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Adiabatic quantum linear 
regression
Prasanna Date* & Thomas Potok

A major challenge in machine learning is the computational expense of training these models. Model 
training can be viewed as a form of optimization used to fit a machine learning model to a set of data, 
which can take up significant amount of time on classical computers. Adiabatic quantum computers 
have been shown to excel at solving optimization problems, and therefore, we believe, present 
a promising alternative to improve machine learning training times. In this paper, we present an 
adiabatic quantum computing approach for training a linear regression model. In order to do this, 
we formulate the regression problem as a quadratic unconstrained binary optimization (QUBO) 
problem. We analyze our quantum approach theoretically, test it on the D-Wave adiabatic quantum 
computer and compare its performance to a classical approach that uses the Scikit-learn library in 
Python. Our analysis shows that the quantum approach attains up to 2.8× speedup over the classical 
approach on larger datasets, and performs at par with the classical approach on the regression error 
metric. The quantum approach used the D-Wave 2000Q adiabatic quantum computer, whereas the 
classical approach used a desktop workstation with an 8-core Intel i9 processor. As such, the results 
obtained in this work must be interpreted within the context of the specific hardware and software 
implementations of these machines.

Machine learning algorithms and applications are ubiquitous in our day-to-day lives and are deployed on a 
variety of devices—from edge devices like smartphones to large supercomputers. Before they are deployed in a 
real world application, machine learning models need to be trained, which is a time intensive process, and can 
even take a few months. When training machine learning models, we usually minimize a well-defined error 
function using state-of-the-art optimization techniques such as gradient descent, ellipsoid method and evolu-
tionary optimization1.

While seemingly efficient on smaller problems, these optimization techniques tend to become infeasible as the 
problem size grows despite the polynomial time complexity. The reasons for this stem from the implementation-
specific details at the hardware and software level. Prominent issues include increased communication cost 
nullifying the gains in the computation cost as the problem size increases, difficulty in managing finite compute 
and memory resources, and algorithms optimized for small-to-mid-sized problems2–4. In this light, and given 
that the Moore’s law is nearing its inevitable end, it is necessary to explore the applicability of non-conventional 
computing paradigms like quantum computing for solving large-sized optimization problems, including train-
ing machine learning models.

Quantum computers are known to be good at solving hard optimization problems and offer a promising 
alternative to accelerate the training of machine learning models5. For instance, adiabatic quantum computers 
like the D-Wave 2000Q can approximately solve NP-complete problems like the quadratic unconstrained binary 
optimization (QUBO) problem, and have been used to train machine learning models like Restricted Boltzmann 
Machines (RBMs) and Deep Belief Networks (DBNs) in classical-quantum hybrid approaches6. Although today’s 
quantum computers are small, error-prone and in the noisy intermediate-scale quantum (NISQ) era, the future 
machines are sought to be large, reliable and scalable7,8.

In this paper, we evaluate the use of adiabatic quantum computers to train linear regression models. Linear 
regression is a machine learning technique that models the relationship between a scalar dependent variable and 
one or more independent variables9. It has applications in business, economics, astronomy, scientific analysis, 
weather forecasting, risk analysis etc.10–15. It is not only used for prediction and forecasting, but also to determine 
the relative importance of data features. Linear regression has an analytical solution and can be solved in O (N3) 
time on classical computers, where N is the size of the training data.

The main contributions of this work are as follows: 
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1.	 We propose a quantum approach to solve the linear regression problem by formulating it as a quadratic 
unconstrained binary optimization (QUBO) problem.

2.	 We theoretically analyze our quantum approach and demonstrate that its run time is equivalent to that of 
current classical approaches.

3.	 We empirically test our quantum approach using the D-Wave 2000Q adiabatic quantum computer and com-
pare its performance to a classical approach that uses the Scikit-learn library in Python. The performance 
metrics used for this comparison are regression error and computation time. We show that both approaches 
achieve comparable regression error, and that the quantum approach achieves 2.8× speedup over the classical 
approach on larger datasets.

Related work
Linear regression is one of the most widely used statistical machine learning techniques. Bloomfield and Steiger 
propose a method for least absolute deviation curve fitting, which was three times faster than the ordinary least 
squares approach16. Megiddo and Tamir propose O (N2 logN) and O (N log2 N) algorithms for regression based 
on the Euclidean error and the rectilinear ( l1 ) error respectively, where N is the number of datapoints in the 
training dataset17. Zemel propose O (N) algorithm for linear multiple choice knapsack problem, which translates 
to linear regression with rectilinear error18.

Theoretically, the best classical algorithm for linear regression, has time complexity O (Nd1.37) using a fast 
matrix multiplication algorithm, such as Coppersmith–Winograd19, where N is the number of data points in 
the training data set and d is the number of features. However, most practical implementations in widely used 
machine learning libraries like the Scikit-learn library in Python run in O (Nd2) time20,21. O (Nd2) appears to be 
the most widely accepted time complexity for linear regression, and will be the basis of comparison in this paper.

Quantum algorithms have also been explored for linear regression in the literature. Harrow et al. propose 
a quantum algorithm for solving a system of linear equations, that runs in poly(logN , κ) time, where κ is the 
condition number of the input matrix22. Schuld et al. propose an algorithm for linear regression with least squares 
that runs in logarithmic time in the dimension of input space provided training data is encoded as quantum 
information23. Wang proposes a quantum linear regression algorithm that runs in poly(log2 N , d, κ , 1

ǫ
) , where 

ǫ is the desired precision in the output24. Dutta et al. propose a 7-qubit quantum circuit design for solving a 
3-variable linear regression problem and simulate it on the Qiskit simulator25. Zhang et al. propose a hybrid 
approach for linear regression that utilizes both discrete and continuous quantum variables26. Date proposes the 
quantum discriminator, which is a quantum model for supervised learning27.

Adiabatic quantum computers have also been used to address machine learning problems in limited capac-
ity. Foster et al. explore the use of D-Wave quantum computers for statistics28. Djidjev et al. use the D-Wave 
2 × quantum annealer for combinatorial optimization29. Borle et al. present a quantum annealing approach for 
the linear least squares problem30. Chang et al. propose a quantum annealing approach for solving polynomial 
systems of equations using least squares31. Chang et al. present a method for solving polynomial equations using 
quantum annealing and discuss its application to linear regression32. Neven et al. train a binary classifier with 
the quantum adiabatic algorithm and show that it performs better than the state-of-the-art machine learning 
algorithm AdaBoost33. Adachi and Henderson use quantum annealing for training deep neural networks on 
the coarse-grained version of the MNIST dataset34. Date et al. propose a classical quantum hybrid appraoch for 
unsupervised probabilistic machine learning using Restricted Boltzmann Machines and Deep Belief Networks6. 
Arthur et al. propose an adiabatic quantum computing approach for training balanced k-means clustering 
models35. Date et al. propose QUBO formulations for training three machine learning models—linear regression, 
support vector machine and k-means clustering—on adiabatic quantum computers36.

While several quantum computing approaches have been proposed for linear regression, most of them lever-
age universal quantum computers and not adiabatic quantum computers. Moreover, they have not been empiri-
cally validated on real hardware to the best of our knowledge. In this work, we propose a quantum computing 
approach for linear regression that leverages adiabatic quantum computers, which are sought to be more scalable 
than universal quantum computers in the near future37. Furthermore, we empirically validate our approach on 
synthetically generated datasets.

Linear regression
We use the following notation throughout this paper:

•	 R : Set of real numbers
•	 B : Set of binary numbers, i.e. B = {0, 1}.
•	 N : Set of natural numbers
•	 X: Augmented training dataset, usually X ∈ R

N×(d+1) , i.e. X contains N data points ( N ∈ N ) along its rows, 
and each data point is a d dimensional row vector ( d ∈ N ), augmented by unity, having a total length of d + 1
.

•	 Y: Regression labels ( Y ∈ R
N ), i.e. the dependant variable in linear regression.

•	 w: Regression weights to be learned, w ∈ R
d+1.

In Fig. 1, the red dots represent the regression training data and the blue line represents the best fit curve for the 
given training data. With reference to Fig. 1, the regression problem can be stated as follows:

(1)min
w∈Rd+1

E(w) = ||Xw − Y ||2,
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where, E(w) is the Euclidean error function. The regression problem is one of the few machine learning problems 
which has an analytical solution, given by:

If the inverse of XTX does not exist, the pseudo inverse is computed. The time complexity of linear regression 
is known to be O (Nd2).

Formulation for adiabatic quantum computers
Adiabatic quantum computers are adept at approximately solving QUBO problems, which are NP-hard, and 
defined as:

where, z ∈ B
M is the binary decision vector ( M ∈ N ); A ∈ R

M×M is the QUBO matrix; and, b ∈ R
M is the QUBO 

vector. In order to solve on adiabatic quantum computers, the regression problem needs to be converted into a 
QUBO problem. We start by rewriting Eq. (1) as follows:

Next, we introduce a precision vector P = [p1, p2, . . . , pK ]T , K ∈ N . Concepts similar to the precision vector 
have been touched upon in the literature for encoding positive integers30–32. Each entry in P can be an integral 
power of 2, and can be both positive or negative. The precision vector must be sorted. For example, a precision 
vector could be: P =

[

−2,−1,− 1
2 ,

1
2 , 1, 2,

]T . Next, we introduce K binary variables ŵik for each of the d + 1 
regression weights wi so that:

where, pk denotes the kth entry in the precision vector P. ŵik can be thought of as a binary decision variable that 
selects or ignores entries in P depending on whether its value is 1 or 0 respectively. With this formulation, we can 
have up to 2K unique values for each wi when P contains only positive values for instance. However, if P contains 
negative values as well, then the number of unique attainable values for each wi might be less than 2K . For exam-
ple, if P = [−1,− 1

2 ,
1
2 , 1] , then only the following seven distinct values can be attained: {− 3

2 ,−1,− 1
2 , 0,

1
2 , 1,

3
2 } . 

Next, we rewrite Eq. (5) in a matrix form as follows:

w h e re ,  P = Id+1 ⊗ PT  i s  t h e  (d + 1)× K(d + 1) pre c i s i on  m at r i x  obt a i n e d  by  t a k -
ing the Kronecker product of identity matrix ( Id+1 ) with transpose of precision vector (P); and, 
ŵ = [ŵ11, . . . , ŵ1K , ŵ21, . . . , ŵ2K , . . . , ŵ(d+1)1, . . . , ŵ(d+1)K ]T is the vector containing all (d + 1)K binary vari-
ables introduced in Eq. (5). These steps are taken for mathematical convenience. Now that we have expressed w 
in terms of binary variables ŵ and precision matrix P , we can substitute the value of w from Eq. (6) into Eq. (4), 
and convert the regression problem into a QUBO problem as follows:

(2)w = (XTX)−1XTY .

(3)min
z∈BM

zTAz + zTb,

(4)min
w∈Rd+1

E(w) = wTXTXw − 2wTXTY + YTY .

(5)wi =
K
∑

k=1

pkŵik ∀i = 1, 2, . . . , d + 1,

(6)w = P ŵ,

Figure 1.   Linear regression. Red dots represent the training data for regression, and blue line represents the 
best fit for the given training data.
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Note that we left out the last term ( YTY  ) from Eq. (4) because it is a constant scalar and does not affect the 
optimal solution of the unconstrained optimization problem. Also, note that Eq. (7) is identical to Eq. (3), with 
M = (d + 1)K  , z = ŵ , A = P

TXTXP and b = −2P TXTY  . Thus, Eq. (7) is a QUBO problem and can be 
solved on adiabatic quantum computers.

Analysis
Theoretical analysis.  The regression problem (Eq. 1) has O (Nd) data (X and Y) and O (d) weights (w), 
which is the same for Eq. (7). While converting Eq. (1) to Eq. (7), we introduced K binary variables for each 
of the d + 1 weights. So, we have O (dK) variables in Eq.  (7), which translates to quadratic qubit footprint 
( O (K2d2) ) using the efficient embedding algorithm proposed by Date et  al.38. Embedding is the process of 
mapping logical QUBO variables to qubits on the hardware, and is challenging because inter-qubit connectivity 
on the hardware is extremely limited.

As mentioned in Sect. 3, solving the regression problem (Eq. 1) takes O (Nd2) time. We analyze the time 
complexity of our approach in three parts: (i) Time taken to convert the regression problem into QUBO prob-
lem; (ii) Time taken to embed the QUBO problem onto the hardware; and (iii) Time taken to perform quantum 
annealing. From Eq. (7), we can infer that the conversion takes O (Nd2K2) time. Since we have O (dK) variables 
in the QUBO formulation, embedding can be done in O (d2K2) time using the embedding algorithm proposed by 
Date et al.38. While the theoretical time complexity of quantum annealing to obtain an exact solution is known to 
be exponential ( O (e

√
d))39, a more realistic estimate of the running time can be made by using measures such as 

ST99 and ST99(OPT)40, which give the expected number of iterations to reach a certain level of optimality with 
99% certainty. Quantum annealing is known to perform well on problems where the energy barriers between 
local optima are tall and narrow because such an energy landscape is more conducive to quantum tunneling. In 
order to estimate ST99 and ST99(OPT) for our approach, details on specific instances of the regression problem 
are required. It remains out of the scope of this paper to estimate ST99 and ST99(OPT) for generic QUBO for-
mulation of the regression problem.

Having said that, we would like to shed some light on the quantum annealing running times observed in 
practice. An adiabatic quantum computer can only accommodate finite-sized problems—for example, D-Wave 
2000Q can accommodate problems having 64 or fewer binary variables requiring all-to-all connectivity38. For 
problems within this range, a constant annealing time and a constant number of repetitions seem to work well 
in practice. So, the total time to convert and solve a linear regression problem on adiabatic quantum computer 
would be O (Nd2K2).

It may seem that this running time is worse than its classical counterpart ( O (Nd2) ). But, the above analysis 
assumes that K, which is the length of the precision vector, is a variable. On classical computers, the precision is 
fixed, for example, 32-bit or 64-bit precision. We can analogously fix the precision for quantum computers, and 
treat K as a constant. The resulting qubit footprint would be O (d2) , and the time complexity would be O (Nd2) , 
which is equivalent to the classical algorithm.

Empirical analysis.  Methodology and performance metrics.  We test our quantum approach for regression 
using the D-Wave 2000Q adiabatic quantum computer and compare it to a classical approach using the Scikit-
learn library in Python. The Scikit-learn library is widely used for machine learning tasks like linear regression, 
support vector machines, K-nearest neighbors, K-means clustering etc. We use two performance metrics for this 
comparison: (i) Regression error (Eq. 1); and, (ii) Total computation time. For D-Wave, the total computation 
time is comprised of the preprocessing time and the annealing time. The preprocessing time refers to converting 
the regression problem into QUBO problem and embedding it for the D-Wave hardware using our embedding 
algorithm from38. It must be noted that while working with D-Wave, there is a significant amount of time spent 
on sending a problem to the D-Wave servers, and receiving the solution back, which we refer to as network 
overheads. Although we report network overheads in Tables 2 and 3 for information purposes, we do not plot 
them in Figs. 3 and 4 and exclude them from our algorithm’s run time. This is because the network overheads 
are determined by factors like physical proximity of a user to D-Wave servers, network connectivity etc., which 
are neither in our control nor exclusive to our algorithm. In this paper, each quantum annealing operation is 
performed 1000 times and only the ground state solution is used. The value of 1000 was seen to yield the most 
reliable results based on trial and error for the experiments conducted in this paper.

Data generation.  All data in this study, including the ground truth weights were synthetically generated, uni-
formly at random to curb any biases. We also injected noise into the data in order to compare robustness of 
both approaches and to emulate noisy nature of real world data. The precision vector P is constant across all our 
experiments, and the ground truth weights can be attained using the entries of P. We tried using benchmark 
datasets for regression like body fat, housing and pyrim41, but couldn’t generate any meaningful results because 
of the limitations imposed by the hardware architecture of the D-Wave 2000Q. These benchmark datasets 
require at least 16-bit precision and have several features. The D-Wave machine was too small to accommodate 
the QUBO problems that stem from these datasets. While it might be possible to deal with such benchmark data 
sets using D-Wave Hybrid Solver Service (HSS) or qbsolve, our objective in this paper it not to solve larger real-
world or benchmark problems, but to objectively estimate the performance of the D-Wave quantum annealers 
for solving the linear regression problem.

(7)min
ŵ∈B(d+1)K

E(ŵ) = ŵT
P

TXTXP ŵ − 2ŵT
P

TXTY .



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21905  | https://doi.org/10.1038/s41598-021-01445-6

www.nature.com/scientificreports/

Hardware configuration.  Preprocessing for our quantum approach and entire classical approach were run on a 
machine with 3.6 GHz 8-core Intel i9 processor and 64 GB 2666 MHz DDR4 memory. The quantum approach 
also used the low-noise D-Wave 2000Q quantum computer, which had 2048 qubits and about 5600 inter-qubit 
connections.

Comparing regression error.  We compute regression error (Eq. 1) for our quantum approach using D-Wave 
2000Q and compare it to the classical approach using Scikit-learn in Table 1. We report mean errors over 100 
identical experimental runs to assess recovery rate of the D-Wave machine. The precision vector used for these 
runs was P = [0.25, 0.5] . We conducted experiments for all possible permutations and combinations of ground 
truth regression weights. Using the values in the precision vector, there are four unique values which the ground 
truth regression weights can have: 0, 0.25, 0.5, and 0.75. Using these values, we can have 16 different configura-
tions of ground truth weights such as [0.25, 0.5], [0.5, 0.75], [0.25, 0.75] and so on. For each of these configura-
tions, but ignoring the configurations where the weight is zero, we generated regression training data syntheti-
cally, added noise, fed this data to both classical and quantum approaches, and computed the regression error. 
We observe that the D-Wave approach fit the regression training data about 68% of the time with a mean error 
of 5.1025. The mean Scikit-learn error for these runs was 5.0597.

While both errors were in the same ballpark, the Scikit-learn error was slightly lower than D-Wave because of 
the higher precision of the 64-bit classical computer. Within the 2-bit precision allowed by the precision vector 
P, D-Wave was able to find the best possible solution. An illustration of this is shown in Fig. 2, where regression 
data is shown by red dots, Scikit-learn function is shown by blue line and D-Wave function is shown by green 
line. The specific ground truth weights in Fig. 2 are [0.5, 0.75]. We see that the regression models trained on both 
Scikit-learn and D-Wave closely resemble each other, and are able to fit the data. In the case where D-Wave did 
not fit the regression data ( 32% of the time), mean D-Wave error was 16.1695. Mean Scikit-learn error for these 
runs was 4.9340. On an average, the Hamming distance (number of bit-flips) between the D-Wave solutions 
and the ground truth solutions was two across the four binary variables in these runs after application of post-
processing routines to compensate for bit flips. The reason for this discrepancy is ingrained in the hardware of 
the D-Wave machine, which is known to produce faulty results when the embedded qubit chains break during 
quantum annealing42. Overall, mean errors for Scikit-learn and D-Wave were 4.9846 and 7.0421 respectively.

Scalability with number of datapoints (N).  We perform a scalability study to determine how the run time of our 
quantum approach as well as the classical approach changes as the size of regression dataset increases from 512 
datapoints to over 16 million datapoints. We report the mean and standard deviation across 60 runs in Table 2 
and fix the number of features ( d + 1 ) at 2. The scalability results are presented in Fig. 3 where the logarithmic 

Table 1.   Comparing regression error.

Experimental runs where Scikit-learn error D-wave error

D-Wave fit the data ( 68% runs) 5.0597 5.1025

D-Wave did not fit the data ( 32% runs) 4.9340 16.1695

Overall 5.0195 8.6439

Figure 2.   Comparison of regression curves fit by Scikit-learn (blue) and D-Wave (green) on synthetic data (red 
circles). X-axis shows the independent variable and Y-axis shows the dependent variable. Both curves closely 
resemble each other. We use a thicker green line and a thinner blue line for D-Wave and Scikit-learn respectively 
for the sake of clarity only—the two lines are very close to each other.
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X-axis denotes number of datapoints (N), the logarithmic Y-axis denotes the time in milliseconds, the blue 
bars denote total Scikit-learn time, the yellow bars denote D-Wave preprocessing time, and the red bars denote 
D-Wave annealing time. We noticed that a constant annealing time of around 12.5 ms was sufficient to train 
the regression models using the quantum approach that had accuracies comparable to those of the classical 
approach for all our experimental runs. We observe that when number of datapoints is small ( N ≤ 262, 144 ), 
Scikit-learn performs faster than D-Wave. In this case, D-Wave compute time is dominated by annealing time 
and the preprocessing time is minimal. When the number of datapoints is large ( N ≥ 524, 288 ), D-Wave per-
forms faster than Scikit-learn. In this case, D-Wave compute time is dominated by the preprocessing time and 
the annealing time is minimal. The run times for the two approaches are comparable when N equals 524, 288 
datapoints. When N equals 16, 777, 216, we observe that the quantum approach is 2.8× faster than the classi-
cal approach. Furthermore, we also notice that D-Wave annealing time is essentially constant, and preprocess-
ing time is always less than Scikit-learn time. This is attributed to efficiently converting regression problem 
into QUBO problem as described in this paper, and efficiently generating an embedding using our embedding 
algorithm38. The quantum approach seems to outperform the classical approach on larger datasets.

Scalability with number of features ( d + 1).  We assess the scalability with respect to the number of features 
( d + 1 ) as well. To eliminate the effect of number of datapoints, we fix N at 524, 288 datapoints because from 

Table 2.   Scalability with number of datapoints (N). Significant values are in bold.

Number of datapoints (N) Scikit-learn time (ms)
D-wave preprocessing time 
(ms) D-wave annealing time (ms)

D-wave compute time 
(preprocess + anneal) (ms)

D-wave network overheads 
(ms)

512 0.7976 ± 0.0780 0.2594 ± 0.0437 12.5151 ± 0.0186 12.7744 ± 0.0461 703.5815 ± 54.9066

1,024 0.8274 ± 0.0957 0.2543 ± 0.0261 12.5143 ± 0.0146 12.7686 ± 0.0309 703.0153 ± 34.5316

2,048 0.8677 ± 0.0801 0.2997 ± 0.0470 12.5152 ± 0.0105 12.8149 ± 0.0481 703.9943 ± 33.6994

4,096 0.9259 ± 0.0890 0.3284 ± 0.0337 12.5192 ± 0.0063 12.8475 ± 0.0336 689.5000 ± 35.5189

8,192 1.0851 ± 0.0818 0.3635 ± 0.1089 12.5205 ± 0.0036 12.8840 ± 0.1088 704.1441 ± 33.4093

16,384 1.2458 ± 0.0895 0.3041 ± 0.1913 12.5166 ± 0.0070 12.8207 ± 0.1904 716.4246 ± 45.7286

32,768 1.6180 ± 0.0975 0.4304 ± 0.2380 12.5129 ± 0.0079 12.9433 ± 0.2368 712.0551 ± 35.4758

65,536 2.7692 ± 0.1485 0.5584 ± 0.3751 12.5186 ± 0.0080 13.0770 ± 0.3760 718.3913 ± 40.5731

131,072 4.8113 ± 0.2198 1.1546 ± 0.6897 12.5149 ± 0.0112 13.6695 ± 0.6906 702.8292 ± 38.7911

262,144 9.9080 ± 0.6120 2.7862 ± 1.0094 12.5155 ± 0.0076 15.3017 ± 1.0088 711.5130 ± 37.2957

524,288 19.5373 ± 1.0212 5.1193 ± 0.3992 12.5166 ± 0.0030 17.6358 ± 0.3983 709.6294 ± 39.2782

1,048,576 37.3581 ± 1.8984 10.4900 ± 0.6307 12.5167 ± 0.0024 23.0067 ± 0.6307 707.4266 ± 38.3336

2,097,152 73.6735 ± 3.4312 27.0889 ± 1.3411 12.5175 ± 0.0025 39.6064 ± 1.3413 716.9348 ± 36.1262

4,194,304 159.1724 ± 8.2130 55.3273 ± 3.1763 12.5178 ± 0.0069 67.8451 ± 3.1759 713.8490 ± 52.9194

8,388,608 328.2112 ± 13.0534 103.6629 ± 4.5238 12.5170 ± 0.0036 116.1799 ± 4.5245 718.6187 ± 41.1655

16,777,216 635.9468 ± 20.6696 214.2371 ± 8.4610 12.5202 ± 0.0076 226.7573 ± 8.4616 710.6270 ± 32.7847

Figure 3.   Scalability comparison of Scikit-learn regression (blue bars and dotted line) and D-Wave regression 
(yellow and red bars, and bold line). X-axis shows number of datapoints in the training set (N), ranging from 
29 (512) to 224 (16 million) across both figures. Y-axis shows run time milliseconds on a logarithmic scale. 
In Fig. 3a, N varies from 512 to 65, 536. In Fig. 3b, N varies from 131, 072 to 16, 777, 216. We observe a 2.8× 
speedup using D-Wave on the 16 million case in Fig. 3b.
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Table 2 and Fig. 3, the run times of both quantum and classical approaches are comparable at this value. The 
results are presented in Table 3 and Fig. 4, where we vary the number of features ( d + 1 ) from 2 to 32. In Table 3, 
we report the mean and standard deviation over 60 runs for each experimental configuration. In Fig. 4, the 
X-axis shows number of features ( d + 1) , the logarithmic Y-axis shows run time in milliseconds, the blue bars 
denote total Scikit-learn times, the yellow bars denote D-Wave preprocessing times and the red bars denote 
D-Wave annealing times. In our quantum approach, by trial and error, we found that a constant annealing time 
of around 12.5 ms yielded regression models which had accuracies comparable to those of the classical approach 
for all our experimental runs. We observe that D-Wave performs faster than Scikit-learn for all values of d + 1 , 
and attains 2.8× speedup when d + 1 equals 32. We also observe that D-Wave run time is dominated by pre-
processing time for almost all values of d + 1 , but is always less than Scikit-learn. This is attributed to efficient 
conversion of regression into QUBO as outlined in this paper, and use of our efficient embedding algorithm38. 
Lastly, we notice that the D-Wave annealing time is essentially constant across all values of d + 1 . As the number 
of features ( d + 1 ) increase, the quantum approach is seen to perform faster than the classical approach.

Discussion.  We first address why it is possible to scale N to over 16 million datapoints, but not possible to 
scale d + 1 over 32 features. In Sect. 4, we show that the the qubit footprint (number of qubits used) of our for-
mulation is O (d2) , and is independent of N, allowing us to scale N to over 16 million. We refrained from scaling 

Table 3.   Scalability with number of features ( d + 1). Significant values are in bold.

Number of features ( d + 1) Scikit-learn time (ms)
D-wave preprocessing time 
(ms) D-wave annealing time (ms)

D-wave compute time 
(preprocess + anneal) (ms)

D-wave network overheads 
(ms)

2 20.6123 ± 1.2042 5.1378 ± 0.3802 12.5076 ± 0.0007 17.6454 ± 0.3802 706.1933 ± 84.0029

4 30.6010 ± 1.2382 13.7718 ± 0.9632 12.5247 ± 0.0009 26.2965 ± 0.9632 754.6531 ± 67.8583

6 46.8912 ± 1.6430 21.4310 ± 1.7784 12.5450 ± 0.0008 33.9759 ± 1.7783 756.5598 ± 66.0033

8 68.4019 ± 3.9914 28.9740 ± 2.0591 12.5659 ± 0.0006 41.5398 ± 2.0590 715.7661 ± 61.4712

10 93.9764 ± 1.7518 35.6321 ± 2.2202 12.5935 ± 0.0010 48.2257 ± 2.2203 761.3451 ± 60.9483

12 118.1701 ± 2.0026 42.5206 ± 2.6595 12.6092 ± 0.0012 55.1297 ± 2.6596 781.4883 ± 91.1495

14 145.6177 ± 1.8870 52.2676 ± 3.2121 12.6140 ± 0.0008 64.8816 ± 3.2120 844.3496 ± 107.1684

16 175.5792 ± 2.4876 60.6022 ± 3.7414 12.6195 ± 0.0010 73.2217 ± 3.7415 877.4846 ± 103.0307

18 213.1724 ± 2.7332 65.1949 ± 3.6451 12.6222 ± 0.0004 77.8170 ± 3.6451 791.8038 ± 105.9935

20 236.3750 ± 4.6308 74.9983 ± 3.9706 12.6212 ± 0.0004 87.6194 ± 3.9706 920.5470 ± 55.5933

22 257.6503 ± 5.2920 80.3314 ± 4.9133 12.6215 ± 0.0005 92.9529 ± 4.9133 779.6944 ± 90.0467

24 281.3093 ± 4.0617 83.6467 ± 3.6455 12.6211 ± 0.0007 96.2678 ± 3.6457 847.5243 ± 113.3988

26 313.2982 ± 3.7929 89.3653 ± 2.9930 12.6197 ± 0.0008 101.9850 ± 2.9931 804.1284 ± 91.5301

28 343.8831 ± 4.3417 98.9982 ± 4.5461 12.6174 ± 0.0010 111.6156 ± 4.5462 900.9338 ± 50.4548

30 379.3123 ± 4.7932 108.6154 ± 5.0667 12.6093 ± 0.0007 121.2247 ± 5.0667 1709.0392 ± 7766.58

32 360.5327 ± 9.4234 116.3282 ± 5.2455 12.5901 ± 0.0004 128.9182 ± 5.2455 706.8372 ± 73.4864

Figure 4.   Scalability of Scikit-learn regression (blue bars and dotted line) and D-Wave regression (yellow and 
red bars, and bold line). X-axis shows number of features in the training set ( d + 1 ), ranging from 2 to 32. The 
Y-axis shows run time in milliseconds on a logarithmic scale. We observe a 2.8× speedup using D-Wave when 
(d + 1) equals 32.
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N to larger values because we believe 16 million is a large enough value to convey the crux of this work—quan-
tum computers can be valuable for solving machine learning problems like linear regression, especially on larger 
sized problems. We are limited to values of d + 1 that are smaller than 32 because the qubit footprint depends 
on d. The size of the largest problem with all-to-all connectivity that can be accommodated on D-Wave 2000Q 
is 64, i.e. a QUBO problem having 64 variables. This is determined by the hardware architecture. Based on our 
formulation, the size of the regression QUBO problem is (d + 1)K . So, problems for which (d + 1)K ≤ 64 can 
be accommodated on the D-Wave machine. In our experimental runs, we fixed K as 2, and therefore, must have 
(d + 1) ≤ 32 . This limitation stems from the number of qubits and inter-qubit connectivity available on today’s 
quantum computers, and will improve in future quantum computers, which are sought to be bigger and more 
reliable than the current machines. For instance, the next generation D-Wave machines would have 5000 qubits 
and would support more inter-qubit connections43,44.

Secondly, we would like to reiterate that D-Wave was seen to produce accurate results about 68% of the time 
during our empirical analysis, which is better than 50% recovery rate previously observed by Chang et al.32. This 
result was found to be repeatable and could be attributed to hardware and software improvements made by 
D-Wave to their systems. During the remaining 32% of the time, the inter-qubit connections on the hardware 
had a tendency to break, resulting in inferior solutions. This became increasingly prevalent on larger problems, 
which use large number of qubits. This hardware issue is expected to get better in the future as improved engi-
neering solutions are deployed for building these machines.

Thirdly, we compared our adiabatic quantum linear regression approach to the Scikit-learn’s implementation 
of linear regression, which runs in O (Nd2) time. Ideally, we would like for quantum algorithms to outperform 
the best classical algorithms, which in this case, runs in O (Nd1.37) . Having said that, we believe the novelty of 
our work lays in the extensive performance comparison of our quantum approach to its classical counterpart. 
Specifically, we are not aware of any study which compares an adiabatic quantum approach for linear regression 
to any classical approach as extensively as we have presented in this paper. Having said that, it is important to 
note that the 2.8× speedup observed on larger-sized problems in our experiments depends on the specific imple-
mentations of the quantum and classical approaches. It should not be misunderstood as an absolute measure of 
quantum advantage or supremacy. We believe our results are a stepping stone in developing a more optimized 
approach to train linear regression models leveraging adiabatic quantum computers which can outperform the 
best classical approaches. Today’s quantum computers are still in their embryonic stages as compared to the 
classical computers, which have 70–80 years of research, development and optimizations behind them. In this 
light, we believe our results in this paper are extremely promising for the future of quantum machine learning. 
Specifically, with larger and more reliable quantum computers, we can expect the quantum approach to outper-
form the classical approach across all performance metrics.

Lastly, we would like to emphasize the algorithmic gains that could be realized by using our quantum approach 
for linear regression. In our empirical analysis, we observed that the quantum approach essentially had constant 
annealing time and the preprocessing time was always less than the run time of the classical approach. As a 
result, on smaller problems, the annealing time dominated the run time of the quantum approach and the over-
all time for the quantum approach was much worse than the classical approach. However, on larger problems, 
the annealing time stayed constant while the preprocessing time for the quantum approach was still lower than 
the run time for the classical approach. As a result, the overall run time for quantum approach was better than 
the classical approach. This observation can be attributed to the specific implementations of the Scikit-learn 
and Numpy functions. For embedding QUBO problems onto the D-Wave hardware, we tried using D-Wave’s 
embedding algorithm, but got significantly inferior results. All results in this paper use our embedding algorithm, 
which is described in38. Our quantum approach performed faster than the classical approach on increasingly large 
values of number of datapoints (N) as well as number of features (d). With quantum computers becoming less 
prone to errors in the future, it might be beneficial to use a quantum approach for linear regression, especially 
on larger problems.

Conclusion
Training machine learning models for real world applications is time-intensive and can even take a few months 
in some cases. Generally, training a machine learning model is equivalent to solving an optimization problem 
over a well defined error function. Quantum computers are known to be good at (approximately) solving hard 
optimization problems and offer a compelling alternative for training machine learning models. In this paper, we 
propose an adiabatic quantum computing approach for training linear regression models, which is a statistical 
machine learning technique. We analyze our quantum approach theoretically, compare it to current classical 
approaches, and show that the time complexity for both these approaches is equivalent. Next, we test our quan-
tum approach using the D-Wave 2000Q adiabatic quantum computer and compare it to a classical approach 
using the Scikit-learn library in Python. We demonstrate that the quantum approach performs at par with the 
classical approach on the regression error metric, and attains 2.8× speedup over the classical approach on larger 
(synthetically generated) datasets.

Continuing along this line of research, we would like to test our approach on real world datasets that can be 
accommodated on today’s quantum computers. We would also like to extend our quantum approach to variants 
of linear regression that use kernel methods. Finally, we would like to explore the use of quantum computers for 
training other machine learning models like Support Vector Machines (SVM), Deep Neural Networks (DNN), 
Generative Adversarial Networks (GAN) etc.
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