of grains per spike, 100 grain weight (g), and grain yield per 
plant (g). Harvest index (HI) was calculated by the following formula as given by Hunt37:

Statistical analysis.  Using Fisher’s Analysis of Variance technique, all the data of the experiment was ana-
lyzed and average of treatments was computed by LSD test38 at 5% probability level. Pearson linear correlation 
was run to assess the association among different traits. Figures were prepared using Microsoft Excel 365.

Compliance with the regulation.  The study complies with local and national regulations.

Permissions.  For the collection of seeds/plants, all relevant permits or permissions have been obtained 
where applicable.

Results
Chlorophyll and carotenoids.  Wheat plants subjected to foliar Si application under both ambient tem-
perature and heat stress condition upgraded the chlorophyll a, b and a + b and carotenoids contents at 2 mM and 
4 mM concentration. Changes in chlorophyll and carotenoids due to heat stress and Si application are presented 
in Fig. 3. Application of 2 mM Si significantly improved the chlorophyll a (14.7%), chlorophyll b (34.82%), chlo-
rophyll a + b (21.34%) and carotenoids (16.89%) in ambient conditions as compared to control (ck). Likewise, 
application of 4 mM Si significantly improved the chlorophyll a (23.47%), chlorophyll b (41.07%), chlorophyll 
a + b (29.23%) and carotenoids (19.59%) in ambient conditions as compared to control (ck). However, in heat 
stress condition 2 mM Si application significantly improved the chlorophyll a (35.76%), chlorophyll b (59.61%), 
chlorophyll a + b (41.79%) and carotenoids (41.77%) and 4 mM Si application significantly improved the chlo-

H.I. =
Economic yield

Biological yield
× 100
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rophyll a (45.25%), chlorophyll b (75%), chlorophyll a + b (53.43%) and carotenoids (58.22%) compared with 
control.

Enzymatic antioxidants.  The results show that activity of enzymatic antioxidants in flag leaves of wheat 
was higher in heat stress condition when compared to ambient temperature. However, Si application significantly 
increased the enzymatic antioxidants activity. Changes in chlorophyll and carotenoids due to heat stress and Si 
application are presented in Fig. 4. According to results, in heat stress condition, CAT activity was increased 
41.06 and 45.76% with 2 mM and 4 mM Si application. The SOD activity of plant leaves was also higher under 
heat stress as compared to ambient temperature. Under ambient temperature, SOD activity was lower in control 
(Ck) while foliar application of Si increased 10.69 and 11.19% SOD activity. Similarly, under heat stress, 2 mM 
and 4 mM Si application enhanced 26.40 and 35.12% SOD activity respectively as compared to control (Ck) 
treatment. Compared with ambient temperature, POD activity was higher in heat stress condition while 2 mM 
and 4 mM foliar application of Si increased 21.2 and 31.54% POD activity respectively when compared to non-
treated plants. While in ambient temperature, 2 mM and 4 mM enhanced POD activity to 45.85 and 56.36% 
respectively. The activity of APX was higher in heat stress conditions as compared to ambient temperature. At 
heat stress, 4 mM Si increased 21.34% APX.

Osmo‑protectants.  Soluble protein, proline and sugar contents in wheat leaves were significantly increased 
by exogenously applied silicon under both ambient and heat stress conditions. Changes in osmo-protectants due 
to heat stress and Si application are presented in Fig. 5. The increased 26.81% and 40.21% protein content in 
ambient condition and 9.16% and 13.44% under heat stress. Similarly, proline concentrations were increased 
(21.6% and 27.8%) in flag leaves of wheat by application of 2 mM and 4 mM Si under heat stressed plants. While 
application of Si at the rate of 4 mM significantly enhanced the soluble sugar content by 17.22% in heat stress 
condition while Si didn’t showed any significant effect on sugar content under ambient condition.

Figure 3.   Influence of exogenously applied Si on chlorophyll a (a), chlorophyll b (b), total chlorophyll (c) and 
carotenoid (d) of wheat under ambient temperature and heat stress. Values are the mean SE of four replicates.
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Yield and yield components.  The results show that plant height was significantly reduced by heat stress 
while increased significantly by foliar application of Si under heat stress. Changes in chlorophyll and carotenoids 
due to heat stress and Si application are presented in Figs. 6 and 7. In ambient temperature, Si application shows 
the non-significant response in comparison to control treatment. In comparison to control treatment, 2 and 
4 mM Si application increased 8.24 and 10.7% plant height correspondingly under heat stress. Terminal heat 
stress significantly reduced the spike length, but foliar application of Si significantly increased the spike length of 
wheat under ambient temperature as well as under heat stress. Foliar applied 2 mM and 4 mM Si improved 18.1 
to 26.9% in spike length under heat stress. Number of grains per spike was reduced significantly by the imposi-
tion of terminal heat stress. Whereas; foliar application of Si enhanced number of grains per spike under normal 
and heat stress conditions. Under ambient condition, 4 mM Si application increased 12.8% number of grains 
per spike while, 5.06% increase was observed under heat stress as compared to control treatment. Significant 
reductionin100-grains weight under heat stress was observed as compared to ambient temperature. However, 
4 mM foliage applied Si increased 14.75 and 28.9% 100-grains weight under heat stress and ambient temperature 
respectively that was statistically at par with 2 mM Si application. Under heat stress foliage applied 2 mM and 
4 mM Si increased 25.6% and 28.26% biological yield per plant. Likewise, at ambient temperature, Si application 
at the rate of 2 mM and 4 mM enhanced 24.64% and 26.07% biological yield when compared to control treat-
ment where Si was not applied. Grain yield per plant was reduced significantly under heat stress as compared to 
ambient temperature but foliar application of Si increased grain yield per plant under both ambient temperature 
and heat stress conditions. At ambient temperature 2 mM and 4 mM Si increased grain yield 11.70% and 14.53% 
respectively. While under heat stress Si application at the rate of 2 mM and 4 mM increased grain yield to 20.54% 
and 28.64% respectively. According to results heat stress lowered the harvest index of wheat crop. While under 
heat stress Si applied at the rate of 4 mM increased harvest index to 0.76%.

Figure 4.   Influence of exogenously applied Si on catalase (a), superoxidase dismutase (b), peroxidase (c) and 
ascorbate peroxidase (d) of wheat under ambient temperature and heat stress. Values are the mean SE of four 
replicates.
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Correlation analyses.  Correlation analyses revealed a strong association among different physiological, 
biochemical and yield related traits. Morphological traits (plant height, number of grains per spike, spike length) 
and leaf pigments (chlorophyll and carotenoids) showed strong and positive association with grain yield and 
biological yield which range from 0.91 to 0.96. Antioxidant enzymes and osmo-protectant are produced in more 
quantities in response to the external stress. Therefore, they showed a negative correlation with yield compo-
nents. Their correlation ranged – 0.63 to – 0.81. Moreover, a strong association was observed among different 
antioxidant enzymatic activities and among different osmo-protectants (Table 1).

Discussion
Under field condition crops are exposed to various stresses (biotic and abiotic) that which significantly restricted 
plants growth by limiting yield and productivity39–41. In current study, the heat stress hampered plants morpho-
physiological and antioxidants attributes and decreased the grains yield of wheat; nevertheless, addition of silicon 
(Si) was more favorable in reducing the adversarial exposure of heat and temperature stress. Numerous studies 
have highlighted the improvement in plant growth and development with Si addition under different abiotic 
stress in many crop species i.e. rice42, wheat43, soybean44, and sorghum45 due to positive impact of Si on plants 
mechanical strength and minerals nutrition, ultimately plants resistance to abiotic stress. In present study, with 
increasing temperature regimes the chlorophyll a, chlorophyll b, and total carotenoid contents were gradually 
decreased. Rossi et al.46 reported that under heat stress activities of chlorophyll degrading peroxidase and chlo-
rophyllase increased in bent grass (Agrostis spp.) which is main cause of lower chlorophyll pigments. Changes 
in chlorophyll a and b were similar due to heat stress and Si improved both components in a same magnitude, 
especially under heat stress. Chovancek et al.47 showed that recovery of photosystem I, from heat stress is poor 
in hexaploidy wheat than tetraploid wheat due to higher values of electric membrane potential. Si protect the 
damage of chlorophyll pigments and photosystem I and carotenoids by enhancing the production of antioxidants 
and osmoprotectants48,49 (Figs. 4, 5) and thus reduced the photosynthetic injury under heat stress.

Figure 5.   Influence of exogenously applied Si on soluble protein (a), proline (b) and soluble sugar (c) of wheat 
under ambient temperature and heat stress. Values are the mean SE of four replicates.
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The heat stress induced the significant modulation in antioxidant enzymatic POD, SOD, CAT and APX 
activities in wheat. Results are in agreement with Hussain et al.50 documented that addition of Si induced marked 
variation in SOD, POD, and CAT in two barley cultivars under different regimes. SOD detoxify highly toxic 
O2

- into H2O2
51. CAT and APX is an important enzyme of ascorbate–glutathione metabolism that scavenge dif-

ferent ROS especially H2O2
52,53. The silicon reported to scavenge ROS production by improving the antioxidant 

enzymatic activities54,55. The increase in POD activity helps the plants to circumvent oxidative destruction51. So, 
addition of Si may enhance the POD activity signifying in biosynthesis of lignin and suberin that build-up a 
physical obstacle against stress56. The activity of CAT increased with increasing stress which has been stated in 
maize53 and rice56. Many studies have documented to decrease oxidative destruction by increasing enzymatic 
activities in chickpea57. and sunflower58 under drought stress. Li et al.59 stated that application of Si increased 
the chlorophyll content, net photosynthetic rate, SOD, POD, CAT, and APX and restrained permeability leaf 
plasma membrane. Silicon assists the plant to retain and take up maximum water to improve the water status 
of the upper parts of plants. The silicon facilitated amelioration of oxidative damage under stress condition is 
incompatible with enhancement of antioxidative defense (proline, glutathione, catalase, peroxidase, superoxidase 
dismutase, calcium, potassium, silicon, and ascorbic acid). Moreover, in plants the accumulation and of proline 
is the sign of osmotic stress response because it is essential osmolyte and play significant role to adjust osmotic 
potential in plants cell60. In present study with application of Si significantly improved the proline, soluble 
sugar and soluble protein content in wheat. While these increased accumulations were vibrant with Si 4 mM 
for temperature stress along with heat stress environment. Exogenous application of silicon increased the plants 
tolerance to the stress. Furthermore, glutathione, ascorbic acid, and soluble sugar content were increased with 
addition of silicon60. The accretion of organic solutes particularly soluble sugars contents are the basic solutes 
that were involved in osmotic potential adjustment in glycophytic plants under osmotic stress condition61. The 
improvement in antioxidants and osmolytes with addition of Si is an effective mechanism to enhance the plants 
tolerance to oxidative stress. The application of Si 4 mM significantly increased the soluble protein, sugars and 
proline content under heat stress. The accumulation of protein in response to silicon may be due to important role 
of Si in specific protein synthesis, functioning of mRNA62 and DNA formation63. Improvement in physiological 

Figure 6.   Influence of exogenously applied Si on plant height (a), spike length (b), number of grains per spike 
(c) and 100 grains weight (d) of wheat under ambient temperature and heat stress. Values are the mean SE of 
four replicates.
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Figure 7.   Influence of exogenously applied Si on grain yield (a), biological yield (b) and harvest index (c) of 
wheat under ambient temperature and heat stress. Values are the mean SE of four replicates.

Table 1.   Correlation analyses among different yield related traits, physiological traits, antioxidant enzymatic 
activities and osmo-protectant. For bold values p < 0.01; for non-bold values p < 0.05; n = 24.

PH SL NGPS GYP BYP CAT​ SOD POD APX A + B CARO PROT PROL SUG

PH 1.00

SL 0.92 1.00

NGPS 0.83 0.89 1.00

GYP 0.92 0.94 0.93 1.00

BYP 0.91 0.91 0.93 0.95 1.00

CAT​ – 0.55 – 0.68 – 0.62 – 0.63 – 0.49 1.00

SOD – 0.68 – 0.81 – 0.76 – 0.77 – 0.67 0.95 1.00

POD – 0.63 – 0.76 – 0.69 – 0.71 – 0.58 0.97 0.98 1.00

APX – 0.58 – 0.70 – 0.59 – 0.63 – 0.48 0.95 0.94 0.98 1.00

A + B 0.92 0.96 0.93 0.96 0.94 – 0.58 – 0.74 – 0.66 – 0.58 1.00

CARO 0.95 0.96 0.90 0.95 0.93 – 0.59 – 0.75 – 0.68 – 0.61 0.92 1.00

PROT – 0.65 – 0.76 – 0.63 – 0.69 – 0.56 0.94 0.95 0.92 0.95 – 0.64 – 0.68 1.00

PROL – 0.67 – 0.79 – 0.73 – 0.74 – 0.63 0.94 0.94 0.94 0.95 – 0.70 – 0.71 0.95 1.00

SUG – 0.73 – 0.84 – 0.80 -0.81 – 0.73 0.92 0.92 0.96 0.90 – 0.79 – 0.80 0.93 0.94 1.00



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23170  | https://doi.org/10.1038/s41598-021-02594-4

www.nature.com/scientificreports/

and biochemical attributes due to Si lead to a better yield under heat stress condition. Si provides dehydration 
tolerance to the plants at cellular level and facilitates the assimilation of photosynthates64,65 leading to a better 
yield. Ullah et al.66 showed strong association of rice grain yield with grain Si contents under stress conditions. 
These findings strengthen our results on yield improvement under heat stress with application of Si.

Correlation analyses revealed strong positive association of morphological and yield traits with leaf pigments 
and negative association of antioxidant enzymatic activities and osmoprotectants (Table 1). Mechanism behind 
is that antioxidant defense mechanism activates in the response of heat stress to scavenge ROS10,67 but it compro-
mises physiology and morphological growth48 and results in negative correlation. But application of Si improves 
antioxidant enzymatic activities resulting in more scavenging of ROS and improved yield. Thus, improvement 
in morphological traits and yield attributed to improvement in leaf pigments as a result of enhanced antioxidant 
enzymatic activities and more production of osmoprotectants.

Conclusion
It was concluded that terminal heat stress deteriorates leaf pigments (chlorophyll and carotenoids) due to produc-
tion of reactive oxygen species which is evident from enhanced antioxidant activities and lead to poor growth and 
lower yield. Foliaged applied Si at heading stage significantly improved the yield attributes by up regulating the 
antioxidants defense mechanism and enhanced the levels of osmo-protectants which in turn protected the leaf 
pigments and compensate the yield losses. Based on overall results, a foliar application of 4 mM Si is suggested 
to alleviate the adverse effect of terminal heat stress in semi-arid and arid regions.
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