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Generator based approach 
to analyze mutations in genomic 
datasets
Siddharth Jain1,3, Xiongye Xiao2,3, Paul Bogdan2* & Jehoshua Bruck1*

In contrast to the conventional approach of directly comparing genomic sequences using sequence 
alignment tools, we propose a computational approach that performs comparisons between sequence 
generators. These sequence generators are learned via a data-driven approach that empirically 
computes the state machine generating the genomic sequence of interest. As the state machine based 
generator of the sequence is independent of the sequence length, it provides us with an efficient 
method to compute the statistical distance between large sets of genomic sequences. Moreover, 
our technique provides a fast and efficient method to cluster large datasets of genomic sequences, 
characterize their temporal and spatial evolution in a continuous manner, get insights into the locality 
sensitive information about the sequences without any need for alignment. Furthermore, we show 
that the technique can be used to detect local regions with mutation activity, which can then be 
applied to aid alignment techniques for the fast discovery of mutations. To demonstrate the efficacy 
of our technique on real genomic data, we cluster different strains of SARS-CoV-2 viral sequences, 
characterize their evolution and identify regions of the viral sequence with mutations.

Phylogenetic approaches have had enormous success in explaining and visualizing the temporal and spatial 
evolution of different species. The methods used for constructing phylogenetic trees rely on either calculating 
edit distance or other distances which are based on a detailed evolutionary model1. There have been several 
approaches to compute the edit distance and perform sequence alignment in the past2–4. One of the main pur-
poses of pairwise and multiple sequence alignment methods is the discovery of mutations (substitutions, indels) 
and the differentiation of sequences being compared. In this paper, we provide an alternative method that per-
forms sequence comparisons based on the difference between the rules that may be used to generate sequences. 
More precisely, we hypothesize that genomic sequences have an underlying generator which can be character-
ized by a fixed number of parameters. Any genomic sequence that we observe in nature is an instance of this 
parametric generator. From a computational perspective, these sequence generators provide us with an efficient 
way of compressing genomic information which further allows us to make statistical comparisons amongst large 
genomic datasets and can be used to cluster genomic sequences, characterize temporal and spatial evolution in a 
continuous manner, detect local sites with higher mutation activity, as well as to aid alignment techniques for fast 
and efficient discovery of mutations. As a case study, we further demonstrate these aforementioned advantages 
on different strains of the SARS-CoV-2 virus.

We map a genomic sequence onto a generator modeled using a state machine, i.e., a directed weighted net-
work where the nodes and edges represent the states (i.e., contiguous groups of k nucleotides) and the transition 
probabilities among states, respectively (see Fig.1c,d). In order to predict the next b nucleotides from previous k 
contiguous nucleotides in the genomic sequence, we develop a Markov chain consisting of 4k states transitioning 
into 4b states (see Fig. 1a,b). After traversing the entire sequence, the number of occurrences of each transition 
provides information about the corresponding transition probability and also represents the weight of the cor-
responding directed edge (i.e., a directed weighted network of the RNA sequence is generated with 4k nodes 
(see Fig. 1e,f)). Figure 1a,b show a transition acg → t with model k = 3, b = 1 . Figure 1c,d show a transition 
acgt → cg with model k = 4, b = 2 . This proposed method encodes the generation of genomic sequences and 
the transition probabilities reveal important context-sensitive characteristics within the sequence. The state 
machine based generator is independent of the sequence length and the number of states. The transitions are 
model parameters that can be set by the user. The non-reliability of the sequence length implied by our technique 
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makes the method less susceptible to misalignment issues caused by deletions and insertion mutations in genomic 
sequences.

Next, we discuss the efficacy of sequence generator approach based on the state machine model for different 
genomic sequence based applications. In particular, we focus on (i) clustering large genomic sequence datasets, 
(ii) characterizing the temporal evolution of genomic sequences in a continuous manner, (iii) proposing a data-
driven mutation region detection algorithm that can be used to infer local statistics within a sequence to give 

Figure 1.   Overview of the method. The generator is based on a state machine. A genomic sequence is 
mapped onto a set of states and transition probabilities. The states are identified by substrings of length k and 
the transition probabilities are computed by observing the next b-length substrings following the current 
state (see (a,b)). Another way to understand the model for k = 3, b = 1 and k = 4, b = 2 is shown in (c,d) 
respectively. These state machines can also be viewed as  weighted directed graphs where nodes represent the 
states and the edge weights correspond to the transition probabilities. In (e,f), we show the weighted directed 
graph characterization of SARS-CoV-2 sequences belonging to GISAID Clade G and Clade L through the state 
machine model k = 3, b = 1 . In (g), we show the transition probability matrix for the state machine with k = 2, 
b = 1 and illustrate the impact of a single substitution and a single deletion on the transition probability values. 
(h) shows the flow diagram of the proposed method.
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insights about the mutation activity within the genomes, and (iv) using the proposed mutation region detection 
algorithm to aid the state of the art alignment techniques for faster discovery of mutations.

Results
The inferred state machine generator can cluster genomic sequences and characterize their 
temporal evolution.  Sequence clustering.  The sequence generators inferred for every sequence using the 
proposed state machine model can be used to cluster sequences, hence, identifying sequences with similar and 
distinguishable generators. We conduct different experiments on synthetic and real datasets to show the efficacy 
of the model in clustering genomic sequences. In the first experiment, we generate synthetic genomic datasets. 
We first generate a synthetic genomic sequence G of length L, the sequence is generated randomly. Next, we 
obtain noisy copies of G by adding stochastic noise at each location in G . The noise can be either a substitution, 
insertion or deletion with equal probability. Let A and B denote the sets of noisy sequences obtained from G 
using probabilities pA and pB , respectively. Let A = {A1,A2, · · · ,Au} and B = {B1,B2, · · · ,Bv}. Given a pair 
of k and b parameters, we obtain the data-matrix XXX of size (u+ v)× 4k+b for A1,A2, · · · ,Au,B1,B2, · · · ,Bv 
(as described in Methods section). Fig. 2a–c show the results of applying principal component analysis (PCA) 
on data matrix XXX obtained by the approach discussed in Methods section for k = 4 , b = 1 , β = 0.5 , u = 100 , 
v = 100 , pA = 0.001 and pB = 0.01 for L = 2000, 5000, 10000 . We notice that the sequences in sets A and B 
can be clustered for different values of L. To observe the impact of choosing parameters k and b on clustering 
performance, we use different combinations of k and b to conduct the above experiments and calculate the dis-
tance between the centers of two clusters (i.e., A and B ), the results are shown in Fig. 2d. Figure 2e shows the 
time complexity of the methods with different combinations of k and b. The distance represents the ability of the 
method to distinguish two clusters, as shown in Fig. 2d,e, when (k + b) becomes higher, both the distance and 
time complexity become higher. When (k + b) jumps from 5 to 6, both the distance and the time complexity in-
crease significantly. In Fig. 2f, we conduct the same experiment (with k = 4, b = 1,β = 0.5 ) as done to generate 
Fig. 2a–c but by choosing the starting sequence G as SARS-CoV-2. We observe similar clustering performance 
(as in Fig. 2a–c) in Fig. 2f when G is chosen as a real sequence, i.e. SARS-CoV-2. In Fig. 2g–i, we also show the 
results of applying PCA on data matrix XXX obtained using the approach discussed in Methods section for k = 4 , 
b = 1 , β = 0.5 , u = 1000 , v = 50 , pA = 0.1 and pB = 0.15 for L = 5000, 10000, 30000 . We can see that the 
sequences in sets A and B can be clustered for different values of L. Further, the number of samples in set A 
( u = 1000 ) is chosen to be much larger than the number of samples in set B ( v = 50 ) in generating Fig. 2g–i to 
show the efficacy of the method in identifying rare clusters. Further in Figure S1, we conduct another experi-
ment where we show that the method can cluster sequences from a sequence pool where all sequences have the 
same mutation probability p but can have different starting sequences.

In the second experiment on synthetic data, we again consider a sequence G of length L. Next, we obtain noisy 
copies of G by adding stochastic noise at each location in G . The noise can represent either substitution, insertion 
or deletion with equal probability. Let A denote the set of noisy sequences obtained from G using probability 
p = pA . Let A = {A1,A2, · · · ,Au} . Let B = {B1,B2, · · · ,Bv} . Here, Bi is obtained by adding noise with prob-
ability pB on a substring of length R in Au−v+i starting at a fixed index j and ending at the index j + R − 1 . For 
a pair of k and b values, we obtain the data-matrix XXX of size u× 4k+b for A1,A2, · · · ,Au−v ,B1,B2, · · · ,Bv (see 
Methods section). Figure 2j–l shows the result of applying PCA on data matrix XXX obtained using the approach 
discussed in Methods section for k = 4 , b = 1 , β = 0.5 , u = 1000 , v = 50 , L = 10000 , R = 3000 and j = 1001 
for different values of pA and pB . The results show that the characteristics of the sequences in B can be captured 
by the state machine and then the difference between the sequence clusters with different mutation probabilities 
can be captured by PCA analysis. The distinction increases when the difference between the two clusters becomes 
greater. In one sequence cluster, the higher the mutation probability, the higher the divergence of the first two 
principal components.

Next, we show how the proposed method can distinguish between different SARS-CoV-2 clades and strains. 
In Fig. 3, we apply the state machine based generator to different SARS-CoV-2 clades and strains observed in 
year 2020. In Fig. 3, we show that the state machine representation can be used to cluster GISAID clades G (1818 
samples), L (1732 samples) and GR (1622 samples)5 using the first two principal components of PCA analysis. 
Further, we show the impact of choosing parameters k and b on clustering performance. As can be observed 
from Fig. 3, the clustering performance is improved as k + b is increased. When k + b ≥ 5 , we observe good 
quality clustering between GISAID clades G, L and GR using the proposed method (Note that β = 0.5 for all 
the experiments conducted in the paper.).

The feature weights on both the principal components and the important features when k = 4, b = 1 and 
k = 3, b = 3 are shown in Supplementary Figures S4-S6. In Figure S2, we show the application of our approach 
to cluster and identify the distance between the UK strain (318 samples), South African strain (100 samples) 
and Brazilian strain (47 samples).

Characterizing temporal evolution in a continuous manner.  Continuous evolution is characterized by quantify-
ing the randomness of transient mutations. However, the clades/variants/strains are defined using stable muta-
tions. In Fig. 4, we perform intra-clade and intra-variant comparisons for different months within SARS-CoV-2 
and show the efficacy of our method in quantifying continuous evolution within SARS-CoV-2. More precisely, 
we make intra-clade comparisons for SARS-CoV-2 sequences for GISAID clades L and G over different months. 
In particular, let A and B denote the set of sequences categorized as clade L in months A and B, respectively. 
We obtain the data matrix XXX using the sequences for months A and B and then build a logistic regression based 
classifier to compare month A and B sequences using XXX . The pairwise validation accuracy of the classifier can be 
used to measure the distance between sequences compared over different months (see Machine learning section 



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21084  | https://doi.org/10.1038/s41598-021-00609-8

www.nature.com/scientificreports/

Figure 2.   Clustering of Sequences. (a–e) Red and blue sequences are generated by adding substitution, 
insertion and deletion noise with probability 0.1% and 1% respectively. (a–c) show the first 2 principal 
components as a result of applying PCA on the state machine representations of the sequences with 
k = 4, b = 1,β = 0.5. for L = 2000, 5000, 10000 respectively. (d) shows distances between the centers of the 
red and blue clusters generated by different combinations of b and k, while (e) shows the time complexity 
of the method with different combinations of b and k, we repeat 20 times in each experiment and show the 
mean and standard deviation. (f) Red and blue sequences are generated by adding substitution, insertion and 
deletion noise with probability 0.1% and 1% respectively on the root SARS-CoV-2 sequence. (f) illustrates 
similar clustering performance for k = 4, b = 1,β = 0.5 as observed in (a–c) when noise is applied on a real 
sequence, i.e. SARS-CoV-2. (g–i) Red and blue sequences are generated by adding substitution, insertion 
and deletion noise with probability 10% and 15% respectively. (g–i) show the first 2 principal components as 
a result of applying PCA on the state machine representations of the sequences with k = 4, b = 1,β = 0.5. 
for L = 5000, 10000, 30000 respectively. (j–l) The red sequences have a noise level of x% and are of length 
L = 10000. The blue sequences of length L = 10000 have a noise level of x% in locations 1− 1000 and 
4001− 10000 , and a noise level of 5% in locations 1001− 4000 . (j–l) show the first two principal components 
of applying PCA on the state machine representation (with k = 4, b = 1,β = 0.5 ) of red and blue sequences for 
x = 1, 2, 3 respectively.
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in Methods section). Figure 4a shows the results of comparison when 209 clade L samples from January 2020 are 
compared with clade L samples from February (209 samples), March (1739 samples) and April (788 samples), 
respectively. Figure 4b shows the comparison for 2433 clade G samples from May 2020 with clade G samples 
from June (2309 samples), July (1465 samples), August (1605 samples), September (2038 samples) and October 
(1818 samples), respectively. Figure 4c shows the comparison for 5699 Delta variant samples from April 2021 
with Delta variant samples from May (4163 samples), June (5092 samples) and July (5284 samples), respectively. 
The corresponding heatmaps for the continuous evolution plots shown in Figure 4 are provided in Supplemen-
tary Figure S3. As can be observed from these results, the accuracies exhibit an increasing trend illustrating the 
power of the state machine representations to characterize continuous evolution within the same clade without 
any need for sequence alignment.

The sequence generator can detect local regions with mutations in a sequence exploiting con-
text sensitive information encoded by the state machine transition probabilities.  We provide 
a data driven algorithm (see Methods section for the formal description of the algorithm) that can be used to 
detect the regions with mutation activity in the sequence using the state machine based representation. We also 

Figure 3.   Clustering of SARS-CoV-2 Clades. (a–i) Clustering using PCA of GISAID clades L, G and GR of 
SARS-CoV-2 using the state machine representation for different values of b and k with β = 0.5. As can be seen, 
the clustering performance is better when k + b is larger for example b = 1, k = 4 (k + b = 5) , shows a better 
clustering performance then b = 1, k = 2 (k + b = 3). The performance for b = 1, k = 5 or b = 2, k = 4 or 
b = 3, k = 3 (k + b = 6) is near similar when compared to b = 1, k = 4 or b = 2, k = 3 (k + b = 5) , however 
the computational time is more when k + b is larger as shown in Fig. 2. Hence for this example, b = 1, k = 4 
or b = 2, k = 3 is a good choice of parameters as it optimizes both clustering performance and computational 
time.
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conduct different experiments on synthetic and real datasets to show the efficacy of the mutation region detec-
tion algorithm.

We first conduct an experiment on synthetic genomic data. Consider a sequence G of length L. We obtain 
2N(N = 100) noisy copies of G by adding stochastic noise at each location in G . The noise can be either sub-
stitution, insertion or deletion with equal probability. Let C = {C1,C2, · · · ,C2N } denote the set of noisy 
sequences obtained from G using probability pC . We split C into 2 sets U and V such that U = {C1,C2, · · · ,CN } 
and V = {CN+1,CN+2, · · · ,C2N }. Consider a set of locations G = {g1, g2, · · · , gn} and mutations 
M = {m1,m2, · · · ,mn} . For each Cj ∈ U ( j ∈ {1, 2, · · · ,N} ), we now implant mutation mi at location gi for all 
i ∈ {1, 2, · · · , n} to obtain C′

j . Let U ′ = {C′
1,C

′
2, · · · ,C

′
N } denote the set of sequences with implanted mutations. 

Figure 5 shows the results of applying the mutation site detection algorithm on sequences in sets U ′ and V for 
different values of L, l, G , M with b = 1 , k = 4 , and β = 0.5 . These results show that all the mutated regions are 
captured by our algorithm, which can help us to find the specific mutation sites.

We also apply our algorithm on SARS-CoV-2 genomic data to detect the regions with mutations in different 
clades. The SARS-CoV-2 genomic data is obtained from GISAID5. We consider sequences in the nextstrain6 
clades - 19A, 20A, 20B and 20C. The length L of SARS-CoV-2 RNA is ∼ 30, 000 . We divided the SARS-CoV-2 
RNA into non-overlapping regions of length l = 1000 each. Therefore, we have 30 regions. We now obtained the 
data matrix XXXi with k = 4 , b = 1 , β = 0.5 for each region i ∈ {1, 2, · · · , 30} using the set of sequences in clade 
19A (558 samples) and 20A (605 samples). Next, we design 30 logistic regression based classifiers for compar-
ing clade 19A and 20A sequences in the 30 regions. We notice high pairwise accuracy for classifiers in regions 
where mutations differentiating clades 19A and 20A are present (see Fig. 6). We apply the same technique for 
comparing 20A with other nextstrain clades—20B (561 samples), 20C (232 samples) (see Fig. 6). Therefore, 
our method can efficiently help in processing a large number of genomic sequences to detect the regions with 
mutations in different clades.

By using the region length l as a parameter, the proposed mutation region detection algorithm can be used to 
detect regions of mutations differentiating the two sets of sequences. Further, the algorithm can be used to aid 
alignment techniques as it can identify regions with mutations. In particular, having information about areas of 
mutations will significantly reduce the length of the sequences needed to be aligned to accurately identify the 
mutations saving computational time. We elaborate more on this insight next.

Mutation region detection algorithm can be used to aid alignment techniques to discover 
mutations.  Due to the state machine based representation, our mutation region detection method can effi-

Figure 4.   Continuous Evolution. A variant/strain is defined by deterministic stable mutations, however, 
evolution is characterized by the randomness of the transient mutations. In these plots, we quantify this 
randomness for different SARS-CoV-2 clades by comparing SARS-CoV-2 sequences within the same clade/
variant in different months. (a) represents validation accuracy of a logistic regression classifier built using 
state machine representations of SARS-CoV-2 sequences (with k = 4 , b = 1 , β = 0.5 ) in January 2020 with 
the months of February, March and April 2020 within GISAID clade L. (b) represents validation accuracy 
of a logistic regression classifier built using state machine representations of SARS-CoV-2 sequences (with 
k = 4 , b = 1 , β = 0.5 ) in May 2020 with the months of June, July, August, September and October 2020 within 
GISAID clade G. (c) represents validation accuracy of a logistic regression classifier built using state machine 
representations of SARS-CoV-2 sequences (with k = 4 , b = 1 , β = 0.5 ) in Apr 2021 with the months of May, 
June, and July 2021 within Delta variant. Greater accuracy in both (a), (b) and (c) point towards more separation 
between the sequence classes being compared.
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ciently process large sets of genomic sequences. In this part, we show how the mutation region detection method 
we proposed above can be used to aid alignment techniques and show faster performance compared to the state 
of the art alignment techniques.

Figure 5.   Mutation Region Detection. We use the synthetic experiments to show how our method works. (a) 
shows the process of the synthetic experiments. In the experiment, we first generate the original random RNA 
sequence of length L/nt, then we set the mutation probability of each nucleotide site on the original sequence 
to p to generate 2N mutated sequences. We assume that three common mutation types (i.e., substitution, 
insertion and deletion) occur with equal probability. Then we divide these 2N sequences equally into 2 groups, 
in the first group, we do not perform any processing, while in the second group, we randomly add the same 
new mutations to them (i.e., add the same mutation on the same nucleotide site). Then we use our mutation 
region detection algorithm (set the region length to l/nt) to detect the regions that have mutations, and apply 
the alignment algorithm on these regions to find the specific mutation. (b-e) We also take the examples with 4 
different combinations of sequence length L and region length l: (b) L = 1000, l = 100 ; (c) L = 10000, l = 1000 ; 
(d) L = 1000, l = 50 ; (e) L = 10000, l = 500 . We set the mutation probability p to 5% , and the number of 
sequences in each group to 100, then we randomly add 5 mutations on the sequences in the second group, and 
detect the mutation region by using our mutation region detection algorithm.
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State-of-the-art methods for detecting mutations in gene sequences rely on the sequence alignment algorithm. 
Moreover, the time complexity of these state-of-the-art alignment algorithms is O(L2)7, where L is the length of 
the sequence. Our proposed method can detect the mutation region in linear time and can be used to aid the 
alignment method. We first use our mutation region detection algorithm to find the region of the mutation, and 
then find the specific mutation through sequence alignment of the specific region between the sequences. In this 
way, the time complexity of mutation detection will be significantly reduced.

We conduct experiments on synthetic genomic data to show the difference in terms of time complexity 
between our method and the biopython package implementation of 2 popular sequence alignment algorithms 
(i.e., the Needleman-Wunsch and Smith-Waterman algorithms). In the synthetic experiment (see Fig. 5), we set 
the number of sequences in each group to N, the mutation probability to p, and we use 4 different combinations 
(i.e., N = 50 and p = 5% , N = 50 and p = 10% , N = 100 and p = 5% , N = 100 and p = 10% ) to test the time 
the method takes to detect the mutations. In the state machine method, we first use our mutation region detec-
tion algorithm to find the mutation region, and in the second stage, we use the Smith-Waterman algorithm to 
detect the specific mutations. We record the total time of these two steps. As is shown in Fig. 7, the approach 
where our method is used in the first step empirically runs in total linear time while the time complexity of the 
Needleman-Wunsch algorithm and Smith-Waterman algorithm is quadratic7–9 in sequence length. In practice, 
for sequences longer than 4000nt, our state machine method shows clear advantages over the other two algo-
rithms (see Fig. 7). A more precise analysis of the time and space complexity of our algorithm is provided in the 
Methods section section.

Discussion
We propose a data driven approach inspired by Kolmogorov complexity to infer and model generators of genomic 
sequences. We conceptualize the sequence as being generated by a state machine (Fig. 1). This new modeling 
perspective provides not only an alternative method to analyze and statistically compare large datasets of genomic 
sequences without any need of alignment, but also opens new analytical and practical directions of scientific 
inquiry. The method can be exploited to (i) cluster different sequence strains (Fig. 2) (ii) characterize the evolu-
tion in a continuous manner (Fig. 4), (iii) infer the local statistics within a sequence (Figs. 5, 6) , and (iv) aid 
alignment techniques for faster discovery of mutations (Fig. 7).

By characterizing the higher order interactions among the RNA/DNA nucleotides within the sequence, we 
provide new mathematical tools for investigating the evolution of genomic sequences. Our work also enables 
the development of novel approaches to transform sequences into new representations which preserve the dis-
tance between the sequences, store contextual information and are robust to insertion, deletion and substitution 
mutations. Another important characteristic of the state machine model is that it can be used to capture the scale 
dependencies among various regions of the nucleotide sequences through the transition probabilities.

The proposed sequence generator based on a state machine model can be viewed as a universal and interpret-
able tool to apply computational analysis on genomic sequences. Higher-order interactions among the nucleotides 
could be computationally analyzed and used to characterize the genomic sequences, providing an approach to 
investigate sequences at the genetic level. As shown in the paper, our model can be used to compare between 
different sequence strains and detect regions with mutations separating these strains (Fig. 6).

We also capture the temporal characteristics of sequence evolution. In particular, the model can be used to 
characterize continuous evolution within a clade (Fig. 4). This statistical approach also allows us to quantify the 
effects of transient mutations which go back and forth during the temporal evolution of genomic sequences. 
Further, the mutation region detection algorithm infers the local statistics of genomic sequences in the dataset. 
Therefore, it can also be used to identify actively mutating areas in the genome. For example, one can compare 
state machines of local regions at different points in time and use the validation accuracy of the classifiers to 
identify local areas with higher mutation rates compared to others (see Fig. 6). An insight into local regions 

Figure 6.   Mutation region detection in SARS-CoV-2 clades. Here, we show how the state machine model 
can be used to detect the mutations differentiating various clades without the need for sequence alignment. In 
this method, we divide each SARS-CoV-2 RNA sequence into 30 regions of length 1000 each and calculate the 
classification accuracy for the model comparing the transition probability matrix calculated for each 1000 length 
region. The regions for which the classification accuracy is high are the spots where the transition probability 
matrices are different due to mutations occurring in that region. For example, an accuracy of 1 in region 24 
(23000–24000) in (a) indicates the detection of spike protein mutation (A23403G or D614G) in nextstrain clade 
20A when compared against 19A. Further in plots (b,c), we detect regions with mutations differentiating clade 
20A with 20B and 20C.
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with high mutation activity can point us to areas that are being selected if the founder effect considerations are 
taken into account carefully10.

The temporal analysis of genomic sequences has been primarily focused on finding the phylogeny based on a 
model which considers computing pairwise edit distance between sequences1. A model based on the frequency 
of k-mers was proposed in the past for alignment free and global analysis of RNA and DNA sequences11. This 
model was recently used in12 to compare SARS-CoV-2 sequences with other viruses and earlier SARS-CoV-2 
samples with the more recent ones. Recently, a k-mer based alignment-free classification approach was also 
used to discover viral type sequences within the human genome. The striking finding here is the evidence that 
viral genomes are dissimilar to human genome fragments if the sequences are aligned, but are rather similar in 
their k-mer distributions when compared to k-mer distributions in human genome13. In this paper, we present a 
sequence generator based on state machine for analyzing genomic sequences. Similar to k-mer frequency based 
approach11, this model also doesn’t require alignment of sequences. Moreover, the approach allows us to make 
statistical comparisons between large sets of genomic sequences in a fast and efficient manner. Further, it can 
be used to characterize evolution, detect local regions with mutations which can then be used to aid alignment 
techniques for mutation discovery in those regions.

Biologists can take our model and use it as a universal graph representation for all the genomic sequences. The 
nodes in the graph represent the states and the edges are defined by the state transitions. The graph is universal as 
the graph structure is independent of the sequence of interest. The weighted graph structure encodes the specific 
higher-order interactions within a nucleotide sequence and can be used to define the distance between different 
sequence types. Further, this mathematical framework can also be used to infer the states in the state machine 
which are less random (low entropy rate) compared to the ones which are random (high entropy rate). The low 
entropy states in the state machine are more predictable as they have higher probabilities for certain transitions 
over the others giving us insights on the context sensitive information in genomic sequences.

Our method also provides us with a preprocessing tool to aid alignment techniques. The preprocessing step 
comprises of the mutation region detection algorithm to identify local regions of smaller length with mutations 
and then uses state-of-the-art alignment tools to discover mutations saving computational time (see Fig. 7). We 

Figure 7.   Time complexity analysis. We compare the running time of our mutation detection method and 
two common alignment algorithm through the synthetic experiments. We use 4 combinations of different 
number of sequences in each group N and mutation probability p: (a) N = 50, p = 5% ; (b) N = 50, p = 10% ; 
(c) N = 100, p = 5% ; (d) N = 100, p = 10% . The time complexity of our method is O(N) while the time 
complexity of the state of the art alignment algorithms is O(N2 ). The biopython package implementation of 
Smith–Waterman and Needleman-Wunsch algorithms were used in our analysis. As can be seen, the proposed 
method has clear time complexity advantages for the sequences longer than 4000/nt. The system configuration 
of the computer on which the experiments were run are: Processor: 2.4 GHz Intel Core i5; Memory: 16 GB 2133 
MHz LPDDR3.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21084  | https://doi.org/10.1038/s41598-021-00609-8

www.nature.com/scientificreports/

must point out here, that the performance of the mutation region detection algorithm can be limited by large 
blocks of deletion and insertions in the sequence, as large insertions and deletions can lead to significant differ-
ences in the local regions being compared. A possible solution to tackle this limitation is to modify the mutation 
region detection algorithm by allowing overlapping local regions. The amount of overlap needed and its formal 
analysis given the largest deletion and insertion in the sequences is a direction of our future work.

Methods
We propose an alternative approach to perform comparison of genomic sequences which comprises two steps: 

1.	 Transformation: We first transform the genomic sequence into a state machine that encodes information 
about the generative model of the sequence.

2.	 Comparison: We then compute distance between these state machine representations obtained in Step 1 
using a data-driven approach.

Transformation.  Given a sequence S of length L, the sequence is transformed into a state machine with 
parameters k and b. There are 4k states and the empirical transition probability matrix TTT is estimated from S 
using the add-β estimator14,15 given by

Here i ∈ {1, · · · , 4k} . j is a neighbor of i if the last k − b symbols of i overlap with the first k − b symbols of j (see 
Fig. 1). Therefore, there are 4b neighboring k-mers of i. Nij denotes the number of occurences of k-mer i and its 
neighboring k-mer j together in the sequence (see Fig. 1). Ni denotes the number of occurrences of k-mer i in 
the sequence. The obtained matrix TTT has 4k rows and 4b columns. A row-by-row scan of matrix TTT is performed 
to convert TTT into a vector xxx of size 4k+b.

The obtained vector xxx is the transformation of sequence S into a state machine. In the comparison step dis-
cussed next, xxx is used to compare different genomic sequences. Note that the size of the vector xxx is only dependent 
on the parameters k and b and is independent of the sequence length L.

The state machine based representation derived in the transformation step discussed above encodes the 
probability of seeing a given nucleotide after a given substring in the sequence. Therefore, it captures the context 
sensitive information within the genomic sequence. Another feature of this transformation is that the size of the 
state machine is independent of the sequence length and is only controlled by parameters k and b. This inde-
pendence from sequence length L, gives us a method to perform alignment-free comparisons between genomic 
sequences as discussed next.

Comparison.  Given n sequences S1, S2, · · · , Sn , they are transformed to xxx1,xxx2, · · · ,xxxn respectively using the 
approach discussed in the Transformation subsection above for a given set of parameters k and b. Using the vec-
tors xxx1,xxx2, · · · ,xxxn , we now obtain a data matrix XXX with xxxi denoting the ith row of XXX for i ∈ {1, 2, · · · , n}. There-
fore XXX is a n× 4k+b size matrix. The matrix XXX can now be used to perform any statistical data analysis required 
to compare different genomic sequences.

Note that unlike alignment based methods that require multiple sequence alignment of sequences 
S1, S2, · · · , Sn to perform data analysis, the data matrix XXX obtained by the proposed approach doesn’t require 
the alignment step and instead obtains a representation encoding the generative model of the given sequences. 
Further the time complexity of obtaining XXX from S1, S2, · · · , Sn is given by O(

∑n
i=1 Li) , where Li is the length of 

Si for i ∈ {1, 2, · · · , n}.

Mutation region detection algorithm.  Partitioning method: Consider a sequence S of length L. Let l be 
a positive number ≤ L

2
. Partition the sequence S into non-overlapping blocks B1,B2, · · · ,B⌈ L

l ⌉
 , where Bi is of 

length l for i ∈ {1, 2, · · · , ⌊ Ll ⌋} and B
⌈ Ll ⌉

 is of length L− l⌊ Ll ⌋ is L is not a multiple of l. Given b, k,β , obtain the 
state machine representation or the transition probability vector TTTi for each Bi . We describe this formally in 
Algorithm 1 below.

Algorithm: Given two sets of sequences A = {A1,A2, · · · ,AN } and B = {B1,B2, · · · ,BN }. For each sequence 
a ∈ A ∪B , apply the partitioning method to obtain transition probability vectors TTTi

a for i ∈ {1, 2, · · · , ⌈ Ll ⌉}. 
For each i ∈ {1, 2, · · · , ⌈ Ll ⌉} , obtain the data matrix XXXi using TTTi

a as a row for all a ∈ A ∪B . Now build a binary 
classifier CCCi , using XXXi by labeling rows obtained from set A as 0 and B as 1. Obtain the validation accuracy of 
the classifier CCCi . If for a given region i, the validation accuracy is high, then the region i has a mutation or a set 
of mutations differentiating sequences in A with B . We describe this formally in Algorithm 2 below. 

(1)TTTij =

{

Nij+β

Ni+4bβ
, j is a neighbor of i.

0, otherwise.
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Time complexity: We notice here that the partition algorithm has a time complexity of O(4k+b⌊ Ll ⌋). The overall 
time complexity of the mutation region detection algorithm therefore is given by O(N4k+b⌊ Ll ⌋ + ⌊ Ll ⌋t(C)) , where 
t(C) is the time complexity of the learning based classification algorithm.

Space Complexity: The auxiliary space complexity incurs due to additional storage of 2N⌊ Ll ⌋ state machines 
of size 4k+b . Therefore the overall auxiliary space complexity is given by O(N4k+b⌊ Ll ⌋ + s(C)⌊ Ll ⌋) , where s(C) 
is the space complexity of the classification algorithm.

Statistical method used to compare genomic sequences.  For a state machine model, the transition 
probability matrix is converted into a vector. We note that there can be at most 4k+b non-zero entries in that vec-
tor as for any k-mer there are 4b neighbors. We use this 4k+b dimensional vector as the feature vector for building 
machine learning based classifiers. In all the classification tasks, we have 2 stages. In the first stage, we perform 
feature extraction by building a learning model using XGBoost16,17 (XGBoost package in python is used in the 
implementation) method with maximum depth = 1. In the next stage, we use the top 10 features identified in 
stage 1 to build a logistic regression based model for classification. We perform 4-fold cross validation in both 
the stages. While building these classifiers, the number of training samples for each class were equal to each other 
to account for data imbalance.

Data availability
The SARS-CoV-2 datasets analyzed in the current study are provided in GISAID (https://​gisaid.​org). The imple-
mentation of the method, acknowledgement files for the SARS-CoV-2 samples used and the necessary details 
to generate figures in the paper are provided at https://​github.​com/​joshu​axiao​98/​Gener​ator-​based-​appro​ach-​
to-​analy​ze-​mutat​ions-​in-​genom​ic-​datas​ets. The acknowledgement files for the SARS-CoV-2 samples are also 
provided in the supplementary material.
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