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Recent tropical cyclone changes 
inferred from ocean surface 
temperature cold wakes
Shuai Wang* & Ralf Toumi

It has been challenging to detect trends of tropical cyclone (TC) properties due to temporal 
heterogeneities and short duration of the direct observations. TCs impact the ocean surface 
temperature by creating cold wakes as a “fingerprint”. Here we infer changes of the lifetime maximum 
intensity (LMI), size and integrated kinetic energy from the cold wakes for the period 1982–2019. We 
find a globally enhanced local cold wake amplitude 3 days after the LMI of − 0.12 ± 0.04 °C per decade 
whereas the cold wake size does not show any significant change. Multivariate regression models 
based on the observed ocean cooling, the TC translation speed and the ocean mixed layer depth are 
applied to infer LMI and TC size. The inferred annual mean global LMI has increased by 1.0 ± 0.7 m s−1 
per decade. This inferred trend is between that found for two directly observed data sets. However, 
the TC size and the TC destructive potential measured by the integrated kinetic energy, have not 
altered significantly. This analysis provides new independent and indirect evidence of recent TC LMI 
increases, but a stable size and integrated kinetic energy.

Tropical cyclone (TC) intensity and size are two main properties affecting the TC destructive potential1. TC 
intensity is conventionally measured by the sustained maximum wind speed near surface. TC intensity is lim-
ited by TC potential intensity2,3 and the lifetime maximum intensity (LMI) is closest to this upper limit in a TC 
life cycle. TC thermodynamics demonstrates a strong dependence of TC intensity on sea surface temperature 
(SST) via enthalpy up-take at sea surface4. From a theorical perspective it is expected that a warmed ocean due 
to greenhouse gas emissions will increase the mean state of TC potential intensity5,6. It may consequently shift 
the LMI distribution towards greater intensities in a more favorable environment.

This prediction of long-term TC intensity increase has been examined by TC observations. The “best-track” 
data contains the most comprehensive TC observations in the past 150 years7. The best track records are consid-
ered to be globally complete only since 1982 when all ocean basins with TC activities were routinely monitored 
by satellites8. It is found with the best track that the annual mean LMI of global TCs (LMI at least category 1) 
increases significantly by 2.0 m s−1 per decade for 1982–20098, and 1.5 m s−1 per decade for 1982–20199 for major 
TCs (LMI at least category 3), respectively. The proportion of the major TCs has also been found increasing 
significantly for 1979–201710.

Best tracks are the most comprehensive TC observation data base. The best-track maximum wind speed 
largely depends on a cloud-pattern-based index, and the maximum wind speed is then determined from that 
index and a conversion table that only provides discrete intensities. Therefore, any statistically significant intensity 
trend less than the intensity change interval may not be robust. Best tracks have been collected for decades with 
the best observational techniques and analysis protocols of the time. However, this naturally creates temporal 
heterogeneities and may lead to unphysical detections, for example, the underestimation of TC frequency in 
the Atlantic prior to the satellite era11, and the intensity discontinuity in the western North Pacific due to the 
termination of aircraft reconnaissance12.

To partly resolve this issue, globally and temporally consistent TC records, ADT-HURSAT8,10, are developed 
based on satellite observations and the advanced Dvorak technique13. The ADT-HURSAT sacrifices some valu-
able flight observations for homogeneity but arguably allows more robust trend detection of TC intensity. It 
is found with the ADT-HURSAT that the positive trend of annual mean LMI of global TCs is not statistically 
significant for 1982–20098, which is contradictory to the significant trend found with the best track. This discrep-
ancy of the statistical significance of LMI trends makes it difficult to answer if anthropogenic effect has changed 
the TC intensity, or the significant positive trend of TC intensity is just due to technology change, rather than 
nature or anthropogenic climate changes. More evidence for the long-term change of TC intensity is needed.
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Compared to the TC intensity, TC size has a much shorter global observation in the best track, which is only 
available since the twenty-first century7. The TC size can be measured by the radius of, e.g., maximum wind 
speed or the gale-force wind speed. A significant shrinking of the radius of gale-force wind (R18) was found for 
global TCs in the best track14. However, no significant long-term trends of TC outer size was reported based 
on the inferred imagery for 1978–201115. The Integrated Kinetic Energy (IKE) has been shown to be a superior 
metric to indicate the overall TC destructive potential16. The IKE is controlled by both TC intensity and size17. 
The temporal heterogeneities of TC intensity observations and a lack of TC size records make it challenging to 
examine the long-term trend of TC IKE. An analysis of global climate models shows no significant change of TC 
IKE in the future under climate change18. However, more long-term historical change of TC IKE is unknown, 
and we seek to fill this gap here.

In this study we will provide a new evidence of TC intensity, outer size, and destructive potential changes 
from an indirect angle, that is, by inferring these TC trends from the observed TC impact on sea surface tem-
peratures. TC properties are constrained by ambient environmental conditions. Reversely the environment also 
has a memory of TC passages. One example is TC-induced SST cooling or cold wake19, the amplitude of which is 
modulated primarily by three factors: the TC intensity20, translation speed21 and upper ocean thermal structure22. 
A cooling of the ocean wakes caused by TCs has been recently reported23, which is found to be spatially cor-
related with TC intensity changes, but this observed change has not been used to infer the TC intensity trend. It 
has also been shown that the size of cold wakes and TC size can be related24. Here we will establish the statistical 
relationship between the SST cooling amplitude/size, TC intensity/size, and environmental conditions at LMI 
via multivariate linear regression, and then estimate the TC intensity/size and thus the IKE trends with observed 
changes of oceanic footprints due to TC passages.

Results
Figure 1a shows the mean time series of SST anomaly (SSTA, see "Methods" section) at the location of LMI of all 
global TCs with LMI ≥ 33 m s−1 for 1982–2019. The ocean surface starts to be cooled down at a relatively faster 
rate 3 days before the LMI passage. The mean maximum cooling (i.e., minimum SSTA) is observed 3 days after 
the LMI passage. We therefore opt to use the difference of SSTA 3 days after and before LMI to define the TC-
induced ocean cooling amplitude, i.e., ΔSSTA.

Figure 1b shows the composite of SSTA map 3 days after the LMI passage. We find stronger ocean cooling 
along the TC moving direction with a slight shift to the right of the motion. The general cooling pattern appears 
to be in a circle shape, which allows us to calculate the cooling size in terms of the radius of cooling from the TC 
center, i.e., RC, by assuming a circle cooling pattern with an equivalent area of the actual cooling region. The mean 
R18 of the selected TCs in this study is 206 km. We find a close match of RC (216 km) to R18 if − 0.5 °C is chosen 
for the definition of TC-induced cooling area boundary (the black dash line in Fig. 1b). Thus, in the following 
analysis “ − 0.5 °C” is chosen as a threshold for the calculation of RC.

We next establish the statistical relationship between ΔSSTA and LMI, TC translation speed around LMI (C, 
see "Methods" section) and the mixed layer depth at LMI (MLD, see "Methods" section) by grouping the TCs 
according to the deciles of the cooling, ΔSSTA (Fig. 2a, b). The multivariate linear regression shows an excellent 
representation of grouped ΔSSTA (Fig. 2a), with a regression model of

(1)�SSTA = −0.2LMI + 1.0C + 0.1MLD

Figure 1.   Composite of TC-induced SSTA for 1982–2019. (a) Mean time series of SSTA at the location of LMI. 
The shading shows one standard error. The thin dash black lines highlight 3 days before and after LMI. (b) Mean 
SSTA map 3 days after LMI. The location of LMI is at the origin. The black arrow shows the mean translation 
direction (not magnitude). The black dash line shows the area of less than − 0.5 °C SSTA.
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where all three regression coefficients are significant at 5% level. A very similar regression result can be obtained 
by eliminating the MLD term globally (r = 0.97, p < 0.01) and in individual basins. However, the regression per-
forms much less well if only the global LMI is used as a single predictor for ΔSSTA (r = 0.53, p < 0.01).

We next rearrange the statistical relation in Eq. (1) by using grouped ΔSSTA, C and MLD as explanatory 
variable to regress on grouped LMI. Figure 2b shows a good representation of grouped LMI (r = 0.90, p < 0.01), 
with a regression model of

where like Eq. (1), all the coefficients are significant at 5% level.
A similar analysis is then conducted between RC and R18, C and MLD by grouping the TCs based on the 

deciles of RC (Fig. 2c, d). An excellent representation of grouped RC is found with a regression model of

If we rearrange the relationship in Eq. (3) to represent grouped R18 with RC, C and MLD, the multivariate 
linear regression again gives an excellent representation (Fig. 2d), and the regression model is estimated as

Similar to Eqs. (1) and (2), all the fitted coefficients are significant at 5% level in Eqs. (3) and (4).
Equations (2) [or (4)] provides a way of inferring LMI [or R18] from observed ΔSSTA [or RC], C and MLD. 

We next conduct such an estimation for LMI and R18, respectively, with the observations of individual TCs. Since 
the regression models [Eqs. (2) and (4)] are established with grouped quantities, we do not expect a good match 
between estimated and observed LMI and R18 of individual TCs. The individual LMI and R18 will be controlled 
by many other more important factors than the ocean cooling. However, the maximum ocean cooling amplitude 
and size themselves are direct responses to the TC intensity and size. Here we try to use the long-term changes of 
ΔSSTA [or RC], C and MLD to represent LMI [or R18] with the statistical relationship as shown in Eqs. (2) [or (4)].

Figure 3 shows the trend analysis of ocean cooling and inferred TC properties. A significantly larger ocean 
cooling amplitude in recent decades is found at a rate of − 0.12 ± 0.04 °C per decade (ΔSSTA, Fig. 3a). However, 

(2)LMI = −5.7�SSTA+ 5.7C + 0.6MLD

(3)RC = 3.6R18 − 33.6C − 11.3MLD.

(4)R18 = 0.3RC + 9.1C + 3.2MLD.

Figure 2.   Multivariate linear regression after binning global TCs into ten groups based on the deciles of 
TC-induced (a, b) sea surface cooling amplitude (ΔSSTA), and (c, d) sea surface cooling size (RC). The dots 
change from cold color for strong ΔSSTA or small RC, to warm color for weak ΔSSTA or large RC. The mean 
ΔSSTA, LMI, C and MLD in each bin are used for the regression in (a, b), and the mean RC, R18, C and MLD are 
used for the regression in (c, d). The regression model is Eq. (1) in (a), Eq. (2) in (b), Eq. (3) in (c) and Eq. (4) in 
(d). The Pearson correlation coefficient (r) and the p-value between the model and observed properties are given 
in the legends. The solid line shows the best linear fit and the dashed line shows y = x.
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the ocean cooling size (RC, Fig. 3b), TC translation speed (C, Fig. S1a) and upper ocean stratification (MLD, 
Fig. S1b) do not show any significant change.

Figure 3c shows the annual mean trend of inferred LMI with Eq. (2) compared to the observations from the 
best tracks and ADT-HURSAT. The inferred annual mean LMI is significantly correlated with best track and 
ADT-HURSAT time series after detrending (r = 0.35 and 0.37, p = 0.03 and 0.02, respectively). All three trends are 
statistically significant but with different mean trends. The strongest trend (1.5 ± 0.7 m s−1 per decade) is found 
in the best track, whereas the ADT-HURST trend (0.8 ± 0.7 m s−1 per decade) is only about half of the mean 
best-track trend. Our inferred mean LMI trend (1.0 ± 0.7 m s−1 per decade) lies between the two observations 
and shows the same trend confidence interval.

Figure 3d shows the annual mean trend of inferred R18 with Eq. (4) compared to the observations in the 
best track. There is also a significant correlation between the two detrended annual mean time series after 2004 
(r = 0.54, p = 0.03). The inter-annual correlation is higher than that found for the inferred intensity. However, 
different from the three intensity trends, there is no significant trend of the inferred R18.

With the observed LMI and inferred R18 we next calculate the TC integrated kinetic energy for 1982–2019 
(Fig. 3e, see "Methods" section for the calculation of IKE). The inferred and observed IKEs show a surprisingly 

Figure 3.   Annual mean time series of global TCs. (a) TC-induced ΔSSTA measured 3 days after the LMI 
passage at the location of LMI relative to the values 3 days before. (b) TC-induced RC measured 3 days after the 
LMI passage. (c) Observed and inferred (with multivariate regression, MR) annual mean LMI. The observed 
annual trends are extracted from the IBTrACS and ADT-HURSAT data sets for TCs (LMI ≥ 33 m s−1). (d) 
Observed and inferred R18 at LMI. (e) Observed and inferred IKE at LMI. The mean ± 95% confidence interval 
of the linear trend (thick dash line) is given in the legend with the p-value.
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high correlation after detrending post 2004 (r = 0.70, p < 0.01), which gives us high confidence. Even though 
the LMI increases significantly for 1982–2019, the global annual mean TC IKE is stable at around 80 TJ at LMI 
without any significant long-term change. A consistent lack of significant trend of IKE is also found in Fig. S2 by 
applying an alternative wind profile model25. Furthermore, the results in Fig. 3 can be qualitatively reproduced 
by replacing the equivalent cooling radius, RC, with the cooling area (Fig. S3). The lack of IKE trend is consistent 
with the insignificant R18 trend, which emphasizes the important role of TC size in the overall TC destructive 
potential change.

Discussion
In this study, we show that the ocean surface cooling can be used as an independent measure of long-term 
global changes of TC intensity, size and destructive potential. Given the uncertainty of the best track data, this 
new analysis can provide extra evidence of TC feature changes in the past decades. The established statistical 
relationship between ΔSSTA, LMI, C and MLD correctly reflect the known major factors on TC-induced ocean 
cooling. This shows the ability of the multivariate regression model for TC trend detection. However, this does 
not mean that the regression model based solely on ocean conditions can be used for a case-by-case prediction 
tool as the TC features are largely modulated by atmospheric conditions26. The ocean cooling is a “fingerprint” 
of the TC not a predictor of the TC.

Equation (1) suggests that a more intense TC, a slower translation and/or a shallower warm water layer can 
lead to a stronger TC-induced ocean cooling. This is as expected and in line with many studies24,27–32. Our regres-
sion analysis also suggests that the ocean cooling can be largely explained by a linear superposition of the effects 
of TC intensity and translation speed whereas the MLD plays a much weaker role, which agrees with previous 
findings27. The regression model can perform equally well without the MLD term. Although we use monthly 
MLD observation in the analysis, we would not expect to see qualitive changes of the results if daily MLD obser-
vation at the location prior to the LMI were available. Spatial migration of TC activities has been observed in the 
past four decades33–35. However, any potential TC-related changes of MLD associated with these spatial migra-
tions, based on our analysis, may not change the statistical relationship between TC intensity and ocean cooling.

Our result in Fig. 2b suggests a weaker sensitivity of ocean cooling to TC intensity when the LMI is more than 
50 m s−1. This reduced sensitivity agrees with the previously found leveling-off of ocean cooling with increase 
TC intensity36. Even though, by including the effect of TC translation, the grouped LMI can still be correctly 
obtained with the regression model.

The observed sea surface cooling trend is larger than the significant digits of sea surface temperature obtained 
by observation. However, the observed sea surface cooling observation may also experience temporal heteroge-
neities due to the improvement of observational techniques, which is a similar issue as the best track has. Our 
finding of the enhance TC-induced sea surface cooling is in line with a recent study reporting a cooling trend of 
TC wakes by about 0.05 °C per decade23, which was also validated with the microwave satellite SST data set. This 
cooling trend is about half of what we find here, but all TC positions were considered, not just at the LMI as here. 
As the cooling increases with TC intensity and the LMI trend is more than double the mean intensity trend, our 
larger cooling trends are understandable. This study makes the first attempt to infer the wind speed trend, but 
the previous study23 did show a high spatial correlation of the cooling enhancement and TC intensity increase.

We find that the cold wake size is dependent on the TC size, which is in agreement with previous findings24. 
We use the ocean response to also infer no recent change in TC size. Compared to the TC intensity studies, 
observations and projections of TC size trend are scarcer and more uncertain. Some model simulations detected 
an increase in TC size in a future climate37–39. However, a negative trend of R18 was also reported in the best track 
for 2001–201414, but that period may not be long enough for long-term trend detection. Here we provide a new 
evidence of TC size variation that shows no significant change for 1982–2019, which is consistent with model 
simulations40–42. Due to this lack of significant change in TC size, TC IKE on average remains the same level, 
which indicates a stabilization of TC destructive potential at LMI, even though the LMI has increased significant 
during this period. This stabilization, due to the large dependence of IKE on TC size16,17,43, would seem to support 
the climate model simulations which show projected increase in TC intensity but no change in TC integrated 
kinetic energy18. Interestingly, a recent study9 also reported no recent change in the acumulated cyclone energy 
of major TCs. It would thus appear that at least those two integrated tropical cylone wind measures are more 
stable than the maximum surface wind speed.

Methods
Data.  The best track are taken from the International Best Track Archive for Climate Stewardship7 (IBTrACS, 
Version 4.0). We only take the records at the standard observational times: 00, 06, 12, 18 Coordinated Universal 
Time (UTC). A TC may reach the same LMI more than once and if this happens, we only take the first LMI 
in a TC life cycle. This study includes all global TCs with LMI ≥ 33 m s−1 for 1982–2019. Six ocean basins are 
considered, which are the western North Pacific (WP), eastern North Pacific (EP), North Atlantic (NA), North 
Indian Ocean (NI), South Indian Ocean (SI) and South Pacific (SP). The best track in the WP, NI, SI and SP are 
taken from the Joint Typhoon Warning Center, whereas the best track from the National Hurricane Center (also 
known as HURSAT) is used in the NA and EP. The translation speed (C) is calculated with the best track in a 
12-h period centered on the time of LMI.

We use the 1/4◦ daily Optimum Interpolation SST v2.144,45 to extract TC-induced ocean cooling for 1982–2019. 
The upper ocean thermal structure is characterized by the mixed layer depth (MLD). Due to a lack of high-tem-
poral resolution data we use the 1° monthly mean MLD climatology46 developed with Argo profiles to represent 
the upper ocean thermal condition in the month and at the location of LMIs.
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Ocean cooling.  TC-induced ocean cooling is calculated for each TC at the location of LMI from 20 days 
before to 60 days after the LMI passage. The ocean cooling on each day is estimated as the SST anomaly (SSTA) 
relative to the mean SST climatology on that day for 1982–2019 at the location of LMI after any linear trend 
is removed. The amplitude of TC-induced ocean cooling (ΔSSTA) is calculated as the SSTA decrease between 
3 days after and before the LMI passage. The TC-induced ocean cooling size (RC) is calculated as the radius of the 
cooling area showing an SSTA less than − 0.5 °C by assuming a perfectly circle cooling patten.

Multivariate linear regression.  We use the LMI to represent TC intensity. For the LMI-related calcula-
tion, we use a multivariate linear regression to establish the statistical relationship between ocean cooling ampli-
tude (ΔSSTA), and its three factors: TC intensity (LMI), TC translation speed (C), and upper ocean thermal 
feature (MLD). Firstly, the complete time series of ΔSSTA, LMI, C and MLD including all TCs are detrended. 
To reduce the noise level, we then classify all the TCs into the deciles of ocean cooling amplitude. The mean of 
ΔSST, LMI, C and MLD in each group is used for the multivariate regression analysis.

We use the radius of gale-force wind (18 m s−1) at LMI (R18) to represent TC outer size. For the R18-related 
regression, the same multivariate linear model is applied as for the LMI, but the ΔSSTA and LMI are related by 
the RC and R18, respectively.

IKE calculation.  The IKE is defined as the sum of kinetic energy at 10 m within R18 17. The IKE calcula-
tion requires a complete wind profile within R18. An analytic wind profile model47 is applied to reconstruct the 
surface wind distribution. The maximum wind speed, the latitude of TC center and R18 are used as three inputs 
of the analytic wind profile model. This procedure for wind field reconstruction has been fully validated43 and 
applied with global climate model simulations18. To examine the robustness of IKE calculation, we also apply an 
alternative wind profile model—the updated Holland model25 that also requires the radius of maximum wind 
which is obtained from the IBTrACS.

Statistical significance.  The statistical significance in this study is defined at the 5% level. In Fig. 3 we 
calculate the 95% confidence intervals for the linear trend with the weighted least-squares regression based 
on the TC count in each year. The standard error of the fit and degrees of freedom are used to generate the 
confidence bounds for the trend. Any autocorrelation of the time series are examined with the Durbin–Watson 
test for AR(1). The confidence intervals are adjusted with an updated degrees of freedom if an AR(1) process is 
detected48.
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