
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24048  | https://doi.org/10.1038/s41598-021-01863-6

www.nature.com/scientificreports

Frequency domain maximum 
correntropy criterion spline 
adaptive filtering
Wenyan Guo1,2, Yongfeng Zhi1,2* & Kai Feng3

A filtering algorithm based on frequency domain spline type, frequency domain spline adaptive 
filters (FDSAF), effectively reducing the computational complexity of the filter. However, the 
FDSAF algorithm is unable to suppress non-Gaussian impulsive noises. To suppression non-Gaussian 
impulsive noises along with having comparable operation time, a maximum correntropy criterion 
(MCC) based frequency domain spline adaptive filter called frequency domain maximum correntropy 
criterion spline adaptive filter (FDSAF-MCC) is developed in this paper. Further, the bound on learning 
rate for convergence of the proposed algorithm is also studied. And through experimental simulations 
verify the effectiveness of the proposed algorithm in suppressing non-Gaussian impulsive noises. 
Compared with the existing frequency domain spline adaptive filter, the proposed algorithm has 
better performance.

In dedicated electronic circuits due to the inherent nonlinearity of certain hardware components, nonlinear 
modeling and system identification are important. The power amplifier (PA), for example, is typically operated 
in its nonlinear region to improve power efficiency. The nonlinear spline adaptive filter (SAF) algorithm is widely 
utilized in nonlinear modeling due to its simple structure. The basic framework of SAF includes Wiener spline 
 filter1, Hammerstein spline  filter2, Sandwich 1 SAF, Sandwich 2  SAF3. Some researchers carry out the steady-
state performance analysis study of  SAF4,5. Some researchers have improved the SAF algorithm from the cost 
function on the basis of Wiener spline filter. A kind of normalized SAF algorithm (SAF-NLMS), is improved the 
stability of SAF, proposed by  Guan6. A sign normalized least mean square algorithm (SNLMS) based on SAF, and 
the variable step-size scheme is introduced, called SAF-VSS-SNLMS, proposed by  Liu7. The algorithm through 
introduce momentum in stochastic gradient descent, formed SAF-ARC-MMSGD8, against an impulsive environ-
ment. The weight update of the normalized subband spline adaptive filter algorithm is conducted the principle 
of minimum  disturbance9. The maximum versoria criterion (MVC) is introduced nonlinear spline adaptive 
filter, formed SAF-MVC-VMSGD10. The algorithms combine the logarithmic hyperbolic cosine (LHC) as cost 
function for nonlinear system  identification11,12. Based on logarithmic hyperbolic cosine (LHC) cost function, 
proposed novel cost function exponential hyperbolic cosine function (EHCF)13, generalized hyperbolic  secant14, 
formed adaptive filtering. The above SAF type algorithms are carried out in time domain. As the order of the 
filter increases, the computational complexity will increases. In order to solve this problem, a frequency domain 
spline adaptive filter (FDSAF) is  proposed15. Frequency domain spline adaptive filtering (FDSAF) can effectively 
reduce the computational complexity.

However, the frequency domain spline adaptive filtering is derived by minimising the squared value of the 
instantaneous error, unable to suppress non-Gaussian impulsive noises. According to the maximum correlation 
entropy criterion (MCC) combined with adaptive  filtering14,16–18, combined with spline adaptive  filtering19–21, the 
robustness of MCC is demonstrated. To suppression non-Gaussian impulsive noises along with having compa-
rable operation time, a frequency domain maximum correntropy criterion spline adaptive filter (FDSAF-MCC) 
is developed in this paper.

Results
Several experiments are implemented in order to verify the performance of the proposed FDSAF-MCC against 
non-Gaussian environments. The algorithm performance is measured by the mean square error (MSE), 
MSE = 10 log10 [e(k)]2.
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Non-Gaussian noise models are usually classified into heavy-tailed non-Gaussian noise (e.g., Alpha-stable, 
Laplace, Cauchy, etc.) and light-tailed non-Gaussian noise (i.e., binary, uniform, etc.). This paper mainly focuses 
on heavy-tail noise. The comparison of the probability density function of heavy tail noise as shown in Fig. 1. 
We can know that compared with other noise models, alpha-stable distribution noise has heavier tails and sharp 
peaks. Therefore, an alpha-stable distribution is uitilized for the experiment. An alpha-stable distribution, with 
α ∈ (0, 2] is a characteristic exponent representing the stability index which determines the strength of impulse, 
β ∈ [−1, 1] is a symmetry parameter, ι > 0 is a dispersion parameter, and  ̺is a location  parameter22. Which 
can be expressed as

Where

In this paper, the parameters of alpha-stable distribution are set as follows, α = 1.6,β = 0, ι = 0.05, ̺ = 0 . 
We adding to the output of the unknown system, an independent white Gaussian noise v(n) with the sig-
nal to noise ratio (SNR=30dB). In adaptive system, the frequency domain weight is initialized as 
wF(0) = FFT[1, 0, ..., 0]T ∈ R

2M×1 . The spline knots are initialized as G(0) = [−2.2,−2.0, . . . , 2.0, 2.2]T , with 
the interval �x = 0.2 . The input signal x(n) is a stochastic process with uniform distribution limited to [−1, 1] , 
the signal samples number are 100,000. The MSE curves are obtained through independent Mento Carlo trials. 
The parameters of the experiments are set as Table 1.

Experiment 1.  Experiment 1, the nonlinear system to be identified is composed by a linear FIR filter fol-
lowed by a nonlinear spline curve. The linear FIR filter system transfer function is described

The  control  p oints  of  nonl inear  spl ine  c ur ve  are  s e t t ing  as  g∗ = [−2.2,−2.0, . . . , 
−0.8,−0.91, 0.42,−0.01,−0.1, 0.1,−0.15, 0.58, 1.2, 1.0, 1.2,. . . , 2.0, 2.2]T23.

Figure 2 shown the MSE curves in different δ parameters. This work is carried out in without non-Gaussian 
noise environment. With the parameter δ increase, the convergence performance of MSE curve becomes better. 
However, when the parameters δ increase to a certain value, the MSE curve will not change any more. In subse-
quent experiments, setting the parameter δ = 6.
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Figure 1.  Comparison of the probability density function of heavy tail noise.

Table 1.  Parameters of three kinds experiments.

Experiment Parameters

1 M = 100,µw = 0.001,µg = 0.001, trials = 100

2 M = 1000,µw = 0.0005,µg = 0.01, trials = 200

3 M = 100,µw = 0.001,µg = 0.001, trials = 100
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Figure 3 shown the MSE curves comparison between FDSAF, the proposed FDSAF-MCC, and SAF-MCC 
under without non-Gaussian noise environment. The convergence performance of the three algorithms is con-
sistent, but the running time of FDSAF-MCC is 0.13309 ms, which is shorter, than the FDSAF, which is 0.13661 
ms, than the SAF-MCC, which is 0.5064 ms.

The FDSAF-MCC algorithm to track the weight of FIR filtering with non-Gaussian noise environment, as 
shown in Fig. 4. The proposed algorithm has good tracking performance. The FDSAF-MCC algorithm to track 
the spline knots with non-Gaussian noise environment, as shown in Fig. 5. The proposed algorithm has good 
tracking performance.

Figure 6 shown the MSE curves comparison between FDSAF, the proposed FDSAF-MCC, and SAF-MCC 
under non-Gaussian noise environment. The convergence performance of FDSAF algorithm is bad, the MSE 
curve oscillates randomly. The proposed FDSAF-MCC and SAF-MCC algorithms have better convergence 
performance.

Figure 7 shown the MSE curves comparison between FDSAF, the proposed FDSAF-MCC, and SAF-MCC 
under non-Gaussian noise and a sudden change. The proposed FDSAF-MCC and SAF-MCC algorithms have 
better convergence performance. After a sudden change, the MSE curve converges of the FDSAF-MCC and the 
SAF-MCC algorithms, the MSE curve divergent of the FDSAF algorithm.

Experiment 2.  Experiment 2, consists of a 7-order linear FIR filtering sub-system and a saturated nonlinear 
sub-system. The linear subsystem with 7th order FIR filtering is shown
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Figure 2.  MSE curves of FDSAF-MCC different δ parameters.
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Figure 3.  Experiment 1: Comparison of MSE curves of FDSAF, FDSAF-MCC, and SAF-MCC algorithms 
without non-Gaussian noise.
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Figure 4.  FIR filter weight of FDSAF-MCC under non-Gaussian noise.
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Figure 5.  Spline knots of FDSAF-MCC under non-Gaussian noise.
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Figure 6.  Experiment 1: Comparison of MSE curves of FDSAF, FDSAF-MCC, and SAF-MCC algorithms with 
impulsive noise.
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The saturated nonlinearity is described by

p described the nonlinear input, f(p) described the nonlinear output.
Figure 8 shown the MSE curves comparison between FDSAF, the proposed FDSAF-MCC, and SAF-MCC 

under impulsive noise environment. The convergence performance of FDSAF algorithm is poor. FDSAF algo-
rithm cannot suppress impulsive noise. The proposed FDSAF-MCC algorithm has the better convergence per-
formance than SAF-MCC algorithm.

Figure 9 shown the MSE curves comparison between FDSAF, the proposed FDSAF-MCC, and SAF-MCC 
under impulsive noise and a sudden change. The convergence performance of the FDSAF and the SAF-MCC 
algorithm is poor. FDSAF algorithm cannot suppress a sudden change with non-Gaussian noise. The proposed 
FDSAF-MCC algorithm shown a convergence trend, but the convergence effect is not very good after sudden 
change.

Experiment 3. In order to further verify the convergence performance under non-Gaussian noise and/or a 
sudden change environment, this example compares the FDSAF and FDSAF-MCC under different input signals. 
The input signal x(n) is generated by

(4)L(s) =
−2.8e12s3 + 4.6e18s2 + 6.4e21s + 3.2e27

s7 + 1e4s6 + 2.6e9s5 + 1.2e13s4 + 1.2e18s3 + 2.1e21s2 + 9.4e23s + 9.7e26

(5)f (p) = arctan(2p)
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Figure 7.  Experiment 1: Comparison of MSE curves of FDSAF, FDSAF-MCC, and SAF-MCC algorithms 
under impulsive noise and a sudden change.
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Figure 8.  Experiment 2: MSE curves of FDSAF, FDSAF-MCC, and SAF-MCC under impulsive noise.
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a ∈ [0, 1) is a correlation coefficient determining the correlation relation between x(n) and x(n− 1) , and ξ(n) is a 
white Gaussian stochastic process with zero mean and unitary variance. When a = 0 , the input signal x(n) is the 
white noise. When a is close to 1, the input signal x(n) is colored noise. In this experiment, the cases of a = 0, 0.9 
are considered. The MSE curves of FDSAF-MCC and FDSAF are compared in the  experiment.

Figure 10 shown the MSE curves comparison between FDSAF and the proposed FDSAF-MCC under white 
noise input and colored noise input. The convergence performance of the FDSAF algorithm and the proposed 
FDSAF-MCC algorithm is compared under the same parameter a. When a = 0 , input with the white noise, the 
proposed FDSAF-MCC algorithm has the better convergence performance than the FDSAF algorithm. When 
a = 0.9 , input with the colored noise, the proposed FDSAF-MCC algorithm has the better convergence perfor-
mance than the FDSAF algorithm.

Figure 11 shown the MSE curves comparison between FDSAF and the proposed FDSAF-MCC with different 
a under non-Gaussian noise and a sudden change. The convergence performance of the proposed FDSAF-MCC 
algorithm better than the FDSAF algorithm when in the same a.

Methods
FDSAF-MCC filtering. The basic structure of SAF in Fig. 12 is the cascade of a linear adaptive filter and 
a nonlinear cubic CR-spline interpolation  function23. The structure of the frequency domain maximum cor-
rentropy criterion spline adaptive filter (FDSAF-MCC) is shown in Fig. 13. Frequency domain adaptive filter-
ing (FDAF), used to linear module of the  SAF24. During this process, the filtering and parameter updating are 
performed every M instants. Let the length of data buffer equal to the length of FIR filter weight, M. The input 

(6)x(n) = ax(n− 1)+
√

1− a2ξ(n)
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Figure 9.  Experiment 2: MSE curves of FDSAF, FDSAF-MCC, and SAF-MCC under a sudden change.
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Figure 10.  Experiment 3: MSE curves of FDSAF-MCC and FDSAF under impulsive noise with different a.
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signal x(n) is stored in the data buffer x(k) for every M samples, where k denotes the data buffer index in time 
domain. x(k) = [x(kM + 1), x(kM + 2), . . . , x(kM +M)]T . In order to achieve the optimal efficiency, the 50% 
overlap-save method is used, taking the FFT of x(k) and x(k − 1) at instant n = kM +M

FFT[·] represents FFT operation for a vector, and k̃ is used to denote the index in frequency domain. The FIR 
filtered output s(k) can be calculated by

s(k) is containing M output elements from instant n = kM + 1 to n = kM +M , where IFFT[·] represents IFFT 
operation for a vector. wF(k̃) is the FIR filter weight in frequency domain. ⊙ denotes the Hadamard product that 
represents matrix/vector multiplication by elements.

(7)
xF(k̃) = FFT[x(k − 1), x(k)]T

= FFT[x(kM −M + 1), . . . , x(kM +M)]T

(8)s(k) = IFFT[xF(k̃)⊙ wF(k̃)]T Last M elements
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Figure 11.  Experiment 3: MSE curves of FDSAF-MCC and FDSAF under impulsive noise and a sudden 
change.

Figure 12.  The structure of the SAF.

Figure 13.  The structure of the FDSAF-MCC.
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As shown in Fig. 13, the nonlinear spline interpolation contains table look-up and interpolation two pro-
cedures. The look-up table (LUT) is made up of N + 1 control points (knots) defined as Gj = [gx,j , gy,j]T , 
(j = 0, 1, . . . ,N) . The subscripts x and y denote abscissa and ordinate, respectively. The abscissas are uniformly 
distributed with an interval �x . The LUT process will calculate the spline interval index ij and the local abscissa 
uj according to s(kM + j) at instant n = kM + j,

⌊·⌋ denotes the floor operator. Then vectorizing all normalized abscissas uj and the corresponding local spline 
knots gi,j of all s(kM + j) in data buffer. uj = [u3j , u2j , uj , 1]T is the local abscissa vector derived from s(kM + j) . 
The normalized abscissas uj are vectorized as U(k) ∈ R

4×M which is

In a similar way, u̇j = [3u2j , 2uj , 1, 0]T is the differential vector of a local abscissa. We denote U̇(k) ∈ R
4×M the 

differential matrix of normalized abscissas, which can be expressed as

And we denote G(k) ∈ R
4×M the spline knot matrix, which can be described by,

gi,j = [gi,j , gi,j+1, gi,j+2, gi,j+3]T . After FIR filtering in frequency domain, the intermediate variables s(k) will enter 
the spline interpolation, obtaining the output signal y(k), from instant n = kM + 1 to n = kM +M , which can 
be written as

The spline interpolation function is represented by ϕ(·) , y(kM + j) denotes the output of spline filter at instant 
n = kM + j , (·)ii represents the column vector made up from the diagonal elements of the matrix, sumr(·) rep-
resents the column vector derived from the summation of the matrix by rows, and sumc(·) represents the row 
vector derived from the summation of the matrix by columns.

Cubic spline curves, which mainly include B-spline25 and Catmul-Rom (CR)  spline26. Because of the feature 
that CR-spline passes through all of the control points, CR-spline may has much better performance in local 
approximation with respect to B-spline27. Therefore, CR-spline is the only one considered in the paper. The basis 
matrix C

FDSAF-MCC adaptive. As shown in Fig.14 the structure of FDSAF-MCC nonlinear system identification, 
we will derive the parameter updating rules. The error e(k) can be written as

(9)ij =⌊
s(kM + j)

�x
⌋ +

N − 1

2

(10)uj =
s(kM + j)

�x
− ⌊

s(kM + j)

�x
⌋

(11)U(k) = [u1, u2, . . . , uM ]

(12)U̇(k) = [u̇1, u̇2, . . . , u̇M ]

(13)G(k) = [gi,1, gi,2, . . . , gi,M ]

(14)

y(k) = [y(kM + 1), . . . , y(kM +M)]T

= [ϕ(s(kM + 1)), . . . ,ϕ(s(kM +M))]T

= (UT (k) · C · G(k))ii , i = 1, 2, . . . ,M

= sumr(U
T (k) · C⊙ GT (k))

= sumc(C · G(k)⊙ U(k))T

(15)C =
1

2
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Figure 14.  The structure of FDSAF-MCC nonlinear system identification.
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e(kM + j) = d(kM + j)− y(kM + j) , at instant n = kM + j . d(k) = [d(kM + 1), d(kM + 2), . . . , d(kM +M)]T 
is the desired output.

An maximum correntropy cost  function19–21 which is insensitive to impulsive noises, given by

The kernel size δ > 0 , and 
√
2πδ is the normalization. We take the derivative of Eq. (17) with respect to e(k) , 

and the result described by ed(k)

ed(k) = [ed(kM + 1), ed(kM + 2), . . . , ed(kM +M)]T . As there is no FFT transformation in the process of spline 
interpolation, so the parameter updating of spline knot is the same of time domain SAF. In order to match the 
data block description in FDSAF-MCC, the parameter updating can be expressed in the vectorization form. We 
take the derivative of J(k) with respect to gi,j15, described

Then the derivative of J(k) with respect to G(k) can be expressed as a vectorization form

Therefore, the parameter updating of the spline knots matrix can be expressed as

The learning rate µg on the updating of G(k) . We take the derivative of J(k) with respect to w(k)

In which, we denote the back propagation error es(kM + j) = ed(kM + j)ϕ̇(s(kM + j)) , then it can be vector-
ized as

es(k) = [es(kM + 1), es(kM + 2), . . . , es(kM +M)]T . The vector ϕ̇(k) reference to Eq. (14) can be rewritten as

According to the procedures of FDSAF-MCC, the back propagation error vector is transformed into frequency 
domain by the following mean

A zero vector 0 ∈ R
M×1 = [0, 0, . . . , 0]T with length of M, and eF(k̃) ∈ R

2M×1 is the back propagation error 
vector in frequency domain. The gradient vector �w(k) be implemented in frequency domain

The superscript H represents Hermitian transpose. The length of IFFT[eF(k̃)⊙ xHF (k̃)] is 2M, and the actual 
gradient vector is the first M elements of it. Finally, the parameter updating of frequency domain weight wF 
achieved by

(16)
e(k) = [e(kM + 1), e(kM + 2), . . . , e(kM +M)]T

= d(k)− y(k)

(17)
J(k) =

1√
2πδ

exp(−
e2(k)

2δ2
)

=
1√
2πδ

exp(−
e2(kM + j)

2δ2
)

(18)
ed(k) =

∂J(k)

∂e(k)

=
−1√
2πδ3

exp(−
e2(k)

2δ2
)e(k)

(19)
∂J(k)

∂gi,j
= −ed(kM + j)CTuj

(20)

∂J(k)

∂G(k)
=

[

∂J(k)

∂gi1
,
∂J(k)

∂gi2
, . . . ,

∂J(k)

∂giM

]

= −
[

ed(kM + 1)CTu1, . . . , ed(kM +M)CTuM

]

= −eTd (k)⊙ CT · U(k)

(21)G(k + 1) = G(k)+ µge
T
d (k)⊙ CT · U(k)

(22)
∂J(k)

∂w(k)
= ed(kM + j)

∂e(kM + j)

∂y(kM + j)

∂y(kM + j)

∂s(kM + j)

∂s(kM + j)

∂w(k)

(23)es(k) = ed(k)⊙ ϕ̇(k)

(24)
ϕ̇(k) = (̇UT (k) · C · G(K))ii/�x, i = 1, 2, . . . ,M

= sumc(C · G(K)⊙ U̇(k))T/�x

(25)eF(k̃) = FFT

[

0
es(k)

]

(26)�w(k) = IFFT[eF(k̃)⊙ xHF (k̃)] First M elements



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24048  | https://doi.org/10.1038/s41598-021-01863-6

www.nature.com/scientificreports/

The learning rate µw on the updating of wF , and 0 ∈ R
M×1 = [0, 0, . . . , 0]T is a zero vector with length of M.

FDSAF-MCC brief. In order to explain the FDSAF-MCC algorithm more clearly, a brief summary of 
FDSAF-MCC is given in Algorithmic 1. 

Convergence performance. The convergence performance of the linear module and the nonlinear mod-
ule are considered separately. According to the cost function in the parameter updating, �e(k + 1)�2 < �e(k)�2 
must be satisfied during filtering. We take the first order Taylor series expansion of �e(k + 1)�2

We ignore h.o.t. which represents high order terms, satisfied �e(k + 1)�2 < �e(k)�2

The bound on learning rate µg for spline knots complies with

In a similar way, we take the Taylor series expansion of �e(k + 1)�2 about w(k) , at instant k

We ignore h.o.t. which represents high order terms, condition of �e(k + 1)�2 < �e(k)�2 , obtained

(27)wF(k̃ + 1) = wF(k̃)+ µwFFT

[

�w(k)
0

]

(28)

�e(k + 1)�2 = �e(k)�2 +
∂�e(k)�2

∂G(k)T
�G(k)+ h.o.t.

= �e(k)�2 − (eTd (k)⊙ CT · U(k))T(µge
T
d (k)⊙ CT · U(k))+ h.o.t.

= �e(k)�2(1− µg�exp(−
e2(k)

2δ2
)CTU(k)�2)+ h.o.t.

(29)0 < 1− µg�exp(−
e2(k)

2δ2
)CTU(k)�2 < 1

(30)0 < µg <
1

�exp(− e2(k)
2δ2

)CTU(k)�2

(31)

�e(k + 1)�2 = �e(k)�2 +
∂�e(k)�2

∂w(k)T
�w(k)+ h.o.t.

= �e(k)�2 − (xF(k̃)ed(k)⊙ ϕ̇(k))T(µwxF(k̃)ed(k)⊙ ϕ̇(k))+ h.o.t.

= �e(k)�2(1− µw�xF(k̃)exp(−
e2(k)

2δ2
)ϕ̇(k)�2)+ h.o.t.

(32)0 < µw <
1

�xF(k̃)exp(− e2(k)
2δ2

)ϕ̇(k)�2
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Conclusion
This paper proposed a new frequency domain maximum correntropy criterion spline adaptive filtering. To sup-
pression non-Gaussian impulsive noise along with having comparable operation time. Instead of using the lest 
mean square (LMS), the new algorithm employed the maximum correntropy criterion (MCC) as a cost function. 
Three experimental methods were used to verify the effectiveness of the proposed algorithm in suppressing 
impulsive noise. Compared with the existing frequency domain spline adaptive filtering algorithm, the proposed 
algorithms provided better robustness against alpha stable noise. The proposed algorithm has a good effect in 
suppressing the alpha stable noise in the above-mentioned environments, but it may have a problem of poor 
convergence in suppressing light-tailed noise. It is necessary to further explore a more appropriate cost function 
and construct a filtering algorithm to suppress light-tailed models noise. In the future, for the light-tailed noise 
model,  we will be carried out in the frequency domain spline adaptive filtering algorithm.
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