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Superfluid density, Josephson 
relation and pairing fluctuations 
in a multi‑component fermion 
superfluid
Yi‑Cai Zhang

In this work, a Josephson relation is generalized to a multi‑component fermion superfluid. Superfluid 
density is expressed through a two‑particle Green function for pairing states. When the system has 
only one gapless collective excitation mode, the Josephson relation is simplified, which is given in 
terms of the superfluid order parameters and the trace of two‑particle normal Green function. In 
addition, it is found that the matrix elements of two‑particle Green function is directly related to 
the matrix elements of the pairing fluctuations of superfluid order parameters. Furthermore, in the 
presence of inversion symmetry, the superfluid density is given in terms of the pairing fluctuation 
matrix. The results of the superfluid density in Haldane model show that the generalized Josephson 
relation can be also applied to a multi‑band fermion superfluid in lattice.

The superfluid density ρs and order parameter n0 in superfluid liquid Helium-4 are two closely  related1,2, but 
different  concepts3,4. However, they can connect with each other through a Josephson  relation5–7, i.e.,

where ρs is superfluid density (particle number per unit volume), n0 is order parameter (condensate density) 
in liquid Helium-4. G(q, 0) is normal single-particle Green function at zero frequency, m is atomic mass of 
Helium-4. The above equation indicates that the Green function diverges as wave vector q → 0 . Such a divergence 
of 1/q2 in Green function is quite a universal phenomenon which can occur in many systems, e.g., superfluid 
Helium-4, superconductor and  ferromagnet8. The above Josephson relation in superfluid system can be viewed 
as a manifestation of Bogoliubov’s “ 1/q2 ” theorem in spontaneously symmetry breaking  system7. It also has 
close connections with the absence of long ranged order (e.g., condensation) at finite temperature in one and 
two  dimensions9,10.

Its possible generalization in two-component fermion superfluid has been firstly investigated by  Taylor11. 
Using auxiliary-field approach, Dawson et al. also derived a Josephson relation

which holds for both bosonic and fermion  superfluids12. Here � is superfluid order parameter (pairing gap in 
superconductor) and GII (q,ω) is two-particle Green function for pairing states in conventional two-component 
fermion superfluid. It is found that the superfluid density is determined by superfluid order parameter and the 
behaviors of two-particle Green function at long wave length limit. In comparison with bosonic superfluid, the 
above formula shows that the two-particle Green function replace the corresponding single-particle Green func-
tion of bosonic superfluid. In addition, pairing gap � plays the roles of order parameter in fermion superfluid.

The superfluid properties in multi-component (or multi-band) fermion system have attracted a great 
 interests13–21. The exotic pairing mechanism in Fermi gas with SU(N) invariant interaction has been  proposed22–29, 
dependent on interaction and chemical potential, which can show coexistence of superfluidity and  magnetism30. 
Another interesting example of multi-band fermion system is twisted bilayer  graphene31,32. It is shown that, there 
exists  superconductivity33 in this system. Its superfluid weight (which is superfluid density up to a constant) have 

(1)ρs = −limq→0
n0m

q2G(q, 0)
,

(2)ρs = −limq→0
4�2m

q2GII(q, 0)
,
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been investigated  intensively34–38. Inspired by above studies, in this paper we investigate the superfluid density for 
multi-component fermion superfluid. A generalized formula of Josephson relation for multi-component bosons 
has been given in Ref.39. A natural question arises: does there exist a similar relation for a multi-component 
fermion superfluid or superconductor?

In this paper, we give a generalized Josephson relation for a multi-component fermion superfluid system. It 
is found that we can take a similar method as done in bosonic system to get the general results for fermions. To 
be specific, the superfluid density can be expressed in terms of two-particle Green functions. Furthermore, when 
there is only one gapless collective mode, the superfluid density is determined by the superfluid order parameter 
and the trace of two-particle Green function. In addition, in the presence of spatial inversion symmetry, the 
two-particle Green function is directly related to fluctuation matrix of order parameters. Furthermore, it is found 
that the generalized Josephson relation can be also applied to a multi-band lattice system.

Results. Josephson relation in conventional two component fermion superfluid. First of all, we consider two 
(spin) component fermion superfluid system with short-ranged attractive interactions. The Hamiltonian is

where m is particle mass, µ is chemical potential, V is volume of system and g is interaction strength parameter 
between two different (spin) components. In the rest of paper, we set � = V = 1 for simplifications.

Similarly as bosonic  superfluid39, here we outline how to get the above relation Eq. (2) in the two-component 
fermion system. First of all, it is well known that the superfluid order parameter (or pairing gap in superconduc-
tor) in two-component fermions is

where �̂(r) = gψ↓(r)ψ↑(r) is operator of order parameter.
In addition, when the superfluid order parameter � undergoes a small phase twist e2iδθ(r)11,40, the variation 

(fluctuation) of superfluid order parameter is

where δθ(r) is a real function which denotes the small phase twist.
On the other hand, a phase gradient of superfluid order parameter would induce a superfluid current (super-

flow)41, namely

where we define superfluid velocity as the gradient of phase, i.e.,vs ≡ ∇δθ(r)/m and superfluid density ρs as the 
coefficient before vs in the current δj(r) . We will see the connection between the above two equations (Eqs. (6), 
(5)) would result in the Josephson relation.

In order to get the relationship between superfluid density ρs and order parameter � , similarly as bosonic 
 case9,39,42, here we need a perturbation which include operator of order parameter �̂(r) = gψ↓(r)ψ↑(r) and its 
adjoint �̂†(r) = gψ†

↑(r)ψ
†
↓(r) , i.e.,

where ξ is a small complex number, �̂q =
∑

k gψ↓q+kψ↑−k is fluctuation operator of order parameter in momen-
tum space and we use relation ψσ (r) =

∑

k ψσke
ik·r . Here we add an infinitesimal positive number ǫ → 0+ in 

the above exponential which corresponds to choose a boundary condition that the perturbation is very slowly 
added to the  system43.

We assume initially the system is in the ground state |0� , and then slowly turn on perturbation H ′ , the wave 
function can be written as

where an(t → −∞) = δn,0 and H|n� = En|n� , H is unperturbed Hamiltonian. |n� and En are eigenstate and 
eigenenergy respectively. Using perturbation theory, we get

(3)

H = H0 + Vint ,

H0 =

∫

d3r
∑

σ=↑,↓

ψ†
σ (r)[−

�
2∇2

2m
− µ]ψσ (r),

Vint =
g

V

∫

d3rψ†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r),

(4)�(r) ≡ ��̂(r)� = �,

(5)
�(r) → �(r)e2iδθ(r),

δ�(r) = �(r)e2iδθ(r) −�(r) ≃ 2i�δθ(r),

(6)δj(r) ≡ ρs∇δθ(r)/m = ρsvs ,

(7)
H ′ =

∫

d3r[ei(q·r−ωt)+ǫtξ�̂†(r)+ e−i(q·r−ωt)+ǫtξ∗�̂(r)],

= ξ�̂†
qe

−iωt+ǫt + ξ∗�̂qe
iωt+ǫt

,

(8)|�(t)� =
∑

n

an(t)e
−iEnt |n�,
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where ωn0 = En − E0 . The changes of order parameter �ψ↓ψ↑(r)� and current j(r) are respectively

In the following, we assume the system has translational invariance and total momentum is a good quantum 
number. So state |n� is also eigenstate of total momentum P =

∑

σk kψ
†
σkψσk , e.g., P|n� = qn|n� with eigenvalue 

qn . On other hand, from commutation relations

we see �̂†
q|n� and �̂q|n� are also eigenstates of P , with momenta qn + q and qn − q , respectively. Using rela-

t ions  �̂(r) =
∑

q �̂qe
iq·r  ,  �0|�̂q′ |n��n|�̂

†
q|0� = δq,q′ |�0|�̂q|n�|

2  ,  �0|�̂†
q|n��n|�̂q′ |0� = δq,q′ |�0|�̂

†
q|n�|

2  , 
�0|�̂q|n��n|�̂q′ |0� = δq,−q′ �0|�̂q|n��n|�̂−q|0� and �0|�̂q′ |n��n|�̂q|0� = δq,−q′ �0|�̂−q|n��n|�̂q|0� , the change 
of order parameter can be written as

where

is two-particle normal (anomalous) Green function for pairing  states44,45.
Taking zero-frequency ( ω ± iǫ = 0 ) limit,

For two-component neutral fermions, the order parameter �(r) = g�ψ↓(r)ψ↑(r)� = � can be taken as a real 
number, and the low energy collective excitation is Anderson–Bogoliubov phonon. Similarly as bosonic  case39, 
it can be shown that FII (q, 0) = −GII(q, 0) as q → 0 (see “Discussions” section), so finally

where we set ξ ≡ αeiφ with amplitude α and phase φ.
Similarly using commutation relation

where indices i, j = x, y, z , current fluctuation operator jq =
∑

σk[(k + q/2)]/mψ†
σkψσk+q , and the translational 

invariance, we conclude jq|n� is also eigenstate of P , with momentum qn − q . Using the fact of j(r) =
∑

q jqe
iq·r , 

�0|jq′ |n��n|�̂
†
q|0� = δq,q′ �0|jq|n��n|�̂

†
q|0� and �0|�̂†

q|n��n|jq′ |0� = δq,q′ �0|�̂
†
q|n��n|jq|0� , the current is

(9)

|�(t)� ≃ |0�e−iE0t +
∑

n�=0

an(t)e
−iEnt |n�,

an(t) =
1

i

∫ t

−∞

dτH ′
n0(τ )e

iωn0τ

=

[

ξ�n|�̂†
q|0�e

−i(ω+iǫ−ωn0)t

ω + iǫ − ωn0
−

ξ∗�n|�̂q|0�e
i(ω−iǫ+ωn0)t

ω − iǫ + ωn0

]

,

(10)

δ�(r) = δ��̂(r)�

=ξe−i(ω+iǫ)t [
�0|�̂(r)|n��n|�̂†

q|0�

ω + iǫ − ωn0
−
�0|�̂†

q|n��n|�̂(r)|0�

ω + iǫ + ωn0
]

+ξ∗ei(ω−iǫ)t [
�0|�̂q|n��n|�̂(r)|0�

ω − iǫ − ωn0
−
�0|�̂(r)|n��n|�̂q|0�

ω − iǫ + ωn0
],

δj(r) = ξe−i(ω+iǫ)t [
�0|j(r)|n��n|�̂†

q|0�

ω + iǫ − ωn0
−

�0|�̂†
q|n��n|j(r)|0�

ω + iǫ + ωn0
]

+ ξ∗ei(ω−iǫ)t [
�0|�̂q|n��n|j(r)|0�

ω − iǫ − ωn0
−

�0|j(r)|n��n|�̂q|0�

ω − iǫ + ωn0
].

[P, �̂†
q]|n� = {P�̂†

q − �̂†
qP}|n� = q�̂†

q|n�,

[P, �̂q]|n� = {P�̂q − �̂qP}|n� = −q�̂q|n�,

(11)
δ�(r) = ξeiq·r−i(ω+iǫ)tGII (q,ω + iǫ)

+ ξ∗e−iq·r+i(ω−iǫ)tFII (q,ω − iǫ),

(12)

GII (q,ω + iǫ) =
∑

n

[
|�0|�̂q|n�|

2

ω + iǫ − ωn0
−

|�0|�̂†
q|n�|

2

ω + iǫ + ωn0
],

FII (q,ω − iǫ)

=
∑

n

[

�0|�̂q|n��n|�̂−q|0�

ω − iǫ − ωn0
−

�0|�̂−q|n��n|�̂q|0�

ω − iǫ + ωn0

]

,

(13)δ�(r) = ξeiq·rGII (q, 0)+ ξ∗e−iq·rFII (q, 0).

(14)
δ�(r) = GII (q, 0)[ξe

iq·r − ξ∗e−iq·r],

= 2iαGII (q, 0)sin(q · r + φ),

(15)[Pi , jqj] = −qijqj,
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where h.c. denotes Hermitian (complex) conjugate and

When ω ± iǫ = 0,

Using continuity equation ∂ρ(r,t)
∂t +∇ · j(r, t) = 0 , ωn0(ρq)0n = q · (jq)0n and ωn0(ρq)n0 = −q · (jq)n0 , we can 

obtain

where density fluctuation operator ρq =
∑

σk ψ
†
σkψσk+q and we use the fact that ��̂†

q=0� = �∗ = � . So

For isotropic system, further assuming q � B ∝ δj and using Eq. (14), so we get

Here we further use Eq. (5), and then get

Using Eq. (6), i.e., δj(r) ≡ ρsvs , the Josephson relation for conventional two-component Fermions is obtained

which is consistent with the Taylor’s11 and Dawson et al.’s12 results.

General Josephson relation for multi‑component fermions. For a multi-component (or multi-band) fermion 
superfluid, the order parameter �αβ can be written as

where the operator of order parameter �̂αβ(r) = gαβψα(r)ψβ(r) , ψα(β) is the field operator for α(β)-th com-
ponent, and gαβ is interaction parameter between α-th and β-th components. The above equation indicates that 
the number of superfluid order parameter may be an arbitrary integer m ≥ 1 ( m ∈ Z ) in a multi-component 
fermion superfluid. In such a case, we need a general perturbation Hamiltonian

where we relabel the operator of order parameter with �̂i(i = 1, 2, ...,m) and introduce column vectors 
�̂(r) = {�̂1(r), �̂2(r), ..., �̂m(r)}

t , ξ = {ξ1, ξ2, ..., ξm}
t and {...}t denotes matrix transpose and dot · is the mul-

tiplication of matrices.
In the above subsection, the definition of superfluid velocity involves particle mass m. However, the superfluid 

system we considered here can be a general many-body system with complex energy spectra. For an arbitrarily 
general multi-component (or multi-band) system, it may be difficult to introduce notion of mass. Furthermore, 
the superfluid velocity may be unable to be defined unambiguously. In the following manuscript, the superfluid 
density is simply defined as the coefficient before the gradient of phase in current, i.e.,

For a general multi-component superfluid system, the phase variation of order parameter δθ is well-defined. 
Consequently, the physical meaning of superfluid density ρs is also clear. In fact, the above definition of superfluid 
density is also consistent with the phase twist method in lattice  system46.

Similarly using perturbation theory and translational invariance, we can get the change of order parameter

(16)δj(r) = ξeiq·r−i(ω+iǫ)tB(q,ω + iǫ)+ h.c.,

(17)B(q,ω + iǫ) ≡
∑

n

[

�0|jq|n��n|�
†
q|0�

ω + iǫ − ωn0
−

�0|�†
q|n��n|jq|0�

ω + iǫ + ωn0

]

.

(18)δj(r) = [ξeiq·rB(q, 0)+ h.c.].

(19)
q · B(q, 0) = −

∑

n

[�0|ρq|n��n|�̂
†
q|0� − �0|�̂†

q|n��n|ρq|0�],

= −�0|[ρq , �̂
†
q]|0� = −2�0|�̂†

q=0|0� = −2�,

(20)q · δj(r) = −2[ξeiq·r�+ h.c.].

(21)
δj(r) = −

2q�

q2

[

ξeiq·r + ξ∗e−iq·r
]

,

= −2�
q

q2
2αcos(q · r + φ) = −

2�

q2
∇δ�(r)

iGII (q, 0)
.

(22)δj(r) = −
4�2

q2
∇δθ(r)

GII (q, 0)
= −

4�2m

q2
vs

GII (q, 0)
.

(23)ρs = −limq→0
4�2m

q2GII(q, 0)
,

(24)�αβ = ��̂αβ(r)�,

(25)
H ′ =

∫

d3r{ei(q·r−ωt+ǫt)�̂†(r) · ξ + e−i(q·r−ωt+ǫt)ξ† · �̂(r)},

= �̂†
q · ξe

−iωt+ǫt + ξ† · �̂qe
iωt+ǫt ,

(26)δj = ρs∇δθ(r).
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where

are two-particle normal (anomalous) Green function matrix elements and index i(j) = 1, 2, ...,m . |n� is also 
eigenstate of (canonical) momentum P =

∑

k,σ kψ†
σkψσk , i.e., P|n = qn|n�.

In a general multi-component fermion superfluid, the current fluctuation operator can be written as 
jq =

∑

αβk Tαβ(k, q)ψ
†
αkψβk+q , where Tαβ(k, q) is a function of k and q . Its specific form is determined 

by the kinetic energy part of Hamiltonian. For usual parabola dispersion energy, e.g., as shown in Eq. (3), 
Tαβ(k, q) = δαβ [k + q/2]/m . Similarly as above section, one gets current

and here we introduce a m× 1 column vector B and its j-th component

When ω ± iǫ = 0,

Similarly using continuity equation ∂ρ(r,t)
∂t +∇ · j(r, t) = 0 , ωn0(ρq)0n = q · (jq)0n , ωn0(ρq)n0 = −q · (jq)n0 , 

and assuming q � B ∝ δj for isotropic system, we get

Here density fluctuation operator takes the same form as that in two-component case, i.e., 
ρq =

∑

σk ψ
†
σkψσk+q.

Introducing x(r) = eiq·r{ξ1, ξ2, ..., ξm}
t , δ�(r) = {δ�1(r), δ�2(r), ..., δ�m(r)}

t , the above Eq. (31) can be 
written as

and

where (I)m×m is a m×m identity matrix and we define coefficient matrix

which is a 2m× 2m matrix and one should not confuse with normal Green function GII (q, 0) , which is a m×m 
matrix. If GII has inverse (determinant Det|GII| �= 0 ), using qx(r) = −i∇x , qx∗(r) = i∇x∗ and Eqs. (33) and 
(34), we get

(27)
δ�i(r) =

∑

j

[eiq·r−i(ω+iǫ)tGIIij(q,ω + iǫ)ξj

+ e−iq·r+i(ω−iǫ)tFIIji(q,ω − iǫ)ξ∗j ],

(28)

GIIij(q,ω + iǫ)

=
∑

n

[

�0|�̂iq|n��n|�̂
†
jq|0�

ω + iǫ − ωn0
−

�0|�̂†
jq|n��n|�̂iq|0�

ω + iǫ + ωn0

]

,

FIIji(q,ω − iǫ)

=
∑

n

[

�0|�̂j,q|n��n|�̂i,−q|0�

ω − iǫ − ωn0
−

�0|�̂i,−q|n��n|�̂j,q|0�

ω − iǫ + ωn0

]

,

(29)δj(r) = eiq·r−i(ω+iǫ)tBt(q,ω + iǫ).ξ + h.c.,

(30)

Bj(q,ω + iǫ)

=
∑

n

[

�0|jq|n��n|�̂
†
jq|0�

ω + iǫ − ωn0
−

�0|�̂†
jq|n��n|jq|0�

ω + iǫ + ωn0

]

.

(31)
δ�(r) = eiq·rGII (q, 0).ξ + e−iq·rFtII (q, 0).ξ

∗,

δj(r) = eiq·rBt(q, 0).ξ + h.c.

(32)Bt(q, 0) = −
2q

q2
{�∗

1,�
∗
2, ...,�

∗
m}.

(33)

(

δ�(r)
δ�(r)∗

)

=

(

GII (q, 0) FtII (q, 0)
Ft∗II (q, 0) G∗

II (q, 0)

)

2m×2m

.

(

x
x∗

)

≡ GII(q).

(

x
x∗

)

= 2iδθ

(

�
−�∗

)

(34)δj(r)=−
2q

q2

(

�t∗ �t
)

.

(

(I)m×m 0m×m

0m×m (I)m×m

)

.

(

x
x∗

)

,

(35)GII(q) ≡

(

GII (q, 0) FtII (q, 0)
Ft∗II (q, 0) G∗

II (q, 0)

)

2m×2m

,



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21847  | https://doi.org/10.1038/s41598-021-01261-y

www.nature.com/scientificreports/

Using Eq. (26), i.e., δj(r) ≡ ρs∇δθ , we get a general Josephson relation for fermion superfluid

The Eq. (37) gives a way to calculate the superfluid density in terms of two-particle Green functions, which is 
also the main result in this work. It should be emphasized that the above result Eq. (37) only relies on the defini-
tion of superfluid density Eq. (26), the existence of superfluid order parameter ( �  = 0 ), translational invariance 
and continuity equation for particle number.

In addition, even though Eq. (37) is obtained in a translational invariant system (the momentum is a good 
quantum number), the above formula can be applied equally to lattice system as long as the superfluid state 
has lattice translation symmetry (see also “Summary” section). This is because, we know for lattice system, the 
engenstates can be classified by lattice momentum. In the above derivation, on the one hand, we need to identify 
the (canonical) momentum P =

∑

k,σ kψ†
σkψσk with the lattice momentum. On the other hand, the superfluid 

density may show some anisotropy in lattice system. We can use a similar method as done in bosonic  system39 
to deal with the anisotropy in lattice. In such a case, the superfluid density is usually a rank-two tensor and 
depends on direction of q.

In isotropic case, the superfluid density is a scalar, i.e., ρs = diag{ρs , ρs , ρs} which does not depend on direc-
tion of q . For generally anisotropic system (for example, Lieb lattice  system36, the spin-orbital coupled cold 
 atoms47, etc), the induced current δj can be expressed in terms of vector q and a rank-two tensor m (generally δj 
is not parallel to q any more), namely

where indices i(j) = x, y, z in three dimensional space. In order to get Josephson relation in anisotropic system, 
we introduce the superfluid density ρs(q̂) along q̂ direction, i.e., q̂ · δj(r) ≡ ρs(q̂)(q̂ · ∇δθ) , where q̂ ≡ q/q is unit 
vector along q direction. From Eqs. (31) and (38), we get

which is exactly similar to Eq. (34) of isotropic case. Taking qx(r) = −iq̂ · ∇x , qx∗(r) = iq̂ · ∇x∗ and Eq. (33) into 
account, the following discussions for anisotropic case are same with that in the isotropic case. So the superfluid 
density along direction q̂ is

which usually depends on the direction of q̂ . Furthermore, from the superfluid density along an arbitrary direc-
tion q̂ , i.e.,

it is not difficult to construct a rank-two superfluid density tensor ρs;ij.

Discussions. In the above derivations, we get the superfluid density in terms of two-particle Green function 
[the Josephson relation Eq. (37)]. In this section, we will show that for some cases, the above equation can be 
further simplified. To be specific, if the system has only one gapless collective mode, the superfluid density can be 
give by the trace of two-particle Green function. When the inversion symmetry is present, the superfluid density 
can be expressed in terms of the fluctuation matrix of superfluid order parameters.

Only one gapless collective mode. When a system has unique gapless excitation near ground state, e.g., phonon, 
the Josephson relation can be generalized to a multi-component system with a phase operator method as done 
in bosonic  case39. Here we know near the ground state, the phonon corresponds to total density oscillation. Due 
to the presence of superfluid order parameter, the density oscillation would couple phase oscillation of order 
 parameter48. Furthermore, all the superfluid order parameters should share a common phase variation, i.e., 
δθi(r) = δθ(r) . On the other hand, near the ground state, similarly as Eq. (5), the fluctuation operator of super-
fluid order parameters may be expressed in terms of phase operator θ̂40

(36)
δj(r) = −

4∇δθ(r)
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where �i is the i-th superfluid order parameter in ground state. Under perturbation H ′ [see Eq. (25)], the vari-
ations of order parameters can be obtained by averaging Eq. (40) with respect to the perturbed ground state. 
Consequently, the variations of order parameters are δ�i = 2i�iδθ(r) with δθ(r) = �δθ̂(r)�.

From the above equation, we get the fluctuation operators of order parameters in momentum space

where we use θ̂†q = θ̂−q for real phase field θ(r) ( q  = 0 ) . From definitions of the GII and FII in Eq. (28), we get

where Z ≡
∑

n[
|�0|θ̂q |n�|

2

ωn0
+

|�0|θ̂−q |n�|
2

ωn0
] > 0 is a real number. When the number of superfluid order parameters 

is one and � is real, the relation FII (q, 0) = −GII(q, 0) holds ( q → 0 ) in conventional two-component fermion 
superfluid.

From Eqs. (33) and (34), we get

where we set �∗
i ξi ≡ αie

iφi with amplitude αi , phase φi . So the superfluid density is

On the other hand, we know

So finally we get the Josephson relation

where GII (q, 0) is two-particle normal Green function (matrix) at zero-frequency. It is found that the above Eq. 
(44) can be applied to the case of three superfluid parameters in dice lattice, where there exist one gapless phonon, 
and two gapped Leggett modes arising from the relative phase oscillations between different superfluid order 
 parameters21. When the number of order parameters m = 1 , the above equation is reduced to the Josephson 
relation for conventional two component fermion  superfluid11,12.

Superfluid density and pairing fluctuations. In this section, we would give a connection between the two-parti-
cle Green function and the pairing fluctuation matrix based on BCS mean field theory and Gaussian fluctuation 
 approximation11. Furthermore, if the system has spatial inversion symmetry, the coefficient matrix GII is directly 
proportional to the inverse of pairing fluctuation matrix.

Fist of all, we discuss the results for conventional two-component fermion superfluid. In the following, we 
assume the pairing gap can be decomposed as the mean field value � and small fluctuation δ� ( �(r) = �+ δ� ). 
Expanding action S to second order of δ� , the partition  function49–51

where S0 is the mean-field contribution and Gaussian fluctuation part
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where pairing fluctuation field η†q = [�∗
q ,�−q] and q = (q, iωn) . ωn = 2nπ/β ( n ∈ Z ) is Matsubara frequency, 

β = 1/T is inverse temperature. The fluctuation matrix M is a 2× 2 matrix

where Gij(k) is matrix element of Nambu–Gorkov Green function. The collective modes are given by zeros 
of determinant Det|M(q, iωn → ω + i0+)| = 0 . As q → 0 , the collective mode is the Anderson–Bogoliubov 
phonon, which characterizes the density oscillations of superfluid. With the action δS (Gaussian weight), the 
correlation function (average values of quadratic terms) can be  calculated52, i.e.,

On the other hand, we know that the above correlation function has one extra minus sign in comparison with 
Green function. So the two-particle Green function can be obtained by

In addition, if the system has inversion symmetry, i.e.,

Furthermore, according to Eq. (28), when ω ± iǫ = 0 , the Green function satisfy

then the coefficient matrix of Green function GII can be expressed in terms of the inverse of M, i.e.,

So the superfluid density

Next, for the case of several superfluid order parameters, the proof is similar. Assuming the number of superfluid 
order parameters is an arbitrary integer m, then Gaussian fluctuation part of action

(46)
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w h e r e  M ( q )  i s  a  2m× 2m  f l u c t u a t i o n  m at r i x ,  a n d  p a i r i n g  f l u c t u a t i o n  f i e l d 
η†q = [�∗

1q,�
∗
2q, ...,�

∗
mq,�1,−q,�2,−q, ...,�m,−q] . With the action δS (Gaussian weight), the correlation func-

tions (and the matrix elements of Green function) can be calculated, i.e.,

Furthermore, in the presence of inverse symmetry, the coefficient matrix can be obtained in terms of the 
fluctuation matrix, i.e., GII = −M−1 . So the superfluid density is given by

During the derivations of Eqs. (37), (44) and (56), we can see that the superfluid density is mainly related to 
the low energy collective excitations (e.g., phonon for neutral fermion superfluid) and the behaviors of Green 
functions at long wave length limit. In addition, it is found that the superfluid density in a multi-band fermion 
superfluid can be divided into two parts, one is the conventional part, which arises from the diagonal matrix 
elements of current operator, and the other one is the off-diagonal terms (the so called geometric  part36,46), 
which connects with the geometric metric tensor of Bloch  states53. The geometric part plays an important role 
in the understanding of superfluidity of flat band, where the conventional part is  negligible36. In addition, it is 
expected that some other physical quantities, for example, sound  velocity20 should also have similar geometric 
part in a multi-component (or multi-band) superfluid. The Josephson relations [Eqs. (37), (44) and (56)] give 
the total superfluid density, which not only includes conventional part, but also the geometric part of a multi-
band fermion superfluid.

The non-vanishing superfluid density in superconductor can result in the perfect diamagnetism (the Meiss-
ner effect)54. The penetration depth of a magnetic field ( � ) is related to the superfluid density through relation 
ρs ∝ 1/�2 . So the superfluid density can be experimentally obtained by measuring the penetration depth of 
magnetic field in superconductor. On the hand, for two-dimensional high-Tc superconductors, the superfluid 
density at zero-temperature is related to the superfluid transition temperature by Tc ∝ ρs(T = 0) (the so called 
Uemura  relation55 . So the superfluid density can be also evaluated by measuring the superconductor transition 
temperature Tc . For neutral superfluid system, the superfluid density would result in a reduction of moment 
of inertia of system (from its classical value). So the superfluid density can be obtained through measuring the 
moment of inertia of superfluid  system56,57. In order to measure the moment of inertia of atomic gas, an optical 
method is proposed through imparting non-zero angular momentum into cold atom  gas58.

An example: superfluid density in Haldane–Hubbard model. As an application of the Josephon 
relations, e.g., Eqs. (44) and (56), the superfluid density is calculated for Haldane–Hubbard model in two-
component Fermi gas with on-site attractive interaction −U ( U > 0)59. The Hamiltonian for Haldane-Hubbard 
model is

where µ is chemical potential, and niσ = c†iσ ciσ is particle number operator. ǫi = 1(−1) for sublattice A (B) and 
M is energy offset between sublattice A and B. tij is hopping amplitude between lattice sites i and j, which is t for 
nearest neighbor sites, t ′e−iφ(t′eiφ) for clockwise (anticlockwise) hopping between next-nearest neighbor  sites59. 
The distance between nearest neighbor sites is a.

In the following, we focus on the case of φ = π/2 and M = 0 , where the inversion symmetry is not broken. 
Due to the presence of two sublattices, Haldane model is a two-band fermion system. In addition, there exist 
two superfluid order parameters for two sublattices, i.g.,

where i is unit cell index, ↓ (↑) are two spin component indices. Furthermore, when M = 0 , the two order param-
eters are equal, e.g., �i,A = �i,B = � . When the filling factor n = 2 (2 particles per unit cell in half-filling), for 
weakly interacting case, the system is a band insulator, and the superfluid order parameter vanishes ( � = 0 ). Only 
when the interaction is strong enough, the system enters a superfluid phase ( �  = 0 ). Away from the half-filling, 
the system is usually in a superfluid  phase59. In addition, it is found that, there exists only one gapless excitation 
near q = 0 , which corresponds to total density oscillations. The superfluid density can be also calculated with 
current–current correlation  functions9,34,47 or phase twist  method46,60. Assuming the superfluid order parameters 
undergo a phase variation, e.g, △iA(B) → �iA(B)e

2iq·riA(B) , the superfluid density (particle number per unit cell) 
tensor ρsij can be written as

(55)
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where � is thermodynamical potential (per unit cell) in grand canonical ensemble.
Figure 1 shows the evolutions of superfluid density as the interaction increases. The superfluid density is 

obtained with three different formulas, i.e. Eqs. (58), (56) and (44). First of all, it is found that the superfluid 
density is isotropic and behaves as a scalar in two-dimensional space, i.e., ρsij = diag(ρs , ρs) , which is a conse-
quence of C3 rotational symmetry of honeycomb  lattice46. Secondly, the results from the Josephson relations [Eqs. 
(56), (44)] are consistent with the results from phase twist method [Eq. (58)]. In addition, When filling factor 
n = 2.1 , the superfluid density increases as the interaction gets strong. However when the filling factor n = 2.8 , 
the superfluid density gets smaller and smaller when the interaction increases. Such an interesting feature is also 
reflected in Fig. 2, that when the filling factor is near half-filling ( n = 2 ), the superfluid density increases as the 
interaction gets strong. However, when the filling is far away from half-filling, the situation is reversed (see Fig. 2).

Figure 2 shows the superfluid density as functions of filling factor ( n = 0 → 4 ). From the Fig. 2, we can see 
that the superfluid density is symmetric with respect to half-filling ( n = 2 ) due to particle-hole  symmetry59. For 
weak interaction cases ( U = 2t and U = 3t ) and half filling, the system is a insulator (see Ref.59), the superfluid 
density vanishes (see Fig. 2). For fully occupied case ( n = 4 particles per unit cell), the system is equivalent to the 
completely empty case ( n = 0 ) due to the particle-hole symmetry, the system is also a insulator. Consequently, 
superfluid density is also zero. When the filling factor falls into the middle of upper band ( n ≈ 3 ), the superfluid 
density reaches its maximum. The appearance of double dome structure for weak interactions in Fig. 2 is in 
qualitative agreement with the results obtained through dynamical mean-field theory (DMFT) in Ref.46.

Summary
In conclusion, we investigate the Josephson relation for a general multi-component fermion superfluid. It is 
found that the superfluid density is given in terms of two-particle Green functions. When the superfluid has only 
one gapless collective excitation, the Josephson relation can be simplified, which is given in terms of superfluid 
order parameters and trace of Green function. Within BCS mean field theory and Gaussian fluctuation approxi-
mation, the matrix elements of Green function can be given in terms of pairing fluctuation matrix elements. 
Furthermore, in the presence of inversion symmetry, it is shown that the two-particle Green function is directly 
proportional the inverse of pairing fluctuation matrix. The formulas for superfluid density are quite universal 
for generic multi-component fermion superfluids, which can be also applied to a multi-band superfluid with 
complex energy spectra in lattice.

Josephson relation for multi-component fermion superfluid provides a general method for calculations on 
superfluid densities in terms of two-particle Green functions and fluctuation matrix. Our work would be use-
ful for investigations on the superfluid properties of multi-component (or multi-band) superfluid system with 
complex pairing structures.
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Figure 1.  Superfluid densities (particle number per unit cell) are plotted as functions of interaction U. (a) 
Filling factor n = 2.1 , t ′ = 0.15t , M = 0 and φ = π/2 ; (b) filling factor n = 2.8 , t ′ = 0.15t , M = 0 and 
φ = π/2 . The the superfluid density in the three curves are obtained through three different formulas, i.e., Eqs. 
(58), (56) and (44).
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Figure 2.  Superfluid densities (particle number per unit cell) are plotted as functions of the filling factor n 
(particle number per unit cell) with t ′ = 0.15t , M = 0 and φ = π/2 . The three curves correspond to interaction 
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