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Energy band structure 
of multistream quantum electron 
system
M. Akbari‑Moghanjoughi

In this paper, using the quantum multistream model, we develop a method to study the electronic 
band structure of plasmonic excitations in streaming electron gas with arbitrary degree of degeneracy. 
The multifluid quantum hydrodynamic model is used to obtain N-coupled pseudoforce differential 
equation system from which the energy band structure of plasmonic excitations is calculated. It is 
shown that inevitable appearance of energy bands separated by gaps can be due to discrete velocity 
filaments and their electrostatic mode coupling in the electron gas. Current model also provides 
an alternative description of collisionless damping and phase mixing, i.e., collective scattering 
phenomenon within the energy band gaps due to mode coupling between wave-like and particle-like 
oscillations. The quantum multistream model is further generalized to include virtual streams which is 
used to calculate the electronic band structure of one-dimensional plasmonic crystals. It is remarked 
that, unlike the empty lattice approximation in free electron model, energy band gaps exist in 
plasmon excitations due to the collective electrostatic interactions between electrons. It is also shown 
that the plasmonic band gap size at first Brillouin zone boundary maximizes at the reciprocal lattice 
vector, G, close to metallic densities. Furthermore, the electron-lattice binding and electron-phonon 
coupling strength effects on the electronic band structure are discussed. It is remarked that inevitable 
formation of energy band structure is a general characteristics of various electromagnetically and 
gravitationally coupled quantum multistream systems.

Plasmons are high frequency elementary quantized excitations of electron plasma oscillations1,2. They play inevi-
table role in many fundamental properties of plasmas semiconductors and metallic nanoparticles from electric 
and heat transport phenomena to optical and dielectric response, etc.3,4. Dynamics of these quantized electro-
magnetic quasiparticles make an ideal platform for miniaturization of ultrafast terahertz device communications5, 
where conventional integrated circuits fail to operate. They also have numerous other interesting applications in 
nanotechnology6, plasmonics7–9, optoelectronics10, etc. for engineering low-dimensional nano-fabricated semi-
conductor industry11–13. Energy conversion by plasmons is an new way of solar power extraction due to its high 
efficiency in photovoltaic and catalytic devices. Use of the collective oscillations of electrons instead of single 
particles makes huge amount of energy extraction in an operation step in plasmonic solar devices14,15. In local 
surface plasmon resonance (LSPR)16 process, the surface electrons, the so called hot electrons, are collectively 
excited by electromagnetic radiations in UV–Vis range generating a huge amount of energy transfer. The hot 
electron current are collected in an appropriate contacts of nanoparticle surfaces by an efficient electron collect-
ing material like TiO2 in Schottky configuration17.

Collective charge screening effect which manifests itself as the characteristic optical edge in metallic surfaces 
already have may applications in metallic alloys making then optically unique among other solids. Collective 
electron excitations rule almost every aspect of solid from optical to dielectric response in plasmas18–20 and 
condensed matter. Moreover, the concept of energy band structure plays a fundamental role in studying the 
electronic and optical response of solid state material4. Recent studies of plasmonic excitations in van der Waals21 
and graphene22 heterostructures reveal that the knowledge of the electronic band structure of the solid state sys-
tem allows effective manipulation of different electronic and optical aspects of collective excitations in complex 
structures. A new study of pressure dependent plasmonic energy band gap in van der Waals heterostructures23 
reveals the importance of collective interfacial charge transfer excitons on many aspects of two-dimensional 
semiconductors. Recent infrared spectroscopic techniques shows that low dimensional semiconductors24 such 
as gapped graphene also demonstrate interesting surface plasmon effects. The collective electron transport prop-
erty of graphene makes it an ideal element for multilayer composite devices such as compact ultrafast switches, 

OPEN

Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745‑406 Tabriz, Iran. email: 
massoud2002@yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-00534-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21099  | https://doi.org/10.1038/s41598-021-00534-w

www.nature.com/scientificreports/

optical modulators, optical lattices, photodetectors, tandem solar cells and biosensors25–27. The first theoretical 
development of the idea of collective electron excitations by Bohm and Pines dates back to mid-nineties, when 
they coined plasmon name for such excitations due to the long-range electromagnetic nature of interactions28–32. 
The theoretical as well as experimental aspects of collective electron dynamics in quantum level has been the 
subject of intense investigations over the past few decades33–38, due to its fundamental importance in many field 
of physics and chemistry.

Pioneering developments of quantum statistical and kinetic theories39–42 had a long tradition furnishing a 
pavement for modern theories of quantum plasmas43–47. Many interesting new aspects of collective quantum 
effects in astrophysical and laboratory plasmas has been recently investigated using quantum plasma theories48–61. 
The quantum kinetic theories like time-dependent density functional theories (TDFT) are, however, less analytic 
as compared to the quantum hydrodynamic analogues, due mostly to mathematical complexity which require 
large scale computational programming. Recent investigation reveals62 that quantum hydrodynamic approaches 
based on the density functional formalism47 can reach beyond the previously thought kinetic limitations, such 
as the collisionless damping if accurately formulated. One of the most effective hydrodynamic formalism for 
studying the quantum aspects of plasmas is the Schrödinger–Poisson model63,64, based on the Madelung quantum 
fluid theory which originally attempted for the single-electron quantum fluid modeling65. It has been recently 
shown that the analytic investigation of linearized Schrödinger–Poisson system for arbitrary degenerate electron 
gas provides routes to some novel quantum feature of collective plasmon excitations66–68. In current study we 
use the multistream model in order to investigate the band structure plasmon excitations in streaming plasmas 
and plasmonic lattices.

Mathematical model
Starting with a one dimensional collision-less multi-fluid quantum hydrodynamic model for electron gas with 
an arbitrary degree of degeneracy, the set of equations read 

in which the dependent variables, ns and vs refer to the number density and fluid velocity of given electron stream, 
indexed by s, and φ is the electrostatic potential. Also e is the electron charge and me is the electron mass. The last 
term in momentum equation arises due to quantum Bohm potential in which � is the reduced Planck constant. 
In the limit of � → 0 the system (1) reduces to the classical Dawson’s multistream model69. The parameter µ is 
the chemical potential of the electron gas which is related to the electron number density using an appropriate 
equation of state (EoS) and is used to close the hydrodynamic system (1). For isothermal electron gas of arbitrary 
degeneracy the EoS is 

in which P(ν,T) is the statistical pressure of the gas with ν = βµ with β = 1/kBT (T being the electron gas 
temperature). The function Fk is the Fermi integral of order k defined as

In terms of polylog function, Lik , the Fermi integrals are defined as

in which Ŵ is the conventional gamma function. It is seen that, the thermodynamic identity, ∂P/∂µ = n , holds 
for the electron gas in the thermodynamic equilibrium. Note also that we ignore the chemical potential depend-
ence on stream index in the gas and it is assumed that the index s characterizes only the velocity spectrum in the 
system. For a multispecies plasmas, however, this index may apply to the chemical potential of species. The hydro-
dynamic model (1) may be cast into a more simple form as the effective Schrödinger–Poisson model63 for the sys-
tem, using the Madelung transformations Ns(x, t) =

√
ns(x, t) exp[iSs(x, t)/�] and vs(x, t) = (1/me)∂Ss(x, t)/∂x . 

By using the later definition, the continuity and momentum balance, after separation of real/imaginary parts 
become 
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which combining with Ns(x, t) =
√
ns(x, t) exp[iSs(x, t)/�] together with the Poisson’s equation leads to the 

following Schrödinger–Poisson system70 

 For our purpose let us consider a particular case of multistream model in the linear perturbation limit in 
which every stream of electrons is a monoenergetic beam interacting with others through the electrostatic poten-
tial. One may linearize the system (7) through the linear approximation expansion ns(x, t) = n0 + n1s with n0 
being the equilibrium number density of electron gas, φs(x, t) = 0+ φ1 , µ = µ0 with µ0 being the equilibrium 
chemical potential of the gas and Ss(x) = S0 + psx with ps being the constant momentum of given stream s. The 
parameter S0 results in a constant phase which is ignored in this analysis. In the steady state limit we are also able 
to decompose the state function into spatiotemporal product of variables as, Ns(x, t) = ψs(t)ψs(x) exp(iksx) , 
where ψs(x) =

√
ns(x) with ks = ps/� being the de Broglie wavenumber of given stream. Hence, eliminating 

the first-order index, the normalized linear system of coupled equations read 

where E = (ǫ − µ0)/Ep is the normalized multistream system energy with Ep = �ωp being the plasmon energy, 
ωp =

√

4πe2n0/me  the electron plasma frequency and ǫ the energy eigenvalue. Also, fs represents the momen-
tum ( �ks ) distribution function for given stream s with the property 

∑

s fs = 1 . However, in current multistream 
model we consider the especial case of equal number-density distribution between all streams, for illustration 
purpose. Moreover, ω = �/ǫ defines the normalized eigenfrequency of the multistream system. Moreover, we 
used the normalization scheme, �s(x) → �s(x)/

√
n0 , with n0 being the equilibrium electron number density 

and �(x) = eφ/Ep . The space coordinate x is normalized to the plasmon length, lp = 2π/kp , with 
kp =

√

2meEp/� being the characteristic plasmon wavenumber. Therefore, the de Broglie wavenumber is nor-
malized to the plasmon length and temperature to the plasmon temperature Tp = Ep/kB . The system (7), plus 
the temporal term proportional to exp(−iωt) , describes the steady state evolution of an electron gas in the linear 
limit. To obtain the state functions N (x, t) =

∑

s
�s(x) exp(−i�t) ( � = ω/ωp ) and �(x) one has to evaluate 

N-coupled differential equations through the electrostatic potential each given for an electron stream. Note that 
�s(x) characterize the pure states of the multistream system from which the mixed states are calculated. The fluid 
v e l o c i t y  o f  e a c h  s t r e a m  s a t i s f y  t h e  r e l a t i o n  vs(x, t) = js(x, t)/ns(x, t) ,  w h e r e , 
js(x, t) = i�/(2me)[∂Ns(x, t)/∂x ×N ∗

s (x, t)− ∂N ∗
s (x, t)/∂x ×Ns(x, t)] is the current density of given stream. 

This velocity is also given by the relation vs(x, t) = (�/me)Im[∂Ns(x, t)/∂x/Ns(x, t)] , which is identical with 
the pseudoparticle velocity in the pilot-wave theory for guiding equation. In this linear limit we have vs = �ks/me . 
The multistream velocity is obtained through the state function as v(x, t) = (�/me)Im[∂N (x, t)/∂x/N (x, t)] by 
solving the N-coupled equations (7).

Figure 1 shows the variations in characteristic parameters of the plasmon system with electron number 
density and an arbitrary degenerate electron gas. In Fig. 1a it is shown that the plasmon energy varies up to few 
electronvolts from the classical to fully degenerate electron gas. As shown in Fig. 1a, due to the fact that the 
plasmon frequency is proportional to the squared root of free electron concentration, in highly doped semicon-
ductors and metallic components the plasmon energy becomes significantly high. The plasmon length variations 
in nanometer unit in terms of electron number density is shown in Fig. 1b. This length sharply decreases with 
increase in number density to a fraction of a nanometer in a typical metal. The chemical potential variation is 
shown in Fig. 1c. In the fully degenerate (zero temperature) limit in typical metals the chemical potential at E = 0 
or ǫ = µ characterizes the fundamental Fermi energy level of the system which is assumed to be constant. Hence, 
current model is most appropriate for metals and nano-metallic density regime and beyond. Figure 1d, on the 
other hand, shows the variation plasmon temperature, Tp with the variations in chemical potential for different 

(5a)me
∂ns

∂t
+

∂ns

∂x

∂Ss

∂x
+ ns

∂2Ss

∂x2
= 0,

(5b)
∂2Ss

∂t∂x
+

1

ms

∂Ss

∂x

∂2Ss

∂x2
=

e∂φ

∂x
−

∂µ

∂x
+

∂Bs

∂x
,

(5c)Bs =
�
2

8men2s

[

2ns
∂2ns

∂x2
−

(

∂ns

∂x

)2
]

,

(6a)i�
∂Ns

∂t
= −

�
2

2me

∂2Ns

∂x2
− eφNs + µNs ,

(6b)
∂2φ

∂x2
= 4πe

∑

s

|Ns|2.

(7a)d2�s(x)

dx2
+ 2iks

d�s(x)

dx
+�(x)+ (E − k2s )�s(x) = 0,

(7b)
d2�(x)

dx2
−

∑

s

fs�s(x) = 0,



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21099  | https://doi.org/10.1038/s41598-021-00534-w

www.nature.com/scientificreports/

values of the electron temperature. It is remarked that, the plasmon temperature increases with increase in the 
chemical potential but decreases with increase in electron temperature.

One‑stream model and the doppler shift
Despite the simplicity of the model (7), it will be shown that it is useful in describing some fundamental physical 
phenomenon corresponding to the plasmon system. Consider a single stream ( s = 1 ) described by the follow-
ing system 

satisfying the energy dispersion relation E = 1/k2 + (k + k1)
2 which reduces to the plasmon dispersion relation 

in the limit k1 = 0 . It is remarked that the particle branch of the energy dispersion is Doppler shifted due to the 
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dx2
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Figure 1.   (a) Variation in the plasmon energy Ep = �ωp in terms of electron number density in logarithmic 
scale. (b) Variations in plasmon length 1/kp with electron number density in logarithmic scale. (c) The electron 
concentration in terms of equilibrium chemical potential of arbitrary degenerate electron gas. (d) Variation of 
plasmon temperature Tp = Ep/kB in terms of the chemical potential of the electron gas for different values of the 
electron temperature. The increase in thickness of curves indicates the increase in varied parameter above the 
panel in Fig 1d.
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streaming electrons. However, the wave-like branch is not affected by the electron drift. It has been shown that 
in an inertial frame moving along with the electron beam the traveling wave solution to the system (8) becomes 
identical with that of the electron gas in rest frame73 with the beam speed replacing the energy eigenvalues.

Figure 2 shows the energy dispersion and state functions of plasmon excitations for given parameters. The 
energy dispersion plasmon excitations for the case of k1 = 0 (solid curves) along with the free electron dispersion 
(dashed curve) are shown in Fig. 2a. There are stable plasmon excitations above the critical value E = 2 (as shown 
by horizontal line) which are double-tone due to both particle-like ( k > 1 ) and wave-like ( k < 1 ) phenomena. 
However, below this critical line the excitation wavenumbers become complex and energy exchange occurs 
between the partcile-like and wave-like branches, as discussed in Ref.73. Figure 2b depicts the energy dispersion 
of excitations for k1 = 0.5 . It is remarked that the free electron dispersion undergoes a Doppler shift and two 
critical minimum values for energy appear, namely, Em1 ≃ 1.1786 and Em2 ≃ 3.1944 . For E > Em2 the plasmon 
excitation with four real wavenumbers are stable. However, for Em1 < E < Em2 only two of the excitations 
wavenumbers are real, hence, excitations are unstable. For E < Em1 all four wavenumbers become complex and 
plasmon excitations become unstable again. However, there is a fundamental difference between the two unstable 
regimes Em1 < E < Em2 and E < Em1 , as will be discussed later. Figure 2c shows the profiles of state functions, 
namely �(x) (thin curve) and �(x) (thick curve), for given stable oscillation parameter values. These state func-
tion have been obtained by numerical solution of (8) with initial conditions, �(0) = �′(0) = � ′(0) = 0 and 

Figure 2.   Dispersion curves of (a) static and (b) streaming free electron (dashed curve) and plasmon (solid 
curve) excitations. (c) Variation of state-functions �(x) (thin curve) and φ(x) (thick curve) in streaming 
electron gas with the de Broglie wavenumber k1 = 0.5 at stable orbital E = 3.5 . (d) Quasiparticle velocity 
corresponding to the one-stream electron gas in (c) at stable E = 3.5 (thick curve) and unstable E = 2 (thin 
curve) orbital.
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�(0) = 1 . The variation of quasiparticle velocity for stable orbital ( E = 3.5 as thick curve) and unstable orbital 
( E = 2 as thin curve) is depicted in Fig. 2d. Evidently, there are oscillations in the velocity profiles which are 
damped for unstable energy orbital E = 2.

Two‑stream model and energy band formation
Let us consider the following symmetric two stream system 

where k1 and k2 are de Broglie wavenumbers of the streams. The energy dispersion relation can be obtained 
by Fourier analysis of (9) assuming plane-wave expansions, �1(x) = �11 exp(ikx) , �2(x) = �21 exp(ikx) and 
�(x) = �1 exp(ikx) leading to the following eigenvalue equation

Consequently, we arrive at the following energy dispersion relation of two-stream system

It is remarked that, in the two-stream model extra energy band appears due to mode coupling between the 
streams. Figure 3 shows the structure of energy bands in two-stream model. In Fig. 3a the two streams have 
same but opposite velocity and the upper and lower energy bands are symmetric. The imbalanced two stream is 
shown in Fig. 3b, the asymmetry of which is caused by the Doppler shift in particle-like branch. The quasiparticle 
orbital velocities in each stream are shown in Fig. 3c and d for symmetric and asymmetric cases. It is seen that 
in the asymmetric two stream model the orbital velocity of quasiparticle in electron beam with k1 = 1 reverses 
at E = 4 and merges with the other stream. The later phenomenon, which we may call the phase mixing effect, 
is a novel feature of the two-stream model caused by the collective wave-particle interactions in the energy band 
gaps. Note that in the preceding analysis (and the following) we consider equal density distribution for streams, 
for the sake of simplicity. In fact a generalized momentum distribution function, such as the Maxwell–Boltzmann, 
may be used in the Poisson’s equation as weight function of stream probability functions �N . However, in the 
limit of full degeneracy the momentum distribution becomes unity.

Energy band structure in multistream model
To this end, it is straightforward to generalize the model to include a large number of streams each characterized 
by its de Broglie’s wavenumber, kN . Therefore, N-coupled differential equation system read 

Fourier analysis of (12) leads to the following eigenvalue system

(9a)d2�1

dx2
+ 2ik1

d�1

dx
+�+ (E − k21)�1 = 0

(9b)d2�2

dx2
+ 2ik2

d�2

dx
+�+ (E − k22)�2 = 0

(9c)d2�

dx2
−�1 −�2 = 0,

(10)





E − (k + k1)
2 0 1

0 E − (k + k1)
2 1

1 1 k2





�

�11

�21

�1

�

=

�

0
0
0

�

(11)E± = k2 +
1

k2
+

1

2

(

k21 + k22
)

+ k(k1 + k2)±
√

4+ k4(k1 + k2)
2(k1 + k2 + 2k)2

2k2
.

(12a)d2�1

dx2
+ 2ik1

d�1

dx
+�+ (E − k21)�1 = 0,

(12b)d2�2

dx2
+ 2ik2

d�2

dx
+�+ (E − k22)�2 = 0,

(12c)
...

...
...

(12d)d2�N

dx2
+ 2ikN

d�N

dx
+�+ (E − k2N )�N = 0,

(12e)d2�

dx2
−�1 −�2 − · · · −�N = 0,



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21099  | https://doi.org/10.1038/s41598-021-00534-w

www.nature.com/scientificreports/

The system (13) can be evaluated numerically to any number of streams in order to calculate the structure of 
energy bands in multistream electron system.

Figure 4 shows the electronic energy band structure of a 10-coupled ( N = 10 ) multistream system. The 
periodic-stream dispersion profile in Fig. 4a corresponds to the particular momentum distribution of kN = Nk1 
with N = 10 and k1 = 1 , giving rise to different energy bands separated via forbidden gaps. Due to finite number 
of streams, for given value of energy E, the energy bands only extends up to a maximum wavenumber beyond 
which the forbidden plasmon energy gap disappear and the electrons nearly follow the free electron dispersion. It 
is interesting that due to collective electrostatic interactions among electrons they are by no means free. Therefore, 
for long wavelength excitations, where the collective effects are dominant, the energy bands are narrower and 
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Figure 3.   (a) Energy band structure of symmetric two-stream plasmon excitations. (b) Energy band structure 
of asymmetric two-stream plasmon excitations. (c) Quasiparticle velocity of two-stream excitations in 
symmetric band gap. (d) Quasiparticle velocity of two-stream excitations in asymmetric band gap showing the 
phase mixing effect due to mode coupling of the energy bands.
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band gaps are wider. Therefore, current quantum multistream electron model gives rise to a unique variable-
width energy band structure in one-dimension. As mentioned previously the origin of band gaps in this case is 
the mode coupling between different electron streams, very similar to the electronic band structure in crystal-
line materials, as will be shown in the next section. Note that band gaps increase with increase in energy, E, 
but decrease with increase in wavenumber, k. The periodic 10-coupled band structure for k1 = 2 is depicted in 
Fig. 4b. It is remarked that increase in the stream speed leads to increase in the energy band widths. Figure 4c and 
d depict the band structure of 10-coupled randomly distributed multistream system in the arbitrary degenerate 
electron gas. The increase in the number of streams and arbitrary velocity distribution can lead to formation 
of a very complex energy band structure which describes the plasmon excitations in the multistream system.

We have already seen that presence of discrete electron streams leads to formation of energy band structure 
and energy gaps leading to complex wavenumbers with the imaginary part representing the growing/damping 
features. It has been shown72 that in collisionless electron systems the complex wavenumbers does not lead to 
dissipation of energy but the exchange between the particle-like and wave-like excitations very similar to the 
Landau damping phenomenon. In extreme limit of our multistream theory when every electron (velocity) specie 
constitute an individual stream with the weigh function, fs , being the Maxwell–Boltzmann velocity distribution, 

Figure 4.   (a) The periodic N-coupled ( N = 10 ), kN = Nk1 , energy band structure of multistream electron gas 
with k1 = 1 . (b) The periodic 10-coupled, kN = Nk1 , energy band structure of multistream electron gas with 
k1 = 2 . (c) The random N-coupled ( N = 10 ), energy band structure of multistream electron gas with k1 = 1 . 
(d) The random 10-coupled energy band structure of multistream electron gas with k1 = 2.
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large number of energy minibands form which are separated by tiny band gaps through which phase-mixing, 
i.e. quasiparticle scattering, can occur. In this case energy exchanges can take place between the collective elec-
trostatic excitations and single electron oscillations by irreversible energy transfer from wave-like oscillations 
to the particle-like ones. the multistream model has been originally used by Dawson in order to give a physical 
interpretation of the Landau Damping effect69. Indeed the effect can occur by resonant electrons which have 
speeds close to the plasmon excitation phase speed, i.e., v ≃ E/�k , residing in a band gap.

To better understand the collisionless damping phenomenon, we consider the traveling wave solutions of 
a electron beam (stream) with normalized drift speed, γ , �(x − 2γ t) and N (x, t) = �(x, t) exp[iγ (x − 2γ t)] 
obtained in Ref.73, in which

in which �0 and �0 define the initial values at x = 2γ t and the characteristic wave-like and particle-like wave-
numbers kw and kp are given, respectively, as

where Ed = γ 2 − µ and kwkp = 1 . Inside the gap the wavenumbers become complex, i.e., k = kr + iki with kr and 
ki being the real and imaginary parts of the wavenumbers. It has been shown that73, while the real parts are equal 
( kwr = kpr ), the imaginary part of wave-like excitation is always negative, ( kwi < 0 ) and that of the particle-like 
is always positive, ( kpi = −kwi > 0 ) for space-time range x > 2γ t . Therefore, the wave-like/particle-like oscil-
lations grow in space for energy values with imaginary de Broglie wavenumbers (inside the energy gaps) where 
the electron streams experience the so-called quantum drift instability73. On the other hand, a close inspection of 
the solution (14) reveals that the wave-like/particle-like oscillations experience damping in time, simultaneously. 
Generally speaking, particle-like/wave-like excitations of arbitrary degenerate electron beam always undergo spa-
cial/temporal growing/damping inside the energy gaps. The above description of multistream electron behavior 
may be regarded as an elegant quantum description of the colissionless Landau damping effect due to the resonant 
wave-particle interactions and energy exchange between wave-like and particle-like oscillations within the energy 
band gaps. It is remarkable however that the stream velocity defined through, vs = Im[Nx(x, t)/N (x, t)] = γ , 
is invariant under the wave-particle processes, indicating total energy conservation. It can be shown that spa-
cial/temporal growth/damping of wave-like/particle-like behavior is intrinsic behavior of an electron beam in 
quantum tunneling process where quantum drift instability takes place (similar to instability of electron stream 
excitations within the energy band gaps). The detailed study of the relationship between the wave-particle phe-
nomenon and the collective tunneling through a potential barrier may be the subject of a future study in the 
framework of complex energy band structure and is beyond the scope of current research.

Band structure of 1D plasmonic crystals
In this section we would like to generalize the theory of multistream model to band structure of plasmon 
excitations in periodic system like such as plasmonic crystals71. Considering a lattice of constant a the crys-
tal is characterized by reciprocal lattice vectors GN = NG1 with G1 = 2π/a being the first reciprocal lattice 
vector and N is an integer number. Now, we model the electronic excitations through the N-coupled vir-
tual streams (16) in which the reciprocal lattice wavevectors, GN , play the role of de Broglie’s wavenumber 
of virtual streams. Therefore, we have the following N-coupled virtual stream system with a solution of type 
NN (x, t) = �N (x) exp(iGNx − i�t + i�N ) in which GN/2 characterize the N-th Brillouin zone boundary and 
�N is the arbitrary phase angle of the given stream. 

the Fourier analysis of (16) leads to the following eigenvalue system

(14)
{

�(x, t)
�(x, t)

}

=
1

2α

{

�0 + k2p�0 −(�0 + k2ω�0)

−(�0 + k2ω�0) �0 + k2p�0

}{

cos[kω(x − 2ϒt)]
cos[kp(x − 2ϒt)]

}

(15)kw =
√

(Ed − α)/2, kp =
√

(Ed + α)/2,α =
√

E2d − 4,

(16a)d2�1

dx2
+ 2iG1

d�1

dx
+�+ (E − G2

1)�1 = 0,

(16b)d2�2

dx2
+ 2iG2

d�2

dx
+�+ (E − G2

2)�2 = 0,

(16c)
...

...
...

(16d)d2�N

dx2
+ 2iGN

d�N

dx
+�+ (E − G2

N )�N = 0,

(16e)d2�

dx2
−�1 −�2 − · · · −�N = 0,



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21099  | https://doi.org/10.1038/s41598-021-00534-w

www.nature.com/scientificreports/

Note that we assumed an empty lattice approximation in which the atomic lattice potential is negligible com-
pared to the plasmon energy. Such assumption can be valid in fully degenerate regime due to effective charge 
screening or in the case on weak-potential plasmonic lattices. The system (17) may be evaluated numerically 
for a finite number of Brillouin zone approximation. Analytical solution to energy band dispersion exists for 
3-coupled system with lattice momentum −G , 0 and +G . For N = 3 approximation-order, one obtains 

Figure 5 depicts the results of calculation for N = 3 plasmonic crystal lattice dispersion in empty lattice 
approximation. It is remarkable that the band gap is still present in the absence of lattice potential due to the 
collective electron interactions contrary to the free electron model of solids3. Figure 5a shows the energy band 
structure with G = 2 . Direct and indirect band gaps are evident which are the result of mode coupling between 
different virtual streams. There are in fact three band the upper one not shown in the figure. Figure 5b shows 
the band structure for G = 3 and the band gap �E12 between the energy bands E1 and E2 at the first Brillouin 
zone, k = G/2 . In terms of reciprocal lattice vector G one obtains �Ed = 3G2/2 for the direct gap at k = 0 , and 

for the corresponding indirect gap and direct gap at first Brillouin zone, in three zone, N = 3 , approximation. 
Interesting features appear for variations of these gap with the reciprocal lattice vector (lattice constant). Figure 5c 
shows that �E0 increases monotonically with increase in G and consequently decrease in lattice constant a. How-
ever, with increase of G the value of direct gap at k = 0 first increases and reaches a maximum value at G ≃ 1.7726 
and then passes through a minimum value at G ≃ 2.17572 . Figure 5d depicts variations in the indirect gap and 
the direct gap size at first Brillouin zone boundary. It is remarked that the indirect gap maximizes at G ≃ 1.52319 
and closes at G ≃ 3.11302 . The value of �E12 maximizes at G ≃ 1.56508 . The first plasmon conduction band 
�E01 which occurs at k = G is an important gap for fully degenerate electron gas (at zero temperature), where 
all the electrons are packed under the Fermi level ( E = 0 or ǫ = µ0 ). The variation of this gap in terms of the 
reciprocal lattice vector is shown also in Fig. 5d. It is noticed that the gap maximized at the value G ≃ 1.20944 . 
Analytical expression for this gap for N = 3 is 
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Figure 6 shows the variations in imaginary wavenumber in terms of reciprocal lattice vector for different 
energies. The symmetric nature of figure indicates that excitations are dissipation free but energy exchange 
occurs between particle-like and wave-like oscillations. The imaginary part of wavevector at the band gaps 
play important role in Zener tunneling phenomenon in semiconductor diodes4. Recently, the propagation of 
a single stream electron beam studied in Ref.73, reveals that the plasmonic excitations in the intrinsic energy 
gap in plasmonic excitations, due to wave-particle branch coupling below the critical value E < 2Ep , leads to 
spacial growing/damping of the wave-like/particle-like excitations. It is however, concluded that the collective 
wave-particle interactions of dual-nature plasmonic excitations inside energy band gaps is accompanied by 
enhancement of wave-like amplitude and reduction in particle-like one through the space. This is a novel aspect 
of collective quantum interaction phenomenon detailed investigation of which is required in a future research. 
The positive/negative branches of imaginary components in Fig. 6 are particle-like/wave-like damp/growth rates. 

Figure 5.   (a) The electronic band structure in 1D plasmonic lattice with G = 2 in three-zone ( N = 3 ) empty-
lattice approximation showing direct and indirect band gaps. (b) The electronic band structure in 1D plasmonic 
lattice with G = 3 in three-zone ( N = 3 ) empty-lattice approximation showing the band gap at first Brillouin 
zone boundary, k = G/2 . (c) Variations of �E0 and �Ed in terms of the reciprocal lattice vector, G = 2π/a , 
where, a is the lattice constant. (d) Variations of �Eid , �E12 and the first conduction band height �E01 in terms 
of the reciprocal lattice vector, G = 2π/a.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21099  | https://doi.org/10.1038/s41598-021-00534-w

www.nature.com/scientificreports/

These imaginary wavenumbers always appear due to coupling of a wave-like excitation dispersion branch with 
that of a particle-like which leads to the appearance of energy gaps between separate bands.

Figure 7 shows the calculation results for band structure in 10-coupled approximation ( N = 10 ). Our result 
in Fig. 7c may be directly compared to the empty lattice band structure of free electron model with G = 3 shown 
in Fig. 7a. It is remarked that the band gap in our model occurs through collective electronic excitations even in 
the absence of lattice potential. The free electron lattice band structure may be obtained in our model by setting 
the coupling electrostatic field φ to zero. Figure 7b shows limiting case of G ≫ 1 which is obviously the energy 
dispersion curve for ordinary plasmon excitation in electron gas. Figure 7c and d show the band structure for 
different values of G. It is remarked that band gaps take place at the Brillouin zone boundary the size of which 
decreases with increase in k but increase with increase in E. The exact similarity between Figs. 4b and 7c shows 
that the problem of excitations in plasmonic crystals and quantum multistream have the same root. As a further 
generalization one may consider the effect of dynamic ions74 on the plasmonic lattice or super-lattice structure.

In Fig. 8 we have shown the variations in band gaps in various Brillouin zone boundaries with respect to 
the reciprocal lattice vector. Note that Em characterizes the mth energy band and Emn denotes the inter-band 
energy difference (Gap) between the consecutive bands Em and En . Figure 8a shows the gap size variation at first 
zone boundary at k = G/2 for �E12 = E2 − E1 and �E34 = E4 − E3 . It is seen that �E12 and �E34 , respectively, 
maximize at G ≃ 1.74903 and G ≃ 1.44203 , that is, the gaps maximize at values of G which tend to decrease 
with increase of the energy bands. Comparing Figs.  5d, 7c and 8a, it is also noted that, the size of the band gap 
�E12 strongly depends on the number of lattice sites in N-coupled approximation in the plasmonic crystal. The 

Figure 6.   Variations in imaginary parts of plasmon excitation wavenumbers in plasmonic crystal in terms of 
reciprocal lattice vector G at orbital (a) E = 0.8 , (b) E = 1.8 , (c) E = 2.5 and (d) E = 3 . The possive branches 
are small wavelength particle-like and negative large wavelength wave-like plasmon excitation wavenumbers 
corresponding to each energy orbital.
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band gap variations at k = G are shown in Fig. 8b. At Brillouin zone boundaries, the first plasmon conduction 
band, E1 , resides slightly above the Fermi energy level at E = 0 , coinciding with ǫ = µ0 below which fully 
degenerate electronic states at zero temperature limit exist. Therefore, the lowest plasmon excitation gap at the 
first boundary k = G is defined as �E01 which maximizes at the value G = 1.37936 and is an important quan-
tity for low energy and low momentum collective electronic excitations. It is seen that the gap size increases 
for higher energy bands, while, decrease in size for higher zone boundaries. It is noted that �E23 and �E45 at 
k = 3G/2 , respectively, maximize at G ≃ 1.1031 and G ≃ 0.9581 . Figure 8c and d reveal that gaps at higher zone 
boundaries maximize at lower G-values. It is noted that �E12 and �E34 , respectively, maximize at G ≃ 1.0061 
and G ≃ 0.8282 . Also, �E01 , �E12 and �E34 at k = 2G , respectively, maximize at G ≃ 0.9709 , G ≃ 0.7738 and 
G ≃ 0.6537 . The variation of band structure in terms of lattice parameter may play a fundamental role in effec-
tive plasmonic crystal for technology. Note that the reciprocal lattice vector is related to the equilibrium electron 
number-density through n0 = 1/a3 = G3/8π3 where G is normalized with respect to the plasmon wavevector 
kp =

√

2meωp/� with ωp =
√

4πe2n0/me  being the characteristic plasmon frequency. For instance, Fig. 8b 
shows that the first conduction band gap maximizes for G ≃ 1.4 (in kp unit), i.e., for a equilibrium electron density 
of n0 = 0.00368568np ≃ 1.28× 1022cm−3 with np = π3e6m3

e/16�
6 being the plasmon density, which is slightly 

larger than the number density of a typical metallic elements3 and is very close to the critical screening point 

Figure 7.   (a) The electronic extended-zone energy band structure in free electron model. (b) The plasmon 
excitation band in the limit G → ∞ . (c) The extended-zone electronic band structure of plasmonic crystal with 
G = 3 . (d) The extended-zone electronic band structure of plasmonic crystal with G = 2.
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Ep = 2EF
61. On the other hand, the maximum value of the valence-conduction gap is �E01 ≃ 0.3 (in Ep unit). As 

an example the plasmon energy of metallic Sodium is Ep ≃ 5.9 eV giving the energy gap size of �E01 ≃ 1.77 eV 
at k = G . The corresponding gap size at k = 2G is �E01 ≃ 0.7 eV and becomes much smaller at higher electron 
momentum for large N at boundaries k = NG . Note that one has to take into account the dynamic effects of lat-
tice ions74 which leads to sinking the conduction band into the Fermi electron sea. The calculated amount of ion 
potential effect on the energy band gap in the first-order perturbation approximation is known to be constant3 
and independent of the number N at boundaries k = NG.

Electron‑lattice binding effect
In this section we would like to study the effect of electronic binding to lattice sites on the energy band structure 
of plasmon excitations, in the empty lattice approximation. To this end, we consider the following normalized 
and linearized non-Hermitian system, which includes the spacial damping effect. After the separation of spati-
otemporal variables, one obtains the following damped pseudoforce model72 

Figure 8.   (a) Variation of the first two gap size at first Brilloun-zone boundary ( k = G/2 ) with the reciprocal 
lattice vector size, G = 2π/a with a being the lattice constant. (b) Variation of the first conduction band and 
first two higher gap sizes at k = G with the reciprocal lattice vector size, G = 2π/a . (c) Variation of the first two 
gap size at second Brilloun-zone boundary ( k = 3G/2 ) with the reciprocal lattice vector size, G = 2π/a . (d) 
Variation of the first conduction band and two higher gap size at k = 2G with the reciprocal lattice vector size, 
G = 2π/a.
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where ξ denotes the strength of plasmon oscillation damping, due to the electronic binding to the periodic lattice 
sites. However, in this simplified model, we do not want to go into details of the dependence of the damping param-
eter on other electron gas parameters, such as the equilibrium electron number-density and temperature. It is 
evident that, the system (21) should admit the general solution, MG(x) = �N (x) exp(iNGx − ξ |x − Na| + i�N ) , 
with the time dependent solution as NG(x, t) = MG(x) exp(−i�t) , where the functions �G(x) and �(x) satisfy 
the following N-coupled system 

 Fourier analysis of which results in the following eigenvalue system

where QN = (k + GN )
2 − ξ 2.

Figure 9 shows the effect of electron-lattice binding on the plasmonic band structure of periodic system with 
G = 2 and different values of the binding strength parameter, ξ . It is clearly remarked that the increase in binding 
strength leads to the overall shift of plasmonic excitation bands to higher energies. It is further remarked that 
the energy gaps at the long wavelength limit k = 0 decrease sharply by increase of the binding parameter. This 
is due to the significant effect of the electron-lattice binding on the wave-like branch rather than the particle-
like one. It is also clearly remarked that the ground state electronic valence-conduction gap, �E01 at k = NG , 
through which the valence electrons can tunnel in the nearly free electron model, becomes smaller for larger 
values of the electron momentum, �k . For higher binding strength regime ( ξ > 1 ), shown in Fig. 9d, which we 
call the tight-binding limit where the electrons are tightly bound to the lattice sites, the first conduction plasmon 
energy band shift to much higher energies with the band inaccessible to Fermi electrons at E = 0 ( ǫ = µ0 ) at 
zero temperature limit, thus, leading to insulating solid-state plasmon gap. Therefore, the critical value of binding 
parameter, ξ , may provide a quantitative measure for the Mott metal-insulator transition phenomenon in terms 
of the ground state gap energy, �E01 , at zero temperature limit, where electro-hole process can occur. At finite 
temperature, on the other hand, electrons can excite to much higher energy bands and collective phenomenon 
become more pronounced.

Figure 10 shows the variations in various band gap sizes for 1D plasmonic crystal with reciprocal lattice vector 
size G = 2 in terms of the electron binding parameter. Figure 10a shows the long wavelength ( k = 0 ) gap size 
variation. It is remarked that, with increase in the binding parameter the energy gaps �E45 and �E23 decrease 
sharply and saturate to the same value for large ξ , which is also clearly evident from Fig. 9. Figure 10b shows that 
the energy gaps �E34 and �E12 also decrease with increase in the value of ξ , but, with lower rate compared to 
gaps at k = 0 . The variations in the gaps k = G of Fig. 10c becomes very small, indicating that the energy gaps 
at larger k are less affected by the binding parameter variations. Variation in the first plasmon conduction bands 
�E01 for values of wavevectors k = 0,G are shown in Fig. 10d. It is seen that �E01 at k = 0 and k = G increase 
with increase in ξ and become identical for large ξ . It is concluded that in the tight-binding limit, ξ ≫ 1 , the 
band gaps tend to close and we obtain a free electron-like dispersion, similar to Fig. 7a, with a very large ground 
state gap �E01 ≫ 1.

Plasmon–phonon coupling effect
As a final remark, we would like to consider the effect of heavy species like dynamic ions on the band structure 
of 1D plasmonic crystals. In such a case we have a N + 1-coupled system which may be written as 
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Figure 9.   Variation in the electronic band structure of plasmon excitations in a plasmonic crystal with 
G = 2π/a for (a) ξ = 0.1 , (b) ξ = 0.5 , (c) ξ = 1 and (d) ξ = 1.5.
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where �i denotes the ion wavefunction and σ = me/mi is the electron to ion mass ratio. As before, the Fourier 
analysis of the N + 1-coupled system (24) leads to the desired energy bands.

Figure 11 shows the band structure for given values of the chemical potential and reciprocal lattice vector. The 
effect of heavy species such as dynamic ions on the energy dispersion of plasmonic excitations has recently been 
studied in74. For the electron gas in semiconductor regime with µ = 0 , as shown in Fig. 11a, it is remarked that 
a nearly flat band (phonon-like low energy band) appears at E = 0 (the Fermi level). The flatness of a conduction 
band is an indication of decreased mobility of electrons which is caused by electrostatic coupling of electrons 
to inertial ions. However, existence of such band is important for long wavelength phonon-assisted plasmon 
excitations in metals in the zero temperature limit. For a fully degenerate electron gas with µ = 0.8 , the lowest 
nearly-flat energy band forms well below the Fermi energy level embracing a large amount of degenerate elec-
trons in the gas, as seen in Fig. 11b. However, collective excitations are expected to be considerably prohibited 
by Pauli-Blocking well below the Fermi sea at zero temperature limit. The variation in gap size between the first 

(24f)d2�

dx2
−�1 −�2 − · · · −�N +�i = 0,

Figure 10.   (a) Variation of the first two gap size at k = 0 with the reciprocal lattice vector size, G = 2 . (b) 
Variation of the first two gap size at first Brilloun-zone boundary ( k = G/2 ) with the reciprocal lattice vector 
size, G = 2 . (c) Variation of the first two gap size at secong Brilloun-zone boundary ( k = G ) with the reciprocal 
lattice vector size, G = 2 . (d) Variation of the conduction band height, �E10 , for k = 0,G with the reciprocal 
lattice vector size, G = 2.
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plasmon band and the top of Fermi level �E01 at first Brillouin boundary is shown in Fig. 11c in terms of the 
normalized chemical potential. It is seen that the first band at k = G touches the Fermi level at exact value of 
µ = 0 above/under which value the first band is belove/above the Fermi energy level. Moreover, Fig. 11d depicts 
the gap of second band from Fermi level at k = G for G = 2 . The second band never touches the Fermi level 
for the chemical potential values in semiconductors and metallic density regime. However, the second energy 
band gap from E = 0 decreases as the chemical potential increases. It should be noted that plasmonic crystals, 
unlike ordinary solids, can constitute from different charged species other. Also, the lattice sites can be interfaces 
between different plasmonic (metallic and semiconductor) layers, so called superlattice configuration, which do 
not contribute electrostatic potential to energy band structure. Therefore, current empty lattice model may well 
apply to a wide range of plasmonic crystal and superlattice configurations.

We have already considered the multistream electrostatic systems which only include electrons and ions. 
However, the simplified current model may be further generalized to include multispecies complex plasmas with 
a wide range of mass and charge-state spectrum or even gravitationally coupled uncharged quantum fluids. As 
discussed earlier, the energy band gap structure formation in quantum multistream system is expected be the 
origin of collisionless quantum stream instability and Landau damping effects. Therefore it is concluded that, 
these effects not only are characteristics of electrostatic systems, but also are inevitable in uncharged mass/spin 
multistream systems coupled through gravitational/magnetic potentials. The fundamental difference between 

Figure 11.   Band structure of 1D plasmonic crystal with G = 2 in the presence of dynamic ions for (a) classical 
electron gas with µ = 0 and (b) degenerate electron gas with µ = 0.8 . The variation in the gap between (c) first 
band and (d) second band from top of Fermi level with the change in normalized chemical potential.
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electrostatic and gravitational Landau damping is that for gravitational case the damping occurs for wavenumbers 
larger than the Jeans wavenumber below which Jeans instability occurs.

Conclusion
We used the multifluid model to study the plasmonic excitations in electron gas with arbitrary degree of degen-
eracy by reducing the quantum hydrodynamic model into the N-coupled pseudoforce system. The energy band 
structure of a multistream system was obtained by linearizing the coupled differential equations which indicated 
that the energy bands form due to discrete stream filaments in the system and mode coupling by collective elec-
trostatic interactions. Such velocity filaments may also be the root to collisionless damping and stream instability 
by gap opening very similar to the crystalline solids. Current model, generalized to virtual streams, was used to 
calculate the electronic band structure in one-dimensional plasmonic crystal. The dependence of energy band 
gaps on the lattice spacing is also studied in detail. The electronic band structure of a electron system can have 
essential effect on many characteristics of collective excitations in plasmonic crystals and metallic superlattices. 
We further studied the effect electron-lattie binding effect on the energy band structure of plasmonic crystals 
which indicates that with increase in the strength of the electron binding the first energy conduction band 
shifts to higher values where unaccessible to electrons at the Fermi sea. Inclusion of dynamic inertial ions in the 
plasmonic crystals, on the other hand, reveals that for degenerate electrons a flat-like ground state energy band 
appears inside the Fermi sea of free electrons due to electrostatic interaction between free electrons and ions 
decreasing the electron mobility substantially at this level. Therefore, current model of plasmonic excitations 
is capable of incorporating a wide range realistic features of electron dynamics in one-dimensional periodic 
structures and show akin similarities in band structure between multistream electron gas and plasmonic crystals.

Data availibility
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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