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Identifying influential 
spreaders in complex networks 
by an improved gravity model
Zhe Li1* & Xinyu Huang2*

Identification of influential spreaders is still a challenging issue in network science. Therefore, it 
attracts increasing attention from both computer science and physical societies, and many algorithms 
to identify influential spreaders have been proposed so far. Degree centrality, as the most widely used 
neighborhood-based centrality, was introduced into the network world to evaluate the spreading 
ability of nodes. However, degree centrality always assigns too many nodes with the same value, so it 
leads to the problem of resolution limitation in distinguishing the real influences of these nodes, which 
further affects the ranking efficiency of the algorithm. The k-shell decomposition method also faces 
the same problem. In order to solve the resolution limit problem, we propose a high-resolution index 
combining both degree centrality and the k-shell decomposition method. Furthermore, based on the 
proposed index and the well-known gravity law, we propose an improved gravity model to measure 
the importance of nodes in propagation dynamics. Experiments on ten real networks show that our 
model outperforms most of the state-of-the-art methods. It has a better performance in terms of 
ranking performance as measured by the Kendall’s rank correlation, and in terms of ranking efficiency 
as measured by the monotonicity value.

Network science plays an extremely key role in many  fields1. The heterogeneity of real  networks2 puts forward 
a vital question: How to measure the importance of nodes quantitatively? An effective algorithm to identify 
influential spreaders may be a good answer. Identification of influential spreaders can be widely used in epi-
demic  analysis3,4, rumor  analysis5, power grid  protection6, knowledge  graph7, social  computing8,9, information 
 propagation10, community  detection11,12, discovery of candidate drug targets and essential  proteins13, discovery 
of important  species14,15, and so on.

So far, most known methods merely use structural  information16, which can be classified into neighborhood-
based centralities and path-based centralities roughly. Typical representatives of neighborhood-based centralities 
are degree  centrality17 (DC), k-shell decomposition  method18 (KS) and H-index19 while typical representatives 
of path-based centralities are betweenness  centrality20 (BC) and closeness  centrality21 (CC).

Although the above methods are very classic, it is difficult to identify the vital nodes in complex networks 
accurately and efficiently. In order to solve this problem, many effective node ranking  algorithms22–29 have been 
proposed in recent years, among which the algorithms based on gravity law seem very promising. Hence, a series 
of  algorithms28–40 based on the gravity law have been proposed, and their performance is much better than the 
above classic methods. Typical representatives are gravity  centrality28 (GC) and local gravity  model29 (LGM). 
GC regards the k-shell value of a node as its mass, the shortest distance between two nodes in the network as its 
distance, while LGM regards the degree value of a node as its mass, and the shortest distance between two nodes 
as its distance. However, whether the degree or k-shell value is regarded as the mass, there is a shortcoming, i.e., 
DC and KS both assign too many nodes with the same value. So it leads to the problem of resolution limitation 
in distinguishing the real influences of these nodes, which further affects the ranking efficiency of the algorithm.

In this paper, in order to solve the above problem, we propose a high-resolution index combining both DC 
and KS. Furthermore, based on the proposed index and the well-known gravity law, we propose an improved 
gravity model to measure the importance of nodes in propagation dynamics. Experiments on ten real networks 
show that our model performs best in comparison with the above well-known state-of-the-art methods both in 
terms of ranking performance as measured by the Kendall’s rank correlation, and in terms of ranking efficiency 
as measured by the monotonicity value.
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Results
Algorithms. Firstly, we take a toy network shown in Fig.  1 to illustrate the resolution limit problem 
for DC and KS. The degree and k-shell values of each node in the toy network are shown in Table 1. Obvi-
ously, k(1) = k(8) = k(9) = 1 , k(2) = k(3) = 3 , k(4) = k(5) = k(6) = 4 , ks(1) = ks(8) = ks(9) = 1 , 
ks(2) = ks(3) = 2 , ks(4) = ks(5) = ks(6) = ks(7) = 3 , where k(i) and ks(i) are the degree and k-shell value of 
node i, respectively. DC and KS always assigns too many nodes with the same value, which leads to the problem 
of resolution limitation in distinguishing the real influences of these nodes.

A simple solution is to consider both DC and KS, that is, to estimate the influence of node i by k(i)+ ks(i) . 
However, the problem has not been completely solved. Take node 2 and node 3 as an example, compared with 
node 2, node 3 is closer to the center of the network, so node 3 may be more conducive to propagation. However, 
we cannot distinguish the two nodes by the above proposed method. Although both node 2 and node 3 are in 
the 2-shell, node 3 is removed later than node 2, that is, the 2-shell decomposition process includes two stages, 
node 2 is removed in the first stage and node 3 is removed in the second stage. So we introduce the stage number 
at which the node is removed from the network while performing the k-shell decomposition.

Given a network G, during the process of k-shell decomposition for the k-degree iteration, the total number 
of stages is q(k), and node i is removed in the p(i) stage. The improved k-shell index of node i , denoted by k∗s (i) , 
can be calculated by

The process of k-shell decomposition and the k∗s  value of each node in the toy network are shown in Table 2 
and Table 3, respectively. Take node 3 as an example, q(1) = 1 , q(2) = 2 , q(3) = 1 , and then max

k
q(k) = 2 , so 

k∗s (3) = ks(3)+ p(3)/(max
k

q(k)+ 1) = 2+ 2/(2+ 1) ≈ 2.667.
The index combining degree and k-shell of node i, denoted by DK(i), can be defined by

Such index is named as degree k-shell (DK) index. The DK value of each node in the toy network are shown 
in Table 4. As shown in Table 4, node 2 and node 3 can be distinguished (DC, KS, DC+KS failed), node 7 can 

(1)k∗s (i) = ks(i)+
p(i)

max
k

q(k)+ 1
.

(2)DK(i) = k(i)+ k∗s (i).
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Figure 1.  A toy network with nine nodes to illustrate the resolution limit problem for DC and KS.

Table 1.  The degree and k-shell values of each node in the toy network.

Node 1 2 3 4 5 6 7 8 9

DC 1 3 3 4 4 4 5 1 1

KS 1 2 2 3 3 3 3 1 1
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be distinguished from nodes 4–6 (KS failed), so DK index is a high-resolution index. Furthermore, DK carries 
both the local and global information of nodes.

Inspired by the gravity law, we regard DK value of a node as its mass and the shortest distance between two 
nodes in the network as their distance. Hence the influence of node i can be estimated as follows

where d(i, j) is the shortest distance from node i to node j and R is the truncation  radius29. Such method is named 
as DK-based gravity model (DKGM). The algorithmic description of the DKGM is provided in Algorithm 1.

(3)DKGM(i) =
∑

j �=i,d(i,j)≤R

DK(i)DK(j)

d2(i, j)
,

Table 2.  The process of k-shell decomposition in the toy network.

Shell Stage 1 2 3 4 5 6 7 8 9

1-shell Stage-1 � � �

2-shell
Stage-1 �

Stage-2 �

3-shell Stage-1 � � � �

Table 3.  The k∗s  value of each node in the toy network.

Node 1 2 3 4 5 6 7 8 9

k
∗
s 1.3333 2.3333 2.6667 3.3333 3.3333 3.3333 3.3333 1.3333 1.3333

Table 4.  The DK value of each node in the toy network.

Node 1 2 3 4 5 6 7 8 9

DK 2.3333 5.3333 5.6667 7.3333 7.3333 7.3333 8.3333 2.3333 2.3333

Table 5.  The result of DKGM with R = 2 of the toy network.

Node 1 2 3 4 5 6 7 8 9

DKGM 20.61 116.44 143.08 228.56 210.22 210.22 289.58 30.53 30.53

Table 6.  The basic topological features of the ten real networks.

Networks N M 〈k〉 〈d〉 C r H βc

PB 1222 16714 27.3552 2.7375 0.3600 − 0.2213 2.9707 0.0125

Facebook 4039 88,234 43.6910 3.6925 0.6170 0.0636 2.4392 0.0095

WV 7115 100,762 28.3238 3.2475 0.2089 − 0.0831 5.1319 0.0069

Sex 15,810 38,540 4.8754 5.7846 0.0000 − 0.1145 5.8276 0.0365

Jazz 198 2742 27.6970 2.2350 0.6334 0.0202 1.3951 0.0266

NS 379 914 4.8232 6.0419 0.7981 − 0.0817 1.6630 0.1424

USAir 332 2126 12.8072 2.7381 0.7494 − 0.2079 3.4639 0.0231

Email 1133 5451 9.6222 3.6060 0.2540 0.0782 1.9421 0.0565

Power 4941 6594 2.6691 18.9892 0.1065 0.0035 1.4504 0.3483

Router 5022 6258 2.4922 6.4488 0.0329 − 0.1384 5.5031 0.0786
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The result of DKGM with R = 2 of the toy network is shown in Table 5. Take node 3 as an example, the 1-order 
neighbors of node 3 are node 2, node 4 and node 7, the 2-order neighbors of node 3 are node 1, node 5 and node 
6, so DKGM(3) = DK(3) ∗ DK(2) + DK(3) ∗ DK(4) + DK(3) ∗ DK(7) + DK(3) ∗ DK(1)∕4 + DK(3) ∗ DK(5)∕4 + DK(3) ∗ DK(6)∕4≈ 143.08.

By Algorithm 1, we can find that calculating the improved k-shell index needs the following times opera-
tions, Nks1�k� + Nks2�k� + · + Nksmax�k� = (Nks1 + Nks2 + · + Nksmax)�k� = N〈k〉 = M, so the computational 
complexity of this part is O(M), where Nks1 is the number of 1-shell nodes, ksmax is the max k-shell value and 
〈k〉 is the average degree. The part with the highest computational complexity in our model is computing the 
R-order neighbors of each node, it needs N〈k〉R times operations, so the computational complexity of this part 
is O(N〈k〉R) . Therefore, the computational complexity of our model is O(N〈k〉R) . Fortunately, since most real 
networks are of small-world property, R is usually set to 2 or 3 to obtain the optimal result. So the computational 
complexity of our model in real-life applications is generally not more than O(N〈k〉3) , where �k� ≪ N.

Data description. In this paper, we use ten real networks from different fields to test the performance of 
DKGM, including four social networks  (PB41,  Facebook42,  WV43 and  Sex44), two collaboration networks  (Jazz45 
and  NS46), one transportation network  (USAir47), one communication network  (Email48), one infrastructure 
network  (Power49) and one technological network  (Router50). These networks’ topological features are shown in 
Table 6, including the number of nodes, denoted by N, the number of links, denoted by M, the average degree, 
denoted by 〈k〉 , the average distance, denoted by 〈d〉 , the clustering  coefficient49, denoted by C, the assortative 
 coefficient51, denoted by r, the degree  heterogeneity52, denoted by H, and the epidemic  threshold53 of the SIR 
 model54, denoted by βc.

Empirical results. In this paper, we apply the famous SIR  model54 to compare the influential rankings pro-
duced by algorithms and simulations. Given the network and infection rate β , 1000 independent implementa-
tions are performed and averaged in order to obtain the standard ranking of the influences of nodes (see details 
about SIR model in Methods). In each implementation every node is selected once as the seed once. The accu-
racy of an algorithm is measured by Kendall’s Tau ( τ)55 (see details about the Kendall’s Tau in Methods) between 
the standard ranking and the ranking produced by the algorithm. The larger the value of τ , the better the perfor-
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mance. The accuracies of DKGM and the seven benchmark algorithms (see details about the benchmark central-
ities in Methods) for β = βc are compared in Table 7, and the accuracies of different β values are shown in Fig. 2.

As shown in Table 7, compared with the five classic methods (DC, KS, H-index, BC, CC), GC, LGM and 
DKGM are very competitive. Especially in the NS, Power and Router networks, the advantage of the gravity-based 
methods are extremely obvious. It can be seen from Table 6 that NS, Power and Router are extremely sparse (with 
very few links). In this tree-like networks, there are very few cycles, that is, most paths have no alternative paths, 
so propagation is very difficult. In this case, neither the neighborhood-based methods (DC, KS and H-index) 
nor the path-based methods (BC and CC) can work well. Furthermore, compared with GC and LGM, DKGM 

Table 7.  The algorithms’ accuracies measured by Kendall’s Tau for β = βc . The parameters in the related 
algorithms (i.e., LGM and DKGM) are adjusted to their optimal values according to the largest τ . The best 
algorithm for each network is emphasized by bold.

Networks DC KS H-index BC CC GC LGM DKGM

PB 0.8524 0.8595 0.8694 0.6771 0.7852 0.8948 0.9030 0.9047

Facebook 0.6798 0.7075 0.7066 0.4529 0.3940 0.7855 0.8275 0.8382

WV 0.7619 0.7657 0.7662 0.6978 0.8127 0.8216 0.8276 0.8300

Sex 0.4664 0.4925 0.4855 0.4118 0.7677 0.7876 0.7789 0.7882

Jazz 0.8150 0.7638 0.8513 0.4641 0.7008 0.8746 0.8666 0.8892

NS 0.5790 0.5106 0.5610 0.3003 0.3397 0.8139 0.8372 0.8439

USAir 0.7370 0.7529 0.7568 0.5171 0.8027 0.8583 0.8875 0.8956

Email 0.7653 0.7702 0.7883 0.6243 0.8163 0.8738 0.8697 0.8779

Power 0.4264 0.3122 0.4009 0.3254 0.3838 0.6851 0.7442 0.7575

Router 0.3139 0.1810 0.1928 0.3096 0.6383 0.7783 0.7894 0.7999
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Figure 2.  The algorithms’ accuracies measured by Kendall’s Tau for different β . The black symbols represent the 
five classic algorithms (DC, KS, H-index, BC and CC), the blue symbols represent the typical algorithms based 
on the gravity law (GC and LGM), and the red symbol represents our model.
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always performs best. As shown in Figure 2, DKGM also performs very competitive compared with the seven 
benchmark algorithms for different β not too far from βc.

The optimal truncation radius R∗ of LGM can be estimated by

at β = βc
29. As shown in Figure 3, DKGM still keeps this property.

Furthermore, the accuracies of GC, LGM with R = �d�/2 and DKGM with R = �d�/2 for β = βc are com-
pared in Table 8. As shown in Table 8, although the truncation radius is set heuristically, DKGM still performs 
best among the three algorithms.

(4)R∗ ≈
1

2
�d�

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

Figure 3.  The relation between R∗ of DKGM and 〈d〉 for β = βc . Ten circles represent ten real networks and 
the slope of the blue line is 1/2. The black circle is the Power network. Although the optimal truncation radius 
R
∗ = 6 in the Power network is slightly different from what Eq. 4 predicts (i.e., R = 9 ), the algorithmic accuracy 

at R = 9 ( τ = 0.7366 ) is very close to the best accuracy at R∗ = 6 ( τ = 0.7575).

Table 8.  The accuracies of GC, LGM ( R = �d�/2 ) and DKGM ( R = �d�/2 ) for β = βc . The best algorithm for 
each network is emphasized by bold.

Networks GC LGM ( R = �d�/2) DKGM ( R = �d�/2)

PB 0.8948 0.9030 0.9047

Facebook 0.7855 0.8275 0.8382

WV 0.8216 0.8276 0.8300

Sex 0.7876 0.7789 0.7882

Jazz 0.8746 0.8666 0.8842

NS 0.8139 0.8324 0.8439

USAir 0.8583 0.8875 0.8904

Email 0.8738 0.8697 0.8779

Power 0.6851 0.7222 0.7366

Router 0.7783 0.7894 0.7999

Table 9.  The monotonicity of node ranking list produced by different algorithms, the best algorithm for each 
network is emphasized by bold.

Networks DC KS H-index BC CC GC LGM DKGM

PB 0.9328 0.9064 0.9268 0.9489 0.9980 0.9993 0.9991 0.9992

Facebook 0.9739 0.9419 0.9665 0.9855 0.9967 0.9998 0.9999 0.9999

WV 0.7761 0.7673 0.7732 0.7704 0.9994 0.9996 0.9996 0.9996

Sex 0.6002 0.5288 0.5457 0.6757 0.9996 0.9997 0.9997 0.9997

Jazz 0.9659 0.7944 0.9383 0.9885 0.9878 0.9993 0.9991 0.9994

NS 0.7642 0.6421 0.6825 0.3388 0.9928 0.9947 0.9933 0.9953

USAir 0.8586 0.8114 0.8355 0.6970 0.9892 0.9943 0.9933 0.9951

Email 0.8874 0.8088 0.8583 0.9400 0.9988 0.9999 0.9998 0.9999

Power 0.5927 0.2460 0.3930 0.8314 0.9998 0.9975 0.9999 0.9999

Router 0.2886 0.0691 0.0876 0.2985 0.9961 0.9962 0.9964 0.9966



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22194  | https://doi.org/10.1038/s41598-021-01218-1

www.nature.com/scientificreports/

Finally, we apply the  monotonicity56, denoted by Mr , to measure the ranking efficiency of algorithms. This 
metric is used to measure the uniqueness of the elements in a ranking list and it can be computed by

where L is the ranking list, and Nt(r) is the number of ties with the same rank r.
The monotonicity of node ranking list produced by different algorithms is shown in Table 9. As shown in 

Table 9, except the PB network, DKGM always performs best among the eight algorithms. In the PB network, the 
reason why GC narrowly defeated DKGM is that DKGM just considers 1-order neighbors while GC considers 
3-order neighbors. The results reported in Table 9 demonstrate DKGM is a remarkably high-resolution algorithm.

Discussion
Degree centrality and the k-shell decomposition method, as the most widely used neighborhood-based cen-
tralities, were introduced to the network world to evaluate the spreading ability of the nodes. However, the two 
methods always assign too many nodes with the same value, which leads to the problem of resolution limitation 
in distinguishing the real influences of these nodes. To solve the above problem, combining the two methods 
(i.e., DC and KS), we propose a high-resolution index (DK) that can simultaneously reflect the local and global 
information of nodes. Furthermore, we propose an improved gravity model (DKGM) that combining DK index 
and the gravity law to evaluate the spreading ability of nodes. The empirical results show that DKGM performs 
best in comparison with seven well-known benchmark methods and DKGM is a remarkably high-resolution 
algorithm.

A potential disadvantage of DKGM is how to set truncation radius R. Fortunately, as shown in Fig. 3, we find 
an empirical relation between R∗ and the average distance 〈d〉 , so we can use the relation (see Eq. 4) to approxi-
mate R∗ . In addition, since most real networks are of small-world  property49,57, R∗ should be small, it can be set 
to 2 or 3 generally.

There are still some potential problems in the future. First of all, the original law of gravity is symmetrical, but 
due to the different effects of different nodes or the inherent asymmetry of  dynamics58,59, the influence of node 
i on node j may be different from that of node j on node i, in which the asymmetric form of gravity law may be 
involved. Secondly, as the heterogeneity of the links greatly change their  importance60, how to use gravity model 
in the weighted networks is still an open issue. We will also develop some other better methods based on the 
gravity law to identify influential spreaders.

Methods
Benchmark centralities. We denote an undirected and unweighted network as G =< V ,E > , where V 
and E are the sets of nodes and links, respectively, denote |V | = N and |E| = M , so the network has N nodes and 
M links. The adjacent matrix of G is represented by A = (aij)N×N , if there is a link from node i to node j, aij = 1 , 
otherwise, aij = 0.

DC17 of node i can be calculated by

where k(i) =
∑

j aij.
KS18 works by iterative decomposition of the network into different shells. The first step of KS is to remove all 

the nodes in the network whose degree k = 1 . Then it remove nodes whose degree k ≤ 1 after one round removal 
because this step may lead to the reduction of the degree values during the process of removal. Until there are no 
nodes in the network with degree k ≤ 1 , all the nodes which have been removed in this step create 1-shell and 
their k-shell values are equal to one. Then repeat this process to obtain 2-shell, 3-shell, ... , and so on. Finally all 
nodes are divided into different shells and the k-shell value of each node can be obtained.

The H-index19 of node i, represented by H(i), is defined as the maximal integer value satisfying that there are 
at least H(i) neighbors of node i and degrees of these neighbors are all no less than H(i).

BC20 of node i can be calculated by

where gst is the number of shortest paths from node s to node t, and gst(i) is the number of shortest paths from 
node s to node t that pass through node i.

CC21 of node i can be calculated by

GC28 of node i can be calculated by

where ψi is the neighborhood set whose distance to node i is less than or equal to 3.

(5)Mr(L) =

[

1−

∑

r∈L Nt(r)(Nt(r)− 1)

N(N − 1))

]2

(6)DC(i) = k(i),

(7)BC(i) =
∑

s �=i,s �=t,i �=t

gst(i)

gst
,

(8)CC(i) =
N − 1
∑

j �=i

d(i, j)
.

(9)GC(i) =
∑

j∈ψi

ks(i)ks(j)

d2(i, j)
,
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LGM29 of node i can be calculated by

SIR model. The SIR  model54 initially considers all nodes as susceptible (S) except the source node in the 
infected (I) state. Each infected node can infect its susceptible neighbors with probability β . In each subsequent 
step, all infected nodes change their own states to recovered (R). A node in the recovered state will never partici-
pate in the propagation dynamic process with the probability � . The propagation process continues until there 
are no nodes in the infected state. The influence of node i can be estimated by

where Nr is the number of recovered nodes when dynamic process achieving steady state. � is set to 1 for simplic-
ity, and the corresponding epidemic  threshold53 is

where 
〈

k2
〉

 is the second-order moment of the degree distribution.

The Kendall’s Tau. The Kendall’s  Tau55 is a measure of the strength of correlation between two sequences. 
X = (x1, x2, ..., xN ) and Y = (y1, y2, ..., yN ) are two sequences with N elements. For any pair of two-tuples (xi , yi) 
and (xj , yj) (i  = j) , if xi > xj and yi > yj or xi < xj and yi < yj , the pair is concordant. If xi > xj and yi < yj or 
xi < xj and yi > yj , the pair is inconsistent. If xi = xj or yi = yj , the pair is neither concordant nor inconsistent. 
Kendall’s Tau of X and Y can be defined as

where n+ is the number of concordant pairs and n− is the number of discordant pairs.

Data availability
All relevant data are available at https:// github. com/ MLIF/ Netwo rk- Data.
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