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Combining machine learning 
and conventional statistical 
approaches for risk factor discovery 
in a large cohort study
Iqbal Madakkatel1,2*, Ang Zhou1,3, Mark D. McDonnell2,4 & Elina Hyppönen1,3,4*

We present a simple and efficient hypothesis-free machine learning pipeline for risk factor discovery 
that accounts for non-linearity and interaction in large biomedical databases with minimal variable 
pre-processing. In this study, mortality models were built using gradient boosting decision trees 
(GBDT) and important predictors were identified using a Shapley values-based feature attribution 
method, SHAP values. Cox models controlled for false discovery rate were used for confounder 
adjustment, interpretability, and further validation. The pipeline was tested using information from 
502,506 UK Biobank participants, aged 37–73 years at recruitment and followed over seven years 
for mortality registrations. From the 11,639 predictors included in GBDT, 193 potential risk factors 
had SHAP values ≥ 0.05, passed the correlation test, and were selected for further modelling. Of the 
total variable importance summed up, 60% was directly health related, and baseline characteristics, 
sociodemographics, and lifestyle factors each contributed about 10%. Cox models adjusted for 
baseline characteristics, showed evidence for an association with mortality for 166 out of the 193 
predictors. These included mostly well-known risk factors (e.g., age, sex, ethnicity, education, 
material deprivation, smoking, physical activity, self-rated health, BMI, and many disease outcomes). 
For 19 predictors we saw evidence for an association in the unadjusted but not adjusted analyses, 
suggesting bias by confounding. Our GBDT-SHAP pipeline was able to identify relevant predictors 
‘hidden’ within thousands of variables, providing an efficient and pragmatic solution for the first stage 
of hypothesis free risk factor identification.

Cohort studies and biobanks available for medical research are growing, both in the number of individuals 
included and the density of information available for the participants. These large databases hold enormous 
potential for innovation and provide exciting prospects for hypothesis free risk factor discovery. However, in 
practice, many research projects use only a set of handpicked predictors for their analyses, due to various limita-
tions. Indeed, traditional epidemiological approaches, such as logistic regression and Cox regression are limited 
in number of independent variables that can be practically included in a single model. They also require lack 
of multicollinearity among independent variables, and without careful modelling, by default associations are 
assumed to be linear with no interactions between the explanatory variables. Further challenges in the multivari-
ate context arise from the treatment of and biases caused by missing information.

Machine learning (ML), “the study of computer algorithms that allow computer programs to automatically 
improve through experience”1, provides some attractive solutions for many of these challenges, and they have 
been found to be effective in developing predictive models based on large sets of variables. Supervised ML meth-
ods, involving labeled data, can capture complex interactions and non-linear associations among explanatory 
variables2,3, often resulting in good model performance when subsequently applied to real-world data. There has 
been great interest in comparing model performance among different ML algorithms4–7. ML approaches, such 
as gradient boosting decision trees (GBDT)8, support vector machines9, K-nearest neighbors10, and artificial 
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neural networks11 have been found to outperform traditional risk scoring systems4,5,12,13. Supplementary Note 
online describes these ML approaches. Among the strongest approaches is GBDT, which according to a review 
comparing 13 different state-of-art ML methods, was ranked as the best of all methods in tasks related to predic-
tive analytics (appreciating that no single algorithm performs the best across all datasets)14.

In this study, our intention is not to build competing predictive models or to argue that ML methods (specifi-
cally, GBDT) is ‘better’, or epidemiological analyses are ‘worse’ but to present an approach which can accom-
modate their distinct strengths and limitations. We test the proof of principle of such an approach for its ability 
to discover potential risk factors amongst thousands of predictors by combining GBDT modelling with standard 
epidemiological practices. We use data from over 11,000 predictors and mortality for over 500,000 participants 
in the UK Biobank. Our novel analysis pipeline uses GBDT, CatBoost implementation15 for its inherent capa-
bility to handle missing values and a large volume of data, without having to convert variables to any specific 
format. We screen for potentially interesting predictors using SHAP (SHapley Additive exPlanation) values16,17, 
a Shapley value based additive feature attribution method, reflecting variable ‘importance’ to guide the selec-
tion of mortality predictors for further epidemiological modelling. Furthermore, we use penalized (LASSO) 
logistic regression as an alternative baseline approach and also include comparisons with another feature selec-
tion method (XGBoost18 using five different built-in ways of calculating feature importance, as done by other 
studies19–22), and as we describe in this paper, our data suggests that the proposed GBDT-SHAP pipeline has 
certain advantages over them.

Methods
Participants.  The UK Biobank is a cohort of over 500,000 participants recruited between March 13, 2006 
and October 1, 2010 through 22 assessment centers across England, Wales, and Scotland23. Data collection dur-
ing the baseline assessment covered touch screen questionnaire surveys, face-to-face interviews, and physical 
measurements, with blood sampling and urine collection for genetic assays and biomarker assessments. Further 
information on disease outcomes was obtained through record linkages, including mortality statistics from the 
UK Office of National Statistics, cancer registrations, and hospital episodes statistics.

The outcome variable indicating the mortality status of the participants as of March 1, 2016, was created using 
the UK Biobank date of death field 40,000. In this study, we considered those information that were collected at 
the baseline assessment, including data obtained using the touchscreen questionnaires and results from clinical 
examinations. In addition, we included disease codings derived from linkage to cancer registrations and hospital 
episodes statistics. We removed baseline variables which were recorded for less than 95% of the participants. 
Information obtained from online follow-up surveys or sub-samples of the cohort were excluded from our 
analyses due to their low coverage. Supplementary Table S1 online lists all the variables included.

The UK Biobank project was approved by the National Information Governance Board for Health and Social 
Care and North West Multi-center Research Ethics Committee (11/NW/0382). Participants provided electronic 
informed consent to use their anonymized data and samples for health-related research, to be recontacted for 
further sub-studies and for the UK Biobank to access their health-related records24. This study was conducted 
under application number 20175 to the UK Biobank and all methods were performed in accordance with the 
relevant guidelines and regulations.

Model development pipeline and statistical analyses.  The GBDT-SHAP pipeline is shown in Fig. 1. 
As the data were not sufficiently structured for our analyses, we used a specifically designed software package for 
UK Biobank, PHESANT (PHEnome Scan Analysis)25, available in R and ran an automated pre-processing step 
before developing ML models (Supplementary Methods online). In the below we describe the analyses using the 
GBDT-SHAP pipeline, with details for comparisons against LASSO and XGBoost with built-in feature impor-
tance methods for feature selection described in Supplementary Methods online.

Identifying potential risk factors.  Potential risk factors were identified by following the six steps, namely, 
(a) learning curve analysis to determine sufficient amount of data for training (b) developing GBDT models with 
all available predictors and assessing model performance, (c) calculating variable importance using SHAP values 
and eliminating predictors based on a threshold, (d) further elimination of highly monotonically correlated 
predictors, (e) learning curve analysis to determine sufficient amount of data for training with the reduced set of 
predictors and (f) ensuring that the reduced set of predictors is appropriate from model performance perspec-
tive as well as from an epidemiological perspective.

Our GBDT models used in the above steps are binary classifiers, that is, their input are the predictors for 
each individual and their output is model’s confidence for mortality status of that individual. The classes were 
imbalanced (death rate was around 2.9%) and to address the class imbalance problem, all our ML models were 
developed with the hyperparameter for scaling positive class weight set to the ratio of negative to positive train-
ing samples26,27. We initially split the entire data into random training, development, and test sets at the ratio of 
60:20:20. The training and the development sets were used as the derivation cohort and the test set as the valida-
tion cohort. To avoid overfitting to the training data (which is more common in high-dimensional datasets28), 
we used the development set in all our GBDT models for early stopping of training, and thus effectively tuning 
the hyper parameter for number of estimators. We assessed model performance using area under the receiver 
operating characteristics (AUROC), a widely used threshold independent metric in assessing binary classifiers. 
Confidence intervals of AUROC were calculated using 1000 bootstrap29 datasets based on the test set. We also 
report sensitivity and specificity at Youden index optimal cut-off point30. We used CatBoost version 0.21 imple-
mented in Python (version 3.5.2, Python Software Foundation) for GBDT model development.
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In step (a), we trained GBDT models with increasing numbers of training samples from the training split, 
starting from 20,000 participants and incremented by 20,000 each time until all training samples were used and 
verified the adequacy of training samples. Subsequently, we developed GBDT models with all available predic-
tors and assessed their performance in step (b). In step (c), we calculated the importance of each predictor as the 
mean absolute SHAP value in the training set and normalized variable importance so that they summed up to 
100%. We eliminated ‘irrelevant’ predictors using an arbitrarily chosen SHAP threshold. We explored different 
thresholds to identify ‘important’ predictors and assessed the effects on model performance when using reduced 
sets of predictors (step (f)). We used Spearman’s ρ (above 0.9) to identify sets of highly correlated predictors and 
removed all but one (the one recorded for the greatest number of samples) from those sets to produce the final 
set of predictors for further epidemiological analyses. Such a step avoided carrying forward predictors such as 
both ‘left leg fat percentage’ and ‘right leg fat percentage’ for further analyses. We repeated the learning curve 
analysis (step (e)) and model performance check (step (f)) with the reduced set of predictors GBDT models 
before proceeding to further analyses.

UK Biobank data
Participants: 502,506

Variables: 8,087

Identifying potential risk factors

(b) Full set of predictors 
GBDT models and 

performance evaluation

(c) SHAP Values based 
feature elimination

(f) Performance check using 
reduced set of predictors 

GBDT models and domain 
perspective check

(d) Correlation based feature 
elimination

HES, cancer and 
mortality linkage 

data

Epidemiological analyses

Cox regression modeling using the test set

Pre-process using PHESANT
Total features: 15,928

(e) Learning curve analysis

(a) Learning curve analysis

Select baseline predictors and predictors 
from linkages
Missing < 5%

Total features selected : 11,639

193 potential risk 
factors

Figure 1.   GBDT-SHAP machine learning pipeline for risk factor discovery, followed by epidemiological 
analyses using Cox regression. GBDT: gradient boosting decision trees; HES: hospital episode statistics; 
PHESANT: PHEnome Scan Analysis; SHAP: SHapley Additive exPlanation.
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Epidemiological analyses.  As the next stage in our proof of principle analyses, we fitted Cox regression 
models to allow for confounder adjustments and direct interpretation of the associations between the predic-
tors and mortality risk31. We fitted univariate Cox models, and also adjusted for baseline predictors identified 
as ‘important’ by GBDT, including age, sex, Townsend deprivation index, assessment center and month of birth 
using the test dataset. We used FDR to account for multiple testing. We present data as Hazard ratios (HR) and 
their 95% confidence intervals. For selected known mortality predictors which were picked up by GBDT, but not 
supported by simple Cox modelling, we fitted non-linear models and accounted for selected interactions. We 
constructed a loop iterating through two-way interactions between predictors which had shown evidence for an 
association in the GBDT-SHAP pipeline but not confirmed in the Cox models and other predictors identified by 
GBDT-SHAP pipeline, to further examine mortality associations. All the interaction analyses in the loop were 
adjusted for baseline predictors as for the other analyses. As our intention was to test for proof of principle in 
risk factor discovery rather than predictive modelling, for simplicity, we interpret coefficients from Cox models 
as ‘average associations’, avoiding the requirement to test for proportionality of hazards assumption. All epide-
miological models were done using STATA (version 15, StataCorp, College Station, TX, USA).

Results
Participants characteristics.  Of the 502,506 participants included in our study, 14,421 participants 
(2.9%) died over the median of 7 years (IQR 6.3–7.7 years) of follow-up. Table 1 shows the distribution of the 
study population and mortality according to selected baseline characteristics. The training and development sets 
had 8552 and 2941 deaths respectively, while the test set contained 2928 deaths. Participants who died during the 
follow-up were older and more commonly male compared to those who stayed alive. Those who died during the 
follow-up period were less educated, had poorer self-rated health, were current or previous smokers and from 
more deprived backgrounds.

Pre‑processing.  PHESANT pre-processing, after satisfying our missing value criterion for baseline pre-
dictors, derived 11,639 predictors falling under ten broad categories, baseline characteristics, demographics, 
lifestyle and environment, physical measurements, cognitive function, psychosocial factors, self-reported dis-
eases, medications and operations, health and medical history and hospital diagnoses (Supplementary Table S2 
online). Hospital diagnoses (through record linkage) accounted for 98% of the predictors.

Identifying potential risk factors.  Our learning curve analysis using all the predictors showed improve-
ments in AUROC as more and more training samples were used (Supplementary Fig. S1 online). We found 
that in the range of 40% to 60% of samples used for training, model performance stabilized. The GBDT model 
with all predictors reported an AUROC value of 0.94 (95% CI 0.94–0.95) on the test set (Supplementary Fig. S2 
online). The model reported a sensitivity of 0.83 and a specificity of 0.92. At an arbitrary cut-off value of 0.05%, 
218 predictors were considered to be ‘important’. Correlation based predictor elimination resulted in further 
reduction of 25 predictors resulting in 193 ‘important’ predictors. Learning curve analysis showed data could be 
split at the ratio of 60:20:20 also for the reduced set of predictors GBDT models. Reduced set of predictors GBDT 
model reported an AUROC value of 0.94 (95% CI 0.93–0.95). The model had the same sensitivity and specificity 
as that of all predictors model.

Figure 2 shows the category-wise predictor importance distribution and Supplementary Table S3 online lists 
all important predictors. Hospital diagnoses, health and medical history, and self-reported health jointly covered 
about 60% of the total variable importance summed up, with baseline characteristics (e.g., age, sex), sociodemo-
graphics (e.g., employment, education, housing, ethnicity), and lifestyle factors (e.g., smoking, physical activity, 
diet) each contributing about 10%. Since the mean absolute SHAP values do not directly indicate the direction 
of association, we show the SHAP summary plot for all important predictors in Supplementary Fig. S3 online.

Epidemiological analyses.  In Cox models adjusted for age, sex, Townsend deprivation index, assessment 
center and month of birth, 166 out of 193 predictors had an association with mortality at P < 0.05 after correct-
ing for FDR (Supplementary Table S4 online). Hazard ratios from Cox models of top 50 predictors ranked by 
SHAP values are shown in Figs. 3 and 4. Supplementary Fig. S4 online shows hazard ratios for all the impor-
tant predictors. Confirmed predictors included expected mortality associations for various disease outcomes, 
sociodemographic characteristics, and some lifestyle indicators. After FDR correction, there were 19 predictors 
which showed evidence of association in the unadjusted models but not in the adjusted models, such as length 
of time at current address, sensitivity/hurt feelings, worrier/anxious feelings, guilty feelings, risk taking, hear-
ing difficulties, whole body fat-free mass, experiencing of headache and knee pain in last month, diagnoses of 
inguinal hernia, polyp of colon and gonarthrosis. Eight predictors did not meet the P-value threshold in either 
unadjusted or adjusted models, including month of birth, comparative height size at the age of ten, cheese intake, 
handedness, irritability, using a gas fire in winter time, gastro-esophageal reflux disease without esophagitis, 
and other and unspecified malignant neoplasm of skin of other and unspecified parts of face. As an attempt to 
understand why these eight predictors may have been picked up by GBDT-SHAP modelling, we next looked in 
more detail at their associations with mortality. For example, GBDT picked up month of birth as an important 
predictor and when we recoded it to seasons, both univariate and multivariate models showed modest evidence 
for an association (P ≤ 0.02). Interaction loop analyses suggested that association between comparative height 
at age 10 and mortality might have arisen from an interaction with secondary malignant neoplasm of brain and 
cerebral meninges (Pinteraction = 1.48E−05). Similarly, gastro-esophageal reflux disease without esophagitis showed 
some evidence for interaction with hypertension (Pinteraction = 0.02) and malignant neoplasm of skin of other and 
unspecified parts of face had an interaction with fed-up feelings (Pinteraction = 0.009). Other factors such as cheese 
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Table 1.   Baseline characteristics of the UK Biobank cohort. *P-values are from logistic regression models 
adjusted for baseline predictors including age, sex, Townsend deprivation index, assessment center and month 
of birth.

Characteristics

Total, N (%) Died, Cases (%)

P-value*(n = 502,506) (n = 14,421)

Age

1.0E–300

 < 50 117,874 (23.5) 1056 (0.9)

50–59.9 167,142 (33.3) 3442 (2.1)

60–69.9 215,065 (42.8) 9739 (4.5)

70 +  2425 (0.5) 184 (7.6)

Sex

4.55E–247Female 273,384 (54.4) 5668 (2.1)

Male 229,122 (45.6) 8753 (3.8)

Ethnic background

2.41E–09

White European 472,697 (94.1) 13,862 (2.9)

South Asian 9882 (2.0) 170 (1.7)

East Asian 1574 (0.3) 22 (1.4)

Black African 8061 (1.6) 115 (1.4)

Other/mixed 7516 (1.5) 147 (2.0)

Unknown 2776 (0.6) 105 (3.8)

Country of birth

1.84E–07

England 390,499 (78.0) 11,059 (2.8)

Wales 22,072 (4.4) 710 (3.2)

Scotland 40,176 (8.0) 1536 (3.8)

Northern Ireland/Republic of Ireland 8068 (1.6) 281 (3.5)

Elsewhere 39,909 (8.0) 786 (2.0)

(Missing) 1782 (0.4) 49 (2.8)

BMI

7.64E–72

Underweight 2626 (0.5) 167 (6.4)

Normal 162,523 (32.3) 3946 (2.4)

Overweight 212,065 (42.2) 5742 (2.7)

Obese 122,187 (24.3) 4313 (3.5)

(Missing) 3105 (0.6) 253 (8.2)

Smoking

 < 1.00E–300

Non-smokers 273,522 (54.4) 5328 (2.0)

Ex-smokers 173,058 (34.4) 6042 (3.5)

Smokers—no type 13,826 (2.8) 458 (3.3)

Cigars/pipes 2668 (0.5) 208 (7.8)

Cigarettes < 1–15 22,010 (4.4) 1074 (4.9)

Cigarettes > 15 14,474 (2.9) 1178 (8.1)

(Missing) 2948 (0.6) 133 (4.5)

Qualification

2.20E–59

None 86,037 (17.1) 4,421 (5.1)

NVQ/CSE/A-levels 175,063 (34.8) 4512 (2.6)

Degree/professional 235,014 (46.8) 5230 (2.2)

(Missing) 6392 (1.3) 258 (4.0)

Townsend deprivation index

0.017

Q1 lowest 125,422 (25.0) 3,016 (2.4)

Q2 125,516 (25.0) 3182 (2.5)

Q3 125,468 (25.0) 3527 (2.8)

Q4 highest 125,477 (25.0) 4682 (3.7)

(Missing) 623 (0.1) 14 (2.3)

Overall health rating

 < 1.00E–300

Excellent 81,859 (16.3) 1266 (1.6)

Good 289,016 (57.5) 6318 (2.2)

Fair 105,367 (21.0) 4362 (4.1)

Poor 22,777 (4.5) 2280 (10.0)

(Missing) 3487 (0.7) 195 (5.6)
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intake, handedness, irritability, and gas/solid fuel cooking all had low SHAP values (all < 0.08%). Although uni-
variate Cox model showed an association between tea intake and mortality, an adjusted Cox model showed no 
evidence for a linear association, (P = 0.31). However, there was significant non-linearity (Pcurvature = 2.27E−10), 
with lower mortality for participants drinking 1 to 7 cups per day compared to non-drinkers and the very high 
intake group (Supplementary Fig. S5 online).

Comparison of feature selection between GBDT‑SHAP against LASSO and XGBoost.  LASSO 
performed well in identifying disease associated features (Supplementary Table S5). However, LASSO did not 
return an association between BMI (or other adiposity indicators), possibly due to a non-linear association with 
mortality. LASSO did not also select other important predictors such as Townsend deprivation index, or age 
at cancer diagnosis which were picked up in GBDT-SHAP pipeline. Age at cancer diagnosis is a variable from 
cancer registration linkage, where information is only included for those participants who had had cancer (84% 
of the values were missing). While LASSO did not detect the relevance of this information for mortality predic-
tion in the presence of missing information, GBDT-SHAP pipeline was able to rank this feature as the second 
most important feature. XGBoost was expected to return similar features compared to GBDT-SHAP. However, 
in analyses of adjusted stability scores, GBDT-SHAP pipeline had higher adjusted features stability scores and 
highest stability scores, from top 200 features onwards (Supplementary Fig. S7). More importantly, we observed 
that the default feature importance method of XGBoost, ‘weight’ (based on number of times a feature was used 
for splitting in creating decision trees), had poorer adjusted stability scores as compared to GBDT-SHAP (for 
example, for 200 features selected, 0.86 versus 0.74 and for 250 features selected, 0.88 versus 0.73). LASSO had 
consistently lower scores compared to GBDT-SHAP values regardless of number of features selected. LASSO’s 
scores (for example, for 200 and 250 features selected, 0.75), were similar to that of XGBoost with default feature 
importance method.

Discussion
We examined the value of GBDT-SHAP pipeline in risk factor discovery using mortality prediction in the UK 
Biobank as the test case. Our test case picked up the expected predictors (e.g., age, sex, palliative care, disease 
diagnoses) and many other well-known associations (e.g., smoking, BMI, social differentials). This demonstrates 
the effectiveness and viability of GBDT-SHAP pipeline for large-scale hypothesis-free screening in this type 
of multivariable context where standard epidemiological approaches are not feasible. It also provides a better 
alternative to other approaches such as LASSO, in terms of capturing non-linear predictors or embedded feature 
selection method such as XGBoost with built-in feature importance, in terms of better feature stability. Feature 

Figure 2.   Variable importance values of the 193 important predictors identified for the SHAP value threshold 
of 0.05%, aggregated into ten categories. Variable importance is calculated as mean absolute SHAP value for 
each predictor and normalized to 100% before applying the threshold. SHAP: SHapley Additive exPlanation.
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Figure 3.   Adjusted Cox regression hazard ratios (HR) with 95% confidence intervals and SHAP values 
(normalized for 100%) for top 50 predictors ranked by SHAP values belonging to the categories of baseline 
characteristics, sociodemographics, lifestyle and environment, physical measurements, cognitive functions, and 
psychosocial factors. Estimates are adjusted for age, sex, Townsend deprivation index, assessment center, and 
month of birth. The ethnic group “east Asian” is not shown as it had a hazard ratio of 1.4E−20. SHAP: SHapley 
Additive exPlanation.
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stability is an important aspect of feature selection for domain experts as it provides assurance to them that the 
selected features are robust to the perturbation of input data32. Also, other studies have shown the inconsistent 
feature attribution behavior of feature selection method such as gain and split count used in XGBoost16. Our 
approach has particular interest in the context of relatively rare diseases for which we know little about, and 
where large-scale data now provides the first opportunities to identify candidates for prevention.

ML methods are increasingly used in disease prognosis and there is one previous study using ML to predict 
all-cause mortality in the UK Biobank. This earlier study compared artificial neural network and random forest 
methods against Cox regression using a set of 60 variables, selected based on their biological plausibility7. As 
an additional validation, where included in our dataset, our hypothesis-free approach, including over 11,000 
predictors in the GBDT-SHAP pipeline, picked up all these risk factors or their equivalent. These included key 
characteristics, such as age, sex, ethnicity, education, Townsend deprivation index, prior cancer diagnoses, smok-
ing, physical activity, blood pressure, diabetes, and adiposity, confirming that our approach is able to identify 

Figure 4.   Adjusted Cox regression hazard ratios (HR) with 95% confidence intervals and SHAP values 
(normalized for 100%) for top 50 predictors ranked by SHAP values belonging to the categories of self-reported 
diseases, health and medical history and hospital diagnoses. Estimates are adjusted for age, sex, Townsend 
deprivation index, assessment center, and month of birth. SHAP: SHapley Additive exPlanation.
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relevant indicators ‘hidden’ amongst thousands of predictors. While most of the mortality predictors identified in 
our models were very logical and expected, in a context when less is known about potential predictors, our com-
prehensive hypothesis-free approach shows great promise for the identification of novel risk factor candidates.

Although GBDT and other ML models tend to be complex and less interpretable than traditional 
approaches33,34, a strength with this approach is the ability to identify relevant risk factors in the context of inter-
actions and non-linear associations. Here, epidemiological analyses using Cox, or any other generalized linear 
models require careful model construction which is often impractical when dealing with a very large number 
of predictors, and complex unknown interactions. Data pre-processing requirements are less for GBDT than 
that required for standard epidemiological approaches, and our analyses provided examples where non-linear 
associations which would have remained hidden in standard epidemiological analyses were picked up by the 
GBDT-SHAP pipeline. Another strength is the ability to incorporate information from thousands of predictors, 
and to better cope with missing information (without having the need to impute using linear approaches such 
as MICE35 or non-linear approaches such as MissForest36) in this type of multivariable context. However, in 
this type of real-life setting, GBDT-SHAP approach is unsuitable for simultaneous inclusion of data from the 
UK Biobank sub-samples collected after the baseline as participation in the follow-up surveys is correlated with 
mortality. GBDT-SHAP pipeline also picked up indicators which were associated with the outcome purely due 
to confounding, as shown by associations of several of the identified ‘important’ predictors being explained by 
a standard adjustment for baseline factors. Confounding and multicollinearity can also notably affect the SHAP 
based importance ranking. For example, while the number of cancer diagnoses came among the most important 
factors, SHAP ranked some cancer diagnoses as less important than age related predictors such as experiencing 
of knee pain last month, sitting height, and gonarthrosis. For risk factor discovery this may have relatively little 
importance if at least one relevant indicator is picked up, however, this highlights the importance of replica-
tion and more detailed modelling, with caution required when interpreting apparent associations without clear 
explanations.

One of the challenges with our approach arises from the need to account for multiple testing and the lack 
of a pre-specified cut off value to consider indicators as ‘important’ in the context of feature selection. Some 
authors suggest that 3% of total number of features could be considered as relevant if the number of predic-
tors included exceeds 10037. Our choice was based on a SHAP value threshold (0.05), which selected a slightly 
smaller proportion of features (1.87%). Our chosen threshold resulted from a pragmatic assessment where we 
hoped to be inclusive enough to allow for possibly relevant and interesting features be taken forward for further 
analyses, while at the same time limiting numbers to a manageable amount and not losing too much on the pre-
dictive ability of the model. After screening under SHAP threshold, we further used FDR correction threshold 
to account for multiple testing with the aim of reducing Type I error. Another pragmatic approach which we 
could consider in this context would be to ignore the pre-screening by SHAP threshold and to use Bonferroni 
correction based on the total number of features when determining the P-value threshold for the epidemiological 
analyses. However, this would be overly conservative and increase the risk of Type II error, as suggested by the 
inability to identify well-known mortality risk factors such as the BMI and other adiposity indices. Having said 
that, even this approach would not have led to findings very dissimilar to those reported, as Bonferroni correc-
tion based on the total number of features would have led to 133 features for follow on analyses (compared to 
193 with our approach).

Our study demonstrates some of the opportunities in ML based risk factor discovery utilizing the recent 
implementation of GBDT (CatBoost) and Shapley values-based feature importance method (TreeSHAP). There 
are also limitations, some of which are specific with respect to the dataset. Indeed, reliable analyses from any 
model require the understanding of the data from which the results are derived. Here, UK Biobank is a cohort of 
volunteers with higher education and socio-economic status, and lower mortality rates compared to the general 
population38. This type of healthy volunteer bias may affect the external validity of our findings. However, it was 
reassuring that our data-driven approach identified the traditional risk factors, suggesting the ability to obtain 
valuable insights in other, less explored settings of risk prediction. Furthermore, as all the analyses in our study 
were done using a single dataset, we cannot exclude problems with overidentification. Also, as our model used 
only those predictors available for at least 95% of the participants, we may have left out important determinants 
which had not been captured in the full cohort. In this observational method exploration, we also cannot establish 
causal effects, and as we only included adjustments for very basic covariates in our proof of concept test-case, 
confounding is likely to explain some of the associations.

In conclusion, our data-driven, hypothesis-free approach utilizing specific ML methods was a viable, fast, and 
pragmatic approach to risk factor discovery in a highly phenotyped high dimensional tabular data. Our approach 
was able to pick up traditional risk factors from among thousands of possible predictors and showed potential 
for discovering relevant mortality predictors in the context of interactions, non-linear associations, and missing 
values. However, to ensure interpretability of the identified predictor—outcome associations, a more detailed 
modelling utilizing domain expertise and traditional methods is still required.
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