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Influence of structural 
reinforcements 
on the twist‑to‑bend ratio of plant 
axes: a case study on Carex pendula
Steve Wolff‑Vorbeck1, Olga Speck2,3, Thomas Speck2,3 & Patrick W. Dondl1,3*

During biological evolution, plants have developed a wide variety of body plans and concepts that 
enable them to adapt to changing environmental conditions. The trade-off between flexural and 
torsional rigidity is an important example of sometimes conflicting mechanical requirements, the 
adaptation to which can be quantified by the dimensionless twist-to-bend ratio. Our study considers 
the triangular flower stalk of Carex pendula, which shows the highest twist-to-bend ratios ever 
measured for herbaceous plant axes. For an in-depth understanding of this peak value, we have 
developed geometric models reflecting the 2D setting of triangular cross-sections comprised of 
a parenchymatous matrix with vascular bundles surrounded by an epidermis. We analysed the 
mathematical models (using finite elements) to measure the effect of either reinforcements of the 
epidermal tissue or fibre reinforcements such as collenchyma and sclerenchyma on the twist-to-
bend ratio. The change from an epidermis to a covering tissue of corky periderm increases both the 
flexural and the torsional rigidity and decreases the twist-to-bend ratio. Furthermore, additional 
individual fibre reinforcement strands located in the periphery of the cross-section and embedded 
in a parenchymatous ground tissue lead to a strong increase of the flexural and a weaker increase of 
the torsional rigidity and thus resulted in a marked increase of the twist-to-bend ratio. Within the 
developed model, a reinforcement by 49 sclerenchyma fibre strands or 24 collenchyma fibre strands 
is optimal in order to achieve high twist-to-bend ratios. Dependent on the mechanical quality of the 
fibres, the twist-to-bend ratio of collenchyma-reinforced axes is noticeably smaller, with collenchyma 
having an elastic modulus that is approximately 20 times smaller than that of sclerenchyma. 
Based on our mathematical models, we can thus draw conclusions regarding the influence of 
mechanical requirements on the development of plant axis geometry, in particular the placement of 
reinforcements.

Morphology, anatomy and biomechanics of plants.  Functional morphology of plants includes mor-
phology, anatomy and biomechanics of entire plant organs and single plant tissues1. In the following we consider 
the biomechanics of plant axes, in particular with respect to their reaction to bending and torsional loads. In 
general, flexural rigidity and torsional rigidity are composed variables that combine material and geometrical 
properties. Only in the simple setting of homogeneous materials with nearly circular geometry, flexural rigid-
ity (EI) is determined by the bending elastic modulus (E) and the axial second moment of area (I), whereas 
torsional rigidity (GJ) is approximately given by the torsional modulus (G) and the polar second moment of 
area (J). The bending and torsional moduli (SI unit: N m −2 or Pascal) specify the stress–strain relationship as 
a measure for rigidity in the linear-elastic range, whereby mechanical stress is defined as the applied force per 
unit area and strain is understood as the displacement relating to a reference condition. The geometrical prop-
erties, namely the axial and polar second moments of area (SI unit: m 4 ), reflect the way in which the points of 
an area are distributed in relation to a bending or torsional neutral plane or torsional axis, respectively2. In this 
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context, the dimensionless twist-to-bend ratio (EI/GJ) is particularly useful, as it provides information about the 
trade-off between rigidity in bending and in torsion. Bending and torsion are two different types of loading to 
which plants are exposed by their own weight and additional loads such as wind, flowers, fruits, snow, and ani-
mals sitting or climbing on the plants. A high twist-to-bend ratio reflects high bending rigidity combined with 
low torsional stiffness. High bending rigidity guarantees that leaves or flower stalks stand mostly upright, even 
when carrying large top loads (e.g., leaf blades, flowers and fruits). A high torsional flexibility, in the sense of 
the inverse of rigidity, allows streamlining in the wind, so that even plant parts with a large surface area (e.g. leaf 
blades) turn out of the wind, thereby reducing drag and enabling the plant to withstand higher wind loads with-
out damage. During biological evolution, plants have developed morphological, anatomical and biomechanical 
properties that are optimised to sometimes conflicting demands of bending and torsion.

Herbaceous plants have a variety of tissues such as epidermis, parenchyma, vascular bundles, collenchyma 
and sclerenchyma that require different amounts of metabolic energy to be built. The formation of fibers as a 
reinforcement of plant axes is particularly energy-intensive because, in contrast to parenchyma and epidermis, 
thick cell walls must be formed and, in the case of sclerenchyma, the macromolecule lignin must be synthesised, 
which serves as an impregnation of their cell walls. Mechanical tests on whole biological plant axes can determine 
their overall mechanical properties, but not the individual in situ contribution of particular tissues. Within the 
framework of this interdisciplinary collaboration between scientists from the fields of plant biomechanics and 
applied mathematics, we have developed models and simulations that enable experiments in which the influ-
ence of in situ (fibre) reinforcements can be analysed. From the results of our experiments, in which either the 
two-dimensional arrangement or the mechanical properties of the individual tissues have been changed, we can 
draw conclusions about the in situ influence of individual tissues on the overall mechanical performance of the 
respective plant axis.

Plants differ in their so-called general body plan, which is a set of morphological features common to many 
members of a phyllum3. This includes, for example, geometry, shape and size of their plant axes4. Thus, the 
cross-sections of the petioles of the elephant ear (Caladium bicolor (Aiton.) Vent.; hereafter C. bicolor) are 
massive and circular5, the stems of the giant reed (Arundo donax L.) are hollow and circular6, the branches of 
the prickly pear (Opuntia ficus-indica (L.) Mill.; hereafter O. ficus-indica) are elliptical7, the flower stalks of the 
motherwort (Leonurus cardiaca L.; hereafter L. cardiaca) are square8 and the flower stalks of the drooping sedge 
(Carex pendula Huds.; hereafter C. pendula) are triangular2. There are a number of ways in which plants can 
increase their twist-to-bend ratio. Independent of the geometry of the cross-section, the polar second moment 
of area J is the sum of the axial second moments of area in x-direction Ix and in y-direction Iy . Consequently, 
the ratio of I/J cannot exceed 1.0. This is different if the torsional constant K is calculated instead of the polar 
second moment of area9. The torsional constant K can be considerably smaller than J and thus leads to ratios of 
I/K > 1 . However, if the I/J or I/K ratios are below 1, high twist-to-bend ratios must be attributed to high ratios 
of elastic and torsional modulus (E/G)10. The above considerations are only valid if one considers homogeneous 
elastic materials, where the torsional rigidity is given by the product GK (or its approximation GJ). Many plants, 
however, should be regarded as fibre-reinforced materials systems defined by the three-dimensional arrangement 
of their tissues, each of them with characteristic material properties. This makes a more detailed modeling neces-
sary, where the torsional rigidity is computed by solving an appropriate partial differential equation. For more 
information on the approach used here, see section “Mathematical models”. Additionally, biological structures 
are not only anatomically inhomogeneous and mechanically anisotropic, but also possess a spatial and temporal 
heterogeneity because of their growth and reaction capacity4.

Plant tissues differ in their anatomy, biomechanics and functions. Many of their properties are related to the 
presence of a cell wall and the large vacuole within the cell. The epidermis is the outermost tissue of the plant 
and consists of a single layer of cells covered by a cuticle. The epidermal tissue (including the cuticle) protects 
against water loss and regulates gas change. The periderm is a secondary covering composed of multiple layers 
containing cork cells. It sometimes covers the epidermis and protects the stem from desiccation and pathogen 
attack. The parenchyma consists of living thin-walled cells with multiple functions. As a result of a high turgor 
pressure inside the vacuoles of these cells, the parenchyma can contribute to flexural and torsional rigidity and 
holds under mechanical loading the specialised strengthening tissues in place. Chlorenchyma cells contain many 
chloroplasts for photosynthesis. The aerenchyma is a spongy tissue that allows gas exchange. Sclerenchyma fibres 
are dead cells characterised by thick and lignified cell walls. Collenchyma fibres are living cells with thick and 
non-lignified cell walls. The sclerenchyma and collenchyma belong to the strengthening tissues that provide 
load-bearing support for the plant and its organs. The vascular bundles are part of the transport system for water 
(xylem) and sugars (phloem). Tracheids and vessel elements of the xylem are dead and possess thick-walled and 
lignified cell walls, which also provide mechanical support.

Modelling of biological materials systems.  Plants are multifunctional structures whose diverse func-
tions are anchored to six hierarchical levels (molecule, organelle, cell, tissue, organ, plant). In this study, we 
focus on the tissue level and the modelling of the influence of the two-dimensional tissue distribution on the 
mechanical performance of the entire plant axis. Experiments and findings within the models go far beyond 
those on plants. For example, the number of fibre bundles can be increased or reduced, even though the amount 
of material remains the same if the dimensions (diameter) of the bundles change accordingly.  Furthermore, in 
the simulation, lignified sclerenchyma fibres can be replaced by non-lignified collenchyma fibres, whereby the 
elastic modulus of the sclerenchyma fibres is one order of magnitude higher than that of the collenchyma fibres. 
In contrast, the non-lignified parenchyma, which often takes up the largest part of the plant cross-section, and 
the epidermis, a dermal tissue comprising a single layer of cells, have very low elastic moduli, which are on aver-
age one to three orders of magnitude smaller than those of the collenchyma fibres4,8,11–13. The simulation also 
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allows us to change a non-lignified single-layered epidermis into a corky multi-layered peridermal tissue, which 
is at least 10-times as stiff as the epidermis (unpublished data).

A cornerstone of plant biomechanics is the performance of mechanical tests under a variety of applied loads 
such as tension, bending, compression and torsion, both in the linear-elastic range and up to ultimate strength, 
i.e. at failure. Data of the mechanical tests and the corresponding geometrical properties in terms of size, shape 
and tissue arrangement are necessary to develop analytical and numerical models. The models not only enable a 
deeper understanding of the functional principles of the plant model, but are also an indispensable precondition 
for the transfer of knowledge to technical developments, because models represent a common language for natu-
ral scientists, mathematicians, materials scientists and engineers14. According to the biomimetic approaches of 
the “biology push process” or “bottom-up approach” and the “technology pull process” or “top-down approach”, 
every successful biomimetic product has to go through a step of abstraction15.

Both analytical and numerical modelling have their intrinsic advantages and short comings when they are 
used to improve our understanding of the form-structure-function relationship of the biological models or 
to facilitate the transfer into biomimetic applications. Analytical models, for example, allow fast predictions 
about the influence of a variety of structural, morphological and/or anatomical changes in a plant organ on its 
mechanical properties and also enable the inclusion of predictions about non-existing intermediate or extreme 
forms in the analysis. Similar to the requirements of a “closed” mathematical description, as desired in analytical 
models, the number of variables and the boundary conditions have to be limited, and a careful simplification 
in the description of the biological model is typically necessary. The reduction to a few characterising variables 
allows, on the one hand, a (much) faster analysis of the biological models. On the other hand, this procedure 
unfortunately includes dangers of oversimplification and of decisive variables being overlooked. The potential 
of analytical models for an in-depth understanding of the biological model and the transfer to a technical 
application was demonstrated in the following studies: mechanically driven self-sealing function of the leaves 
of Delosperma cooperi16, tuyere surfaces of metals inspired by lotus leaves17, and modelling of stomatal density 
response to atmospheric CO2

18.
Numerical models (often) permit the precise description of form and structure of a biological model, but 

frequently need a plethora of variables. The measurement of all of these variables to the accuracy needed for 
numerical models is mostly extremely time-consuming (and sometimes even impossible). Moreover, numeri-
cal models are only of limited value for the inclusion and prediction of non-existing intermediate or extreme 
forms in the analysis. The latter is especially true as far as changes in form and structure are involved, whereas 
variations in mechanical variables are typically easy to include in numerical models. The potential of numeri-
cal models for a deeper understanding of the biological model and the transfer to a technical application was 
demonstrated in the following studies: hydraulically driven self-sealing function of the leaves of Delosperma 
cooperi19, the biomimetic cellular actuator inspired by turgor driven plant movement20, and elastic systems in 
architecture transferred from plant movements21.

Now that the advantages and shortcomings of analytical and numerical modelling have been pointed out, 
it becomes obvious that a combination of both approaches can be considered as the “royal road” of modelling, 
combining the advantages and avoiding the disadvantages of both approaches. In this work, we have therefore 
used simplified materials models and have made some geometrical assumptions to be able to focus on the 
essential variables of the model. The resulting description is too complex to provide a closed form solution but, 
is simple enough that, by using a finite element approach, we can efficiently analyse a whole range of variable 
values. Detailed information on the chosen approach is given in section “Mathematical models”.

Aim of the study.  In the study presented, we selected the triangular flower stalk of Carex pendula as model 
system, because to our knowledge, it posses the highest twist-to-bend ratios ever measured for  herbaceous plant 
axes. Therefore, it represents a prime example for testing our models as to their predictive strength. We aim to 
find answers to the following scientific question: “To what extent do individual tissues such as fibres, vascular 
bundles, epidermis and parenchyma contribute to the flexural rigidity, the torsional rigidity and thus to the 
twist-to-bend ratio of a triangular plant axis?” Mathematical calculations have therefore been carried out, based 
on mechanical and geometrical properties from the literature. In this context, the effect of additional reinforce-
ments on the flexural rigidity, the torsional rigidity and the twist-to-bend ratio have been examined with regard 
to: (1) the formation of a periderm instead of an epidermis, (2) an increasing number of fibre strands up to an 
optimum, while keeping their total area in a cross-section constant and (3) the replacement of sclerenchyma 
fibres by collenchyma fibres, two fibre types that differ notably in their elastic moduli.

Plant data for modelling
Carex pendula with its peak values of twist-to-bend ratio is a very suitable model plant for studying the trian-
gular geometry. The necessary data of geometrical and mechanical properties for the mathematical calculations 
presented below have been collected in previous studies of the Plant Biomechanics Group Freiburg2,6,8. Figure 1 
presents a stained section and schematic drawing of its flower stalks showing the cross-sectional distribution of 
tissues. The triangular cross-section shows an outer epidermis (e). Individual lignified sclerenchyma fibre strands 
(sc) in the periphery and vascular bundles (vb) scattered within the outer half of the cross-section are embed-
ded in a non-lignified ground tissue consisting largely of parenchyma (pa) with interspaced smaller regions of 
aerenchyma (ae) close to the periphery and a layer of chlorenchyma (ch) directly underneath the epidermis.

Table 1 presents experimental data of the flower stalk of C. pendula. Mechanical properties from bending 
and torsional tests are provided, as are geometrical properties of the entire internode and of individual tissues.

Table 2 shows the elastic modulus of individual tissues such as the epidermis, parenchyma, sclerenchyma 
fibres, collenchyma fibres and vascular bundles. Elastic moduli were estimated for the respective tissues based 
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on values from the literature and were additionally normalised in relation to the sclerenchyma having the high-
est value of these elastic moduli. The normalised values given in Table 2 are also included in the mathematical 
analyses of the influence of fibre reinforcement of plant axes on the twist-to-bend ratio presented below.

Mathematical models
In order to describe the influence of fibre reinforcement to the twist-to-bend ratio of a plant, we can consider 
a 2D-model determining the flexural and torsional rigidity of a beam its cross-section. In our setting, it does 
not suffice to simply consider the products of Young’s and shear modulus with second and polar moment of 
area, respectively given by EI and GJ, as these approximations are only valid for nearly circular cross-sections 
of homogeneous tissue.

As in our previous work24 we use methods from linearized elasticity, which we repeat here for the readers 
convenience. As we are interested in investigating mechanical properties of the flower stalk of C. pendula we 

Figure 1.   Internodal cross-section of the biological model Carex pendula. (a) Schematic drawing highlighting 
the tissues. (b) Thin-section stained with acridine orange revealing lignified tissues in bright yellow-green. 
Abbreviations and colour code: ae aerenchyma (white), ch chlorenchyma (dark grey, only in the periphery), e 
epidermis (blue), pa parenchyma (light grey), sc sclerenchyma fibre strands (black), vb vascular bundles (red).

Table 1.   Geometrical and mechanical properties of the flower stalk of Carex pendula. Mean values ± one 
standard deviation of the mechanical and geometrical properties of the entire internodes and the geometrical 
properties of individual tissues with reference to the cross-section are presented.

data Carex pendula

Plant organ Internode of flower stalk

Cross-sectional geometry Triangular

Flexural rigidity EI (N·mm2) 141 873± 61 896

Bending elastic modulus E (N/mm2) 16 132± 3305

Axial second moment of area I (mm4) 9.03± 3.74

Torsional rigidity GJ (N·mm2) 825.60± 412.98

Torsional modulus G (N/mm2) 37.90± 11.87

Polar second moment of area J (mm4) 22.09± 9.43)

Twist-to-bend ratio EI/GJ (–) 192.42± 82.53

4-point bending test/number n (/) 15

Torsional test/number n (–) 15

Reinforcement fibres Sclerenchyma

Total area of cross-section (mm2) 7.07± 1.34

Total area of sclerenchyma (mm2) 1.19± 0.21

Total area of collenchyma (mm2) –

Total area of vascular tissues (mm2) 2.09± 0.41

Thickness of epidermis ( µm) 14.11± 4.04

Number of sclerenchyma strands (–) 56.00± 3.87

Number of vascular bundles (–) 77.67± 4.78

References Basal internode no. 2 from May2
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describe a plant stem as a long thin elastic rod with domain B = �× (0, L) of length L and simply connected 
cross-section � remaining constant along the longitudinal axis. We can now consider the domain � as a compos-
ite of different materials bounded by a sufficiently regular boundary curve ∂� . Further, we assume L ≫ diam� 
and isotropy for the materials involved. Anisotropic effects, viscosity and other time-dependent processes are 
neglected here since we are only interested in the influence of the cross-sectional geometry and the contained 
distribution of various materials on the mechanical properties of the stem. For our modelling, we consider B 
fixed at z = 0 and bending of B to be due to an outer normal force on � at z = L.

Mora and Müller25 have mathematically rigorously derived the flexural (or bending) rigidity by considering 
the limit of a very slender and long rod, confirming the classical approaches used here. Following this classical 
theory, see Crandall et al.26, flexural rigidity can be deduced from the moment curvature relation

where My ,Mx denote the bending moments applied at the end of the beam ( z = L ), κx , κy denote the curvature in 
the direction of x and y respectively and the moments of inertia Dx ,Dy and the product of inertia Dxy are given by

where we have considered the coordinate system (x̂, ŷ) which has its origin at the centroid of the cross-section 
� , i.e,

Because of the heterogeneity of � the elastic modulus E(x, y) depends on the cross-sectional coordinates, 
being piece-wise constant. The maximal and minimal flexural rigidities Dmax and Dmin along the principal axes 
are then given by the maximal and minimal eigenvalue of the matrix in (1) leading to

with Dmean =
Dx+Dy

2  . In the following we are concerned with the problem of generating cross-sections with 
high flexural rigidity. Therefore, we will confine ourselves to the computation of the minimal flexural rigidity 
Dmin . High values of Dmin then lead to high resistance against bending forces in any direction orthogonal to the 
flower stalk.

As for the flexural rigidity, the torsional rigidity for an elastic slender rod with domain B has also been 
mathematically rigorously derived by Mora and Müller25. In order to describe the torsional rigidity, we thus use 
St.Venant’s theory of pure torsion of nonhomogeneous elastic beams, which has been employed, among others, 
by Ecsedi27. Torsion is assumed to be due to a moment T at the top of B and thus the torsional rigidity can be 
expressed by Prandtl’s stress function φ(x, y) satisfying

with the shear modulus G(x, y) depending on the cross-sectional coordinates, being piece-wise constant. By 
using the stress function φ , the torsional rigidity is then given by

(1)
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ŷ = y −

∫

�

E(x, y)y dxdy

∫

�

E(x, y)dxdy
, x̂ = x −

∫

�

E(x, y)x dxdy

∫

�

E(x, y) dxdy
.

(2)Dmax/min =



Dmean ±

�

(Dx − Dy)2

4
+ D2

xy





(3)
∇ ·

(

1

G(x, y)
∇φ

)

= −2, in�,

φ = 0 on ∂�

Table 2.   Elastic moduli of individual plant tissues. Literature values ( Elit ) and estimated values ( Eest ) for the 
species Carex pendula, Leonurus cardiaca and Opuntia ficus-indica are provided. *Since the elastic modulus of 
the sclerenchyma had the highest value, it was used as the reference tissue for the calculation of the normalised 
elastic moduli ( Enorm ) used in the mathematical models.

tissue Elit (MPa) species Eest (MPa) Enorm (/)

Sclerenchyma* 24,500–45,0004,11,22 C. pendula 45,000 1.00

Collenchyma 1000–26004,11,12 L. cardiaca 2500 0.05555

Vascular bundles 30–8404,11,13 C. pendula 1000 0.02222

Epidermis + periderm 350–500 (unpubl. data) O. ficus-indica 500 0.01111

Epidermis (non-lignified) 3–25011,13,23 C. pendula 50 0.00111

Parenchyma and chlorenchyma (non-lignified) 5–10011 C. pendula 20 0.00044
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In order both to solve Eq. (3) numerically and thus to compute the rigidities in Eqs. (2, 4) we have employed 
a P1 triangular finite element discretisation of the cross-section � . To be precise, � was chosen as an equilateral 
triangle and discretized using approximately 5 · 106 triangular elements, thus finely resolving the material het-
erogeneities due to fibre reinforcement (see, e.g., Fig. 6a). The implementation of this standard finite element 
method (C++-code) is available in the supplementary material.

Effect of reinforcements on the twist‑to‑bend ratio
During their ontogeny, plants react to increasing bending forces triggered by continuous growth of stem length 
and the formation of top loads such as flowers, seeds and fruits. An increase of their resistance against bending 
forces can be achieved by an increase of their flexural rigidity along the principal axes, i.e. increasing Dmin . For a 
better understanding of this effect, we introduce a simplified model that is related to C. pendula and that measures 
flexural and torsional rigidity. As a first approach, we describe the tissue arrangement in the cross-section of 
C. pendula in terms of a distribution of circles (vascular bundles) in an equilateral triangular reference domain � 
additionally filled with parenchyma and surrounded by an epidermis (see Fig. 2a). The contribution to the cross-
sectional area of the vascular bundles ( ≈ 29% ) and the parenchyma ( ≈ 52% ) and the thickness of the epidermis 
is selected to match the distribution of mass in the total cross-sectional area of C. pendula.

For the computation of the rigidities, we normalise the elastic moduli ( Eest ) of all contained materials with 
respect to the elastic modulus of the sclerenchyma. This means that we set Enorm = 1 for the sclerenchyma and 
obtain the normalised elastic moduli of the other materials by scaling accordingly (see Table 1). Furthermore, 
we consider the ratio between normalised elastic moduli of the stiffest and the most elastic material contained 
in the cross-section. As torsional and flexural rigidity are almost exclusively determined by these two materials, 
they are referred to as the mechanically decisive materials. Accordingly, the ratio between mechanically decisive 
materials is denoted by µ in the following.

We assume a constant Poisson’s ratio ν for the materials involved and compute the normalised torsional 
modulus Gnorm as

for a given elastic modulus Enorm . The assumption of a constant Poisson’s ratio is reasonable as the value range 
ν ∈ [0.2, 0.5] is typical for many plant axes28 and, thus, a change in ν among the materials is negligible for our 
model. In the following, we set ν = 0.35 for C. pendula.

Reinforcement without fibres: from epidermis to periderm.  In this section, we compare the effect 
of a single-layered epidermis and a multi-layered corky periderm on the twist-to-bend ratio of the triangular 
cross-section (see Fig. 2). In this configuration and with respect to the normalised elastic modulus of the epi-
dermis ( Enorm = 0.00111 ), the torsional rigidity ( Dz ≈ 0.00013 ) and the flexural rigidity ( Dmin ≈ 0.00118 ) are 
comparatively low and so is the twist-to-bend ratio ( Dmin

Dz
≈ 9.37 ) (see Fig. 2a). The resistance against bending 

forces and, hence, the flexural rigidity increases by the formation of a ring of corky periderm ( Enorm = 0.01111 ). 
This formation of a closed ring of strengthening tissue, however, simultaneously increases the flexural rigidity 

(4)Dz = 2

∫

�

φ dxdy.

Gnorm =
Enorm

2(1+ ν)

Figure 2.   Initial configuration. Parenchyma and vascular bundles surrounded by (a) an epidermis 
( Enorm = 0.00111 ) and (b) a peridermal covering tissue ( Enorm = 0.01111 ), respectively. For a non-lignified 
epidermis, both the torsional and flexural rigidity are comparatively low. If a corky periderm is formed, 
the flexural rigidity is increased by ≈ 14% and so is the torsional rigidity increased by ≈ 46% . This leads 
to a decrease in the twist-to-bend ratio by ≈ 24% . Abbreviations and colour code: e: epidermis (blue), pa: 
parenchyma (grey), pe: periderm (green), vb: vascular bundles (red).
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( Dmin ≈ 0.00134 ) and the torsional rigidity ( Dz ≈ 0.00019 ) impeding the plant’s property of being able to twist 
easily and, moreover, decreasing its twist-to-bend ratio to ( Dmin

Dz
≈ 7.05).

Reinforcement by sclerenchyma fibre strands.  In addition to the above-mentioned reinforcement of 
the epidermal tissue, fibre reinforcement is extremely common in plant axes. The cross-section of C. pendula 
shows individual sclerenchyma strands in the periphery directly under the epidermis (Fig. 1). Therefore, we 
additionally incorporated sclerenchyma fibre strands ( Enorm = 1 ) into the parenchyma ( Enorm = 0.00044 ) of 
the cross-section from Fig. 2a. We have developed a model to describe the effect of fibre reinforcement. The 
mechanically decisive materials for this experiment are parenchyma and sclerenchyma. The ratio µ between 
their elastic moduli is given by µ = 0.00044 . We fix the proportion of the sclerenchyma ( ≈ 17% ; see Table 1) 
in the total cross-sectional area. Further, we consider a distribution of fibre bundles (sclerenchyma) around 
the inner boundary ∂� of � with circular cross-sections centred at a fixed distance to ∂� . Starting with 6 fibre 
strands for each side of the triangle we refine the distribution, such that a higher number of fibre strands is used 
in each step of the refinement, see Fig. 3. The proportion of the fibre bundles in the total cross-sectional area is 
fixed during the whole process. The arrangement and the total cross-sectional area of the fibre strands are now 
determined by the structure of the Carex ground tissue, see Fig. 1, and, hence, the number of fibre bundles is the 
only free variable in this model. The procedure is stopped before single fibre strands become connected, as such 
a closed ring of sclerenchyma would immediately (markedly) increase the torsional rigidity and thus decrease 
the twist-to-bend ratio.

For simplicity, circular cross-sectional geometries of the fibre bundles are taken, as circular cross-sections 
exhibit high torsional rigidity and, therefore, any other cross-sectional geometries of the fibre strands is likely to 
amplify the effect of decreasing torsional rigidity while increasing the number of fibre bundles.

The numerical experiments show that, by increasing the number of fibre strands, the torsional rigidity Dz 
initially decreases when the flexural rigidity remains nearly bounded and, thus, the twist-to-bend ratio increases 
(see Fig. 4). A regression analysis for torsional rigidity up to 51 fibre strands shows that Dz is given as a function 
of the number of fibre bundles N, with

for constants a,C ∈ R . Therefore, increasing the number of fibre bundles initially decreases the torsional rigidity 
scaling as N−1 in dependence on the number of fibre bundles with asymptote C. This decline in the torsional 
rigidity is driven by a decreasing amplitude of Prandtl’s stress function around fibre strands, see Fig. 6c and d. 
Because of the boundedness of the flexural rigidity, the twist-to-bend ratio increases showing a similar asymptotic 
behaviour and scaling as N in dependence on the number of fibre strands.

However, when the distance between neighbouring fibre strands becomes very small, even when the fibre 
strands are not yet connected, see (a) in Fig. 6, the ring-like structure of the fibre arrangement causes the torsional 
rigidity to increase again leading to a decrease in the twist-to-bend ratio. This occurs because the gradient of φ 
in the space between the fibre strands increases as the distance between fibre strands decreases, similar to the 
behaviour of a Neumann sieve29. Thus, the value of φ in the inner part of the cross-section is raised, see (e) and 
(f) in Fig. 6, resulting in an increase of the torsional rigidity when the number of fibres increases beyond 49 (see 
Fig. 4a) even if no closed ring is formed yet.

Since this increase is integrated over a large domain (the inner part of the triangle) the effect becomes more 
dominant for smaller distances of neighbouring fibre strands and therefore leads to an increase in the torsional 
rigidity, see Fig 4a. Thus in the setting described above, torsional rigidity and the twist-to-bend ratio reach an 
optimum for 49 fibre strands, see Fig. 4a,c. This characterises the number of fibre bundles N as a design vari-
able in an optimisation problem in order to maximise the twist-to-bend ratio and simultaneously minimise the 
torsional rigidity.

Dz(N) =
a

N
+ C

Figure 3.   Reinforcement by fibre strands. From (a) to (d), the number of reinforcing (sclerenchyma) fibre 
strands increases whereas their total cross-sectional area remains constant. If the number is too high, single fibre 
strands become connected (d), thereby changing the torsional rigidity drastically and, thus, the procedure is 
stopped before this occurs. Colour code: epidermis (non-lignified): blue, parenchyma: grey, sclerenchyma fibres: 
black, vascular bundles: red.
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Reinforcement by collenchyma fibre strands.  Following the previous section, we can now reasonably 
investigate the dependency of the optimal number of fibre strands needed to increase the twist-to-bend ratio on 
the ratio µ between the elastic moduli of the mechanically decisive materials involved. To do so, we replace the 
sclerenchyma fibres ( Enorm = 1 ) shown in Fig. 3 by collenchyma fibres ( Enorm = 0.05555 ), see Table 2. Since 
now parenchyma ( Enorm = 0.00044 ) and collenchyma are the decisive materials, this leads to a ratio µ ≈ 0.008 . 
We can again carry out the experiment shown in Fig. 3 but with collenchyma fibres instead of sclerenchyma 
fibres and with the normalised elastic modulus Enorm = 0.05555 for the collenchyma fibres. The elastic moduli 
of the other materials involved (epidermis, parenchyma, vascular bundles) remain the same.

Again, we find that up to a certain number of collenchyma strands, the torsional rigidity decreases linearly, 
whereas the flexural rigidity remains nearly constant, see Fig. 5a,b. However, now that the ratio µ is lower, the 
number of fibre strands that is optimal in order to decrease torsional rigidity and to increase the twist-to-bend 
ratio, is reduced noticeably to 24 and,–after a slight drop–the twist-to-bend ratio remains nearly constant up 
to 36. For more than 24 collenchyma strands, we can see the same effect as above, namely the torsional rigidity 
increases again and, hence, the twist-to-bend ratio decreases, see Fig. 5a,c.

This experiment, in which the sclerenchyma fibres are replaced by collenchyma fibres, illustrates the effect of 
the ratio µ between the elastic moduli of the mechanically decisive materials on the twist-to-bend ratio and on 
the optimal number of fibre strands included in fibre reinforcement. As a preview to the discussion, we can con-
jecture that the ratio µ plays a role in the sense that, for the higher ratio µ , the optimal number of fibre bundles 
in order to increase the twist-to-bend ratio is lower and vice versa. When collenchyma fibres are incorporated 

Figure 4.   Reinforcement by sclerenchyma fibre strands. Trend of (a) torsional rigidity, (b) flexural rigidity 
and (c) twist-to-bend ratio. The ratio µ between the elastic moduli of the parenchyma and sclerenchyma is 
µ = 0.00044 . Sclerenchyma and parenchyma are the mechanically decisive materials for this experiment. By 
increasing the number of fibre strands used for reinforcement, torsional rigidity first decreases linearly, see (a), 
whereas the flexural rigidity remains nearly constant during the procedure, see (b). The twist-to-bend ratio first 
increases nearly linearly reaching a maximum for N = 49 . For more than 49 fibre bundles, the distance of single 
fibre bundles is too small and the torsional rigidity is caused to increase again, whereas the twist-to-bend ratio 
is reduced by this effect, see (a) and (c). The numerically computed values of the torsional rigidity are further 
interpolated using a first order polynomial regression (orange line). For up to 51 fibre strands, the torsional 
rigidity behaves as f (N) = a

N + C , see (a), where C = 2.1× 10−4 and a = 0.0031 . The R-squared value for the 
polynomial regression is 0.99.

Figure 5.   Reinforcement by hypothetically occurring collenchyma fibre strands. Trend of (a) torsional rigidity, 
(b) flexural rigidity and (c) twist-to-bend ratio. The ratio µ between the elastic moduli of the parenchyma 
and collenchyma is µ = 0.008 . The collenchyma and parenchyma are the mechanically decisive materials. 
By increasing the number of fibre strands used for reinforcement, the torsional rigidity first decreases nearly 
linearly, see (a), whereas the flexural rigidity remains nearly constant during the procedure, see (b). The twist-
to-bend ratio first increases nearly linearly reaching a maximum for N = 24 . For more than 24 strands, the 
torsional rigidity is caused to increase again, whereas the twist-to-bend ratio is reduced by this effect, see (a,c).
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instead of sclerenchyma fibres, Dmin decreases by a factor of approximately 13.5 resulting in a markedly reduced 
resistance against bending forces.

Discussion
When embryophytic plants colonised the land and lost the buoyancy of surrounding water around 470 million 
year ago during the mid-Ordovician, they faced entirely different mechanical constraints. These concerned, in 
particular, their anchorage (root system) and the mechanical loads on their upright aerial parts (stems with 
branches and leaves). Stems, roots and leaves had evolved as early as the mid Devonian (ca. 390 million years 
BP) and the first forests of tall trees existed by the late Devonian (ca. 370 million years BP)30,31. Since then, 
evolutionary processes have shaped stem and root form and internal structure enabling plants to cope with the 
various mechanical loads that act upon them in their diverse environments. A plethora of evolutionary adapta-
tions can be observed in aerial stems, especially with regard to bending and torsional loading, which represent 
the predominant load cases in plants with self-supporting upright stems. In addition to experimental analyses, 
theoretical considerations including analytical and numerical simulations can help to decipher the complex 
interplay between form, structure and mechanical properties of the involved plant tissues24,32–35.

In this article, we present our finite element analysis involving a triangular cross-section consisting of paren-
chyma with scattered embedded vascular bundles surrounded by an epidermis (see Fig. 2a). In contrast to real 
experiments, computer experiments allow one particular variable to be altered and the resulting effect to be 
quantified precisely. By replacing the epidermis with a periderm or by including additional fibre strands with 
variable numbers and/or mechanical quality, we can quantify the mechanical effect of structural reinforcement 
on the flexural and torsional rigidity and thus the twist-to-bend ratio of plant axes. The biological model that we 
have used for our simulation is the triangular cross-section of the flower stalk of C. pendula, which shows the 
so far highest twist-to-bend ratio measured in plant stems. The long, drooping stem attains lengths of up to 2.5 
m and bears apically pendulous inflorescences that develop into a relatively heavy multiple fruit. The presented 
approach gives us the possibility to give answers to our scientific question “To what extent do individual tissues 
such as fibres, vascular bundles, epidermis and parenchyma contribute to the flexural rigidity, the torsional 
rigidity and thus to the twist-to-bend ratio of a triangular plant axis?” Table 3 gives an overview on the results, 
which will be discussed in detail in the following.

From epidermis to periderm.  The outermost single cell layer of plants is called the epidermis, the main 
function of which is to protect the plant. This primary covering with an elastic modulus of E ≈ 50 MPa can sup-
port tensile loads. Woody stems can also produce a secondary protective covering, called the periderm, which 
replaces the epidermis locally or globally. The periderm has an elastic modulus of E ≈ 500 MPa (unpublished 
data). A triangular cross-section comprising of parenchyma and vascular bundles surrounded by an epidermis 
(see Fig. 2a) shows relatively low values of the flexural and torsional rigidity. If the epidermis is replaced by a 
periderm, which forms a closed ring (see Fig. 2b), the flexural rigidity increases by ≈ 14% and the torsional 
rigidity increases by ≈ 46% . This results in a decrease of the twist-to-bend ratio of ≈ 24% in cases with the for-
mation of periderm (see Table 3).

The cactus O. ficus-indica shows pronounced formation of periderm at its stem base at which the greatest 
bending moments occur, because of the long lever arm, and high torsional forces can appear because of the firm 
clamping by rooting in the soil. In addition, increased periderm formation can be found at the narrowed cross-
sections of the transitions between its branches, at which point an increased risk of breakage through bending 
or torsion forces by wind loads and passing animals exists7. If exposed to moderate wind, tall and shrubby cacti 
do not become streamlined, but start to oscillate. Under these conditions, high torsional rigidity together with 
high bending rigidity is advantageous, because it prevents damage and breakage. We therefore hypothesise that 
periderm formation takes place at mechanically highly stressed or damage-prone areas (e.g. at the basis of the 
entire plant, the transition between the branches and the main stem and the branches). Periderm formation 
might be triggered by tiny injuries arising from overcritical local mechanical stress. If the cacti are exposed to 
heavy wind, single branches are torn off or the whole plant is uprooted.

The formation of an outer secondary protection tissues (secondary cortex = periderm) covering the epider-
mis in older ontogenetic stages was probably an evolutionary important step allowing an increase in stem girth 

Table 3.   Summary of the simulation results. The mechanical effect of various changes of the structural 
reinforcement is given as a percentage increase or decrease with reference to the initial configuration (= 
reference value). Figure 2a shows the initial configuration in terms of a triangular cross-section comprising of 
parenchyma with embedded vascular bundles surrounded by an epidermis. µ is the ratio of estimated elastic 
moduli (Eest) of the decisive materials (see Table 2). The percentage values inherent to the fibre reinforcements 
are computed with respect to the optimal number of fibre strands. namely, *49 sclerenchyma strands and **24 
collenchyma strands (see Figs. 4, 5).

decisive materials µ flexural rigidity torsional rigidity twist-to-bend ratio

Parenchyma/epidermis 0.4 reference value reference value reference value

Parenchyma/periderm 0.04 increase ≈ 14% increase ≈ 46% decrease ≈ 24%

Parenchyma/sclerenchyma* 0.00044 increase ≈ 5600% increase ≈ 112% increase ≈ 2536%

Parenchyma/collenchyma** 0.008 increase ≈ 315% increase ≈ 34% increase ≈ 198%



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21232  | https://doi.org/10.1038/s41598-021-00569-z

www.nature.com/scientificreports/

Figure 6.   Local representation of Prandtl’s stress function. For different numbers of fibre strands, the stress 
function φ is plotted along horizontal and vertical lines, L1 and L2 , in (b) and thereby two opposing effects 
are illustrated. By increasing the number of fibre strands but by fixing their total area, φ decreases within the 
number of fibre strands, see (c) and (d), but increases in the inner part of the cross-section, see (e) and (f). 
This because, as the distance between the fibre strands becomes smaller, the gradient of φ between two fibre 
strands is increased and, therefore, the value of φ in the inner part of the cross-section is raised. This effect 
becomes dominant from a certain number of fibre strands and, thus, increases the torsional rigidity. Further, 
the impact of these effects on the torsional rigidity depends on the ratio µ between the elastic moduli of the two 
mechanically decisive materials. For high ratios µ , the impact of the effect in (e) and (f) is more pronounced, 
whereas for low ratios, the impact of the effect in (c) and (d) is more intense. The fineness of the triangulation is 
sufficiently high, so that even small gaps between fibre strands can be resolved, see (a).



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21232  | https://doi.org/10.1038/s41598-021-00569-z

www.nature.com/scientificreports/

because of the production of secondary xylem and phloem by secondary vascular growth. Some of the first fossil 
records of secondary cortex originate from the late Devonian/early Carboniferous members of the progymno-
sperms, lycopsids and pteridosperms31,34–36. Periderm formation not only allows secondary stem growth, which 
increases girth, through the simultaneous growth of an outer secondary protection layer, but also may take over 
mechanical functions36–38 and ensure repair after injuries7.

Whereas, in extant perennial arborescent growth forms, the mechanical properties and stability are governed 
by secondary wood (= secondary xylem), this was not the case in a group of important forest-forming plants 
during the late Devonian and Carboniferous: the arborescent lycopsids. In this group with scale trees (genus: 
Lepidodendron) and seal trees (genus: Sigillaria), the periderm, which contributed over 90% of the stem volume, 
was by far the mechanically dominant tissue31,32,36,39. Peripheral stiffening structures were the first specialised 
stabilising tissues evolved in early land plants. After the colonisation of the land by early plant genera with turgor-
stabilised stems, specialised collenchymatous or sclerenchymatous stiffening tissues, the so-called hypodermal 
steromes lying directly underneath the epidermis, evolved as early as the lower Devonian. These hypodermal 
steromes allowed not only the colonisation of dryer habitats, but also a marked increase in plant height30–33,36.

Reinforcement by sclerenchyma fibre strands.  As documented in Table 2, sclerenchyma fibres are 
the stiffest material in our simulation with an elastic modulus of E ≈ 45 GPa. Thus, we selected it as our refer-
ence material ( Enorm = 1 ). We added fibre strands to the initial configuration, with the total area of the strands 
remaining constant. In this simulation, we investigated the effect of an increasing number of individual periph-
eral sclerenchyma strands in a parenchymatous matrix with vascular bundles being surrounded by an epidermis 
(see Fig. 3). The flexural rigidity remained almost constant independent of the number of sclerenchyma strands, 
namely between 18 and 63 strands (see Fig. 4b). In contrast, the torsional rigidity decreased nearly linearly from 
18 to 49 strands. From 50 to 63 strands, it increased again to ≈ 140% of the initial value (see Fig. 4a). Since the 
flexural rigidity remained almost constant, the twist-to-bend ratio initially increased almost linearly up to an 
optimum at 49 strands and then decreased to ≈ 2200% of the initial value (see Fig. 4c). Compared with the initial 
configuration, the addition of 49 sclerenchyma strands led to enormous increases in the flexural and torsional 
rigidity and the twist-to-bend ratio (see Table 3).

This optimum of N = 49 strands found in the simulation corresponds well with the average value of 
49.40± 7.83 , which is calculated from the numbers of strands of the apical internode ( 42.80± 4.31 ) and the 
more basal internode ( 56.00± 3.87 , see Table 1) of C. pendula2. The clear optimum of the U-shaped curve (see 
Fig. 4a) is of interest in so far that sclerenchyma fibres are energetically highly costly for plants because of their 
extremely thick secondary cell walls that are impregnated with the macromolecule lignin. For annual plants, 
in particular, this is an expensive investment in a strengthening tissue that is, however, highly rigid. Since scle-
renchyma fibres are dead cells, no further investment is required once they have been formed. This is especially 
advantageous for perennial plants.

With twist-to-bend ratios of up to 403, the internodes of C. pendula show the highest values ever measured in 
plant axes2. The high flexural rigidity and low torsional rigidity of the flower stalk are particularly advantageous 
under dynamic wind loads. The high torsional flexibility allows the streamlining of the stalks together with the 
apical pendulous inflorescences or multiple fruits. In summer, the flower stalks have to bear these additional 
heavy fruits without bending down to the ground. Our simulations show that flexural rigidity cannot be achieved 
by the formation of additional sclerenchyma strands, as the number is already in the range of the optimum. 
However, a further increase in flexural rigidity is ensured by the rigid leaf sheaths that enclose large parts of the 
flower stalk. Since the leaf sheaths are not firmly attached to the stem, they are unlikely to have a strong negative 
effect on torsional flexibility.

Reinforcement by collenchyma fibre strands.  Collenchyma fibres are living cells that possess a vacu-
ole and a thick non-lignified primary cell wall. Therefore, their elastic modulus is turgor-dependent. With an 
elastic modulus of E ≈ 2.5 GPa, collenchyma fibres belong to the strengthening tissues ( Enorm = 0.05555 ) and 
are often found in still-growing shoots and leaves. From an energy point of view, collenchyma fibres are much 
cheaper to build than sclerenchyma fibres, because neither thick secondary cell walls nor the macromolecule 
lignin need to be formed in the former. Furthermore, collenchyma fibres have the advantage that they are still 
able to grow or to be stretched. On the other hand, as living cells, they always consume physiological energy and 
hence, are predominantly found in young growing tissues and in annual plants or plant organs.

The square flower stalks of the perennial L. cardiaca show pronounced strands of collenchyma fibres at the 
four corners and small strands in the middle of the four sides. Dependent on the height above ground and 
increasing age, the cross-sectional percentage area of collenchyma decreases from 8.61% to 6.18% . With increas-
ing age and mass attributable to the formation of flowers and heavy fruits, the peripheral lignified vascular tissues 
with a percentage cross-sectional area increasing from 15.55% to 21.00% increasingly take over the mechanical 
support of the stem. Analyses have demonstrated that the area sum of the vascular tissues and parenchyma exhibit 
moderate positive allometric scaling, whereas the collenchyma shows clear negative scaling8.

In the circular leaf stalks of C. bicolor ‘Candyland’, the cross-sectional percentage area of the ≈ 40 peripheral 
collenchyma strands has a value of 3.9± 0.7% . The cross-sectional area of the parenchyma and the lignified 
elements are 89.0± 3.3% and 1.2± 0.4% , respectively. Parenchyma and collenchyma are turgor-dependent. 
Together, they form a doubly secured mechanical system that is sensitive to drought stress. The decrease of flex-
ural rigidity and, thus, the wilting of the leaf stalk are the result of a turgor-loss-induced decrease of the elastic 
moduli of both the collenchyma fibres and the parenchyma cells5. As a withered leaf stalk cannot be restored to 
its healthy positioning, even with sufficient water support, the evolution of a redundant mechanical system to 
maintain the flexural rigidity of the plant, in particular, is of great advantage for selection.
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In the case of C. pendula, the replacement of sclerenchyma fibres by collenchyma fibres showed an increase of 
flexural rigidity by only ≈ 315% instead of ≈ 5600% (see Table 3). Reinforcement by collenchyma fibre strands 
would be much too weak mechanically to support the stalk. Moreover, even the addition of an optimal number 
of sclerenchyma strands is probably insufficient. During autumn, in particular, when the flower stalk has a heavy 
top load of fruits, additional leaf sheaths increase the flexural rigidity of the overall system.

Conclusion
We have shown here that the ratio of the elastic moduli of the materials, which are decisive for the mechanical 
performance of the entire plant axis ( µ ), plays a crucial role in plant stems. Reinforcements generally increase the 
flexural and torsional rigidities in a triangular cross-section composed of a parenchymatous matrix with embed-
ded scattered vascular bundles surrounded by an epidermis. Closed ring-shaped reinforcement of the epidermal 
tissue (e.g. a periderm) leads to a considerable increase in torsional rigidity and a moderate increase in flexural 
rigidity in areas of the plants that are mechanically heavily loaded or at risk of damage. Therefore, epidermal 
reinforcements decrease the twist-to-bend-ratio. Fibre reinforcement noticeably increases the flexural rigidity 
and moderately increases the torsional rigidity of the entire plant axis. The flexural rigidity is almost independ-
ent of the number of fibre strands, whereas the torsional rigidity and thus the twist-to-bend ratio is a function 
of strand numbers. Obviously, torsional rigidity is the key factor for changing the twist-to-bend ratio through 
structural reinforcements. The evolution of structural reinforcements including cells with walls strengthened 
by lignin was a prerequisite for land plants to be able to colonise terrestrial habitats and successfully enabled 
them to face notably different mechanical constraints compared with those experienced in an aquatic environ-
ment. As outlined above, the primary (e.g. hypodermal sterome) and secondary (e.g. wood, cortex, periderm) 
strengthening tissues allowed plants not only to increase markedly in height, but also to colonise more and more 
hostile (dryer) habitats leading to the plethora of plant life forms that we know from extant and fossil flora30–32,36.

Research involving plants.  The Botanic Garden of the University of Freiburg acts in accordance with 
the CBD, the Nagoya Protocol and the Convention on the International Trade in Endangered Species (CITES) 
and is member of IPEN (International Plant Exchange Network). The IPEN-Number of the experimental Carex 
pendula plants is XX-0-FB-1420.

Data availibility
This work includes no experimental data. A C++-implementation including the computation of rigidities is 
available in the supplementary material.
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