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A novel technique to assess 
rotational deformities in lower 
extremities using CT‑based motion 
analysis
Peyman Bakhshayesh1,2*, Ugwunna Ihediwa2, Sukha Sandher2, Alexandros Vris2, 
Nima Heidari2 & Anders Enocson1

Rotational deformities following intramedullary (IM) nailing of tibia has a reported incidence of as 
high as 20%. Common techniques to measure deformities following IM nailing of tibia are either based 
on clinical assessment, plain X-rays or Computed Tomography (CT) comparing the treated leg with 
the uninjured contralateral side. All these techniques are based on examiners manual calculation 
inherently subject to bias. Following our previous rigorous motion analysis and symmetry studies on 
hemi pelvises, femurs and orthopaedic implants, we aimed to introduce a novel fully digital technique 
to measure rotational deformities in the lower legs. Following formal institutional approval from the 
Imperial College, CT images of 10 pairs of human lower legs were retrieved. Images were anonymized 
and uploaded to a research server. Three dimensional CT images of the lower legs were bilaterally 
reconstructed. CT-based motion analysis (CTMA) was used and the mirrored images of the left side 
were merged with the right side proximally as stationary and distally as moving objects. Discrepancies 
in translation and rotation were automatically calculated. Our study population had a mean age of 
54 ± 20 years. There were six males and four females. We observed a greater variation in translation 
(mm) of Centre of Mass (COM) in sagittal plane (95% CI − 2.959–.292) which was also presented as 
rotational difference alongside the antero-posterior direction or Y axis (95% CI .370–1.035). In other 
word the right lower legs in our study were more likely to be in varus compared to the left side. 
However, there were no statistically significant differences in coronal or axial planes. Using our 
proposed fully digital technique we found that lower legs of the human adults were symmetrical 
in axial and coronal plane. We found sagittal plane differences which need further addressing in 
future using bigger sample size. Our novel recommended technique is fully digital and commercially 
available. This new technique can be useful in clinical practice addressing rotational deformities 
following orthopaedic surgical intervention. This new technique can substitute the previously 
introduced techniques.

The main aim of lower limb orthopaedic surgery is restoration of normal anatomy and function. Rotational 
deformities following IM nailing of tibia has a reported incidence of 20%1. Common techniques to measure 
deformities following IM nailing of tibia are either clinical examination, plain X-ray or Computed Tomography 
(CT) with manual calculation comparing the treated leg with the uninjured contra lateral side2–4. All these pro-
posed techniques are dependent on manual calculation with risk for inter- and intra-observational discrepancies 
and bias5.

Further pre-operative planning is widely employed in elective and emergency orthopaedic surgery for its 
numerous benefits, including optimization of implant placement and simplification of intraoperative decision 
making. Trauma complicates the planning process by altering anatomy, obscuring the blueprint from which 
direct inferences can be made6–8.

The inherent symmetry of skeletal features represents a potential solution to the problem of templating in 
trauma. The femur has been shown to be usefully symmetrical and reliable as a template for contralateral injury, 
although some controversy exists6,9,10.
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Other significant similarities between the lower limbs relevant to preoperative templating have been observed. 
For instance, the hip-knee angle (HKA), lateral distal femoral angle (LDFA), medial proximal tibial angle 
(MPTA), posterior proximal tibial angle (PPTA) and posterior distal femoral angle (PDFA) have been reported 
to be symmetrical features within the same individual11.

Some authors have found right-to-left intra-subject variations in characteristics such as the shape of the tibial 
tuberosity and tibial and fibular shaft diameters9,12.

Moreover, various imaging methods have been used in the literature, generating the potential for non-uniform 
estimation of symmetry or otherwise5. Most of these current techniques are using X-ray or CT-scan with further 
manual calculation subject to lack of reproducibility of reference points with inherent inter- and intra-observer 
measurement reliability issues6.

CT is preferred over planar imaging techniques, such as plain radiographs, in evaluation of shape symmetry 
due to its acquisition of three-dimensional detail13.

There are previous rigorous researches using 3D images of the bone or implants and merging of the surface 
anatomies to report either excessive motion over time or mismatch in anatomy6–8,14–17.

The primary aim of this study was to introduce a novel practical technique, CT-based motion analysis 
(CTMA), to measure lower leg rotational deformities based on previous rigorous research. The second aim of 
this study was to see whether lower legs of healthy human adults are symmetrical using our proposed technique 
with previously proven high precision and accuracy6,8.

Material and methods
This study was modelled on a previous similar works on femur and pelvis analysis6–8. Study protocol was approved 
by the Imperial College Healthcare and NHS Medical Research Council prior to conduction. All methods were 
performed in accordance with the relevant guidelines and regulations of Imperial College Healthcare and NHS 
England. Written consent was retrieved from all individuals pertinent to trusts policy. We used Picture Archiving 
and Communication System (PACS) at St Mary´s Hospital, London, UK. In patients with no lower limb injuries, 
we randomly selected ten consecutive lower extremity CT images captured between January and December 2018.

A 256-slice Philips Brilliance CT scanner (Koninklijke Philips N.V., Amsterdam, The Netherlands) using 
contrast-enhanced CT scans was used. The CT scanner´s gantry was AirGlide. The CT scan acquisition param-
eters were: the aperture 700 mm, the focus-isocenter distance 570 mm, the Focus-detector distance 1040 mm, 
the rotation time 0.27 s with collimation of 2 × 128 × 0.625 mm, the Field of View 200–500 mm and the matrix 
512. The contrast medium used in this cohort was 70-mL of Omnipaque (General Electric Healthcare, Chicago, 
IL, USA) which was administered intravenously. The Package Filter was iDose4 Premium. In average the tube 
voltage was 100 kV and the tube current 89–134 mAs. Average radiation dose was 520–920 mGy cm. All images 
were downloaded as DICOM files. All files were anonymized using Sectra© package (Sectra, Linköping, Sweden). 
These were coded and kept safe. Images were transferred to a research server. Images were reconstructed in 3D 
using a 3D Trauma package (Sectra, Linköping, Sweden) creating STL files. Segmentation of the right and left 
lower legs were performed. Mirroring of the left lower leg was performed using the CTMA package offered by 
Sectra6.

We uploaded images from the server, downloading them to the research data, creating 3D STL files and fusion 
process for each case took roughly 3 days.

Images of the right lower limb and mirrored images of left lower limb were saved (Fig. 1).
Two parameters were used to determine optimal segmentation. First, the user indicates the anatomical bony 

part to be segmented, for example tibia, fibula or distal femur. The Hounsfield unit (HU) values are then used 
in combination with these clicks to find where one bone ends, and another starts (i.e. optimal segmentation). 
Further, we used CTMA, a software with high precision to find the relative movement of an object between two 
different CT-stacks. At first, 100,000 measurement points are spread over the surface of interest. The software 
then rotates and translates the object in the second CT-stack to match that in the first CT-stack as closely as 
possible to reach a maximum of surface fusion (Fig. 2).

This is achieved by minimizing the distance between the two groups of points. As the surfaces used to gen-
erate fusion are much larger than any artifact areas, the artifacts have limited impact on the matching process. 
The initial phase is done first for a reference object to create a stationary surface landmark. Afterwards, the 
movement of the object of interest is measured in the same way. This technique has been previously described 
by Bakhshayesh et al.6.

Following our previous experience using this CTMA, 10,000 points with a mean distance difference between 
meshes of 0.5 mm or less were chosen.

The proximal part of the right lower legs including the tibia plateau, the fibular head and the proximal dia-
physeal areas of tibia and fibula of each STL created 3D volume were merged with the mirrored contralateral 
side (Fig. 2). These merged images were saved as static, or nonmoving parts, and were used as reference volumes. 
Furthermore, the distal part of the lower legs including tibia plafond, the distal fibula and the distal diaphyseal 
part of tibia and fibula were merged and used as moving object.

The CTMA gives possibility to measure translational and rotational changes in three different Euler axes (X, 
Y and Z). According to standards of DICOM movements were defined as per: axis X from left to the right, axis Y 
from front to back and axis Z from feet to head. Clockwise rotation was assumed positive when looking along the 
positive axis direction. Changes in translation can be reported either for any special point or for the entire volume 
of an object based on Centre of Mass (COM). Up to 500,000 points at the moment are placed around the entire 
object to create a secondary geometric object from which COM is derived. Based on our previous experiences 
we found using 10 000 points suitable. This COM is quite similar but not absolutely identical to the mathematical 
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center of the object. The reason is because that while the created geometrical pattern of the points is highly close 
to the object it is never 100% identical. Rotation was reported for the entire geometrical volume (Fig. 3).

Statistics.  As per Root Mean Square Error (RMSE), accuracy was analyzed with mean, median and 95% 
confidence interval (CI) of the mean18. Shapiro–Wilk and Kolmogorov–Smirnov tests were used to test the dis-
tribution of normality. Statistical analysis was performed using IBM SPSS Statistics version 25 for Windows. A 
p-value < 0.05 was considered statistically significant.

Figure 1.   (A) Illustrates 3D image of right lower leg. (B) Illustrates the mirrored image if the left lower leg. (C) 
Illustrates the left lower leg.

Figure 2.   Illustrates merging of mirrored images of the left lower leg and the right lower leg. Initially the 
proximal parts are merged and assumes as static. Further, the distal parts are merged and assumed as moving.
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Results
The mean age of patients in our study was 54 ± 20 years. In our material we had six male patients and four females. 
Of these eight were White British, there was one Black African and the other one from the Middle East. Please 
see differences in rotation and translation with error bars for translational measurement differences in X, Y and 
Z-axes of COMs, which are presented in Table 1. 

We observed a greater variation in translation of COM in X axis (CI − 2.959–0.292) which was even presented 
in rotational difference alongside Y axis (CI 0.370–1.035). In other word the right lower legs in our study were 
more likely to be in varus compared to the left side. We found no statistically significant differences in external/
internal rotation or in recurvatum/antecurvatum. All variables were normally distributed. Tests of normality of 
distribution of the variables are presented in Table 2. The CI of all measurements apart from COM X and ROT 
Y, crossed zero (Table 1, Fig. 3).

Discussion
The main finding of our study was that it is possible to use our proposed technique in clinical practice as the soft-
ware is commercially available and low dose CT scan of the lower extremities is possible6–8. The second finding 
of our study was that, the left and right lower limbs of healthy adults were highly symmetrical in terms of length 
and rotation. They were further symmetrical in terms of recurvatum and antecurvatum. However, we observed 
that right lower legs were more likely in varus a fact which has not been mentioned in the literature previously.

Figure 3.   Illustrates automatic calculation of translation of Centre of Mass (COM) and Rotational differences 
around X, Y and Z axes.

Table 1.   Illustrates translation of COM (Centre of Mass) alongside X, Y and Z axes. Further illustrates 
rotational changes for all 10 patients, between proximal and distal parts of the merged 3D images of the right 
lower legs and mirrored images of the left lower legs. SEM; Standard error of the mean.

Patient

COMX (mm) 
Median: − 1.093 
Mean: − 1.626 
CI − 2.959–.292
SEM: .589

COMY (mm) 
Median: − .049 
Mean: − .739 
CI − 2.974–1.497
SEM: .988

COMZ (mm) 
Median: .867 
Mean: 0.910 
CI − 1.418–3.239
SEM: 1.029

ROTX (degrees) 
Median: − .350 
Mean: − .264 
CI − .928–.400
SEM: .293

ROTY (degrees) 
Median: 0.717 
Mean: .703 
CI .370–1.035
SEM: .147

ROTZ (degrees) 
Median: − .626 
Mean: − 1.184 
 − 3.444–1.075
SEM: .999

1 0.877 2.944 0.913 1.074 0.94  − 0.526

2  − 5.476  − 4.561  − 0.614  − 1.031 1.43  − 4.293

3  − 0.668  − 0.074 1.373  − 0.313  − 0.086  − 3.019

4  − 2.632 0.779 0.822 0.427 1.184  − 0.5

5  − 1.575 0.093  − 5.403  − 0.105 0.997  − 7.425

6  −  − 0.853  − 2.179 0.769  − 1.008 0.536  − 0.725

7  − 3.77  − 6.513 7.955  − 1.829 0.897 1.98

8  − 1.332  − 0.023 1.693  − 0.387 0.487 3.431

9  − 0.301 3.699  − 0.353 1.067 0.23 1.047

10  − 0.527  − 1.553 1.949  − 0.537 0.413  − 1.814

Table 2.   Illustrates normal distribution of the variables. COM; Centre of Mass. ROT; Rotational differences.

Tests of Normality

Kolmogorov-Smirnova Shapiro–Wilk

Statistic df Sig Statistic df Sig

COMX .211 10 .200* .922 10 .371

COMY .184 10 .200* .956 10 .738

COMZ .275 10 .031 .854 10 .065

ROTX .132 10 .200* .954 10 .721

ROTY .162 10 .200* .978 10 .950

ROTZ .158 10 .200* .970 10 .892
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Conventional X-ray is widely used to plan lower extremity surgery. The rotational deformity after IM nailing 
of the lower extremities is not an uncommon issue with a reported incidence of rotational deformity > 10° in 
up to 20%1. The most common technique mentioned in the literature is a method initially introduced by Jakob 
et al. which was further studied by Jend et al. 3,19. This technique is using CT scan over the lower extremities and 
describes manual measurement techniques which has been criticized for lack of reproducibility which is inherent 
in all measurement techniques using manual calculation4.

In this study we used a novel technique with computerized calculation which minimizes risks of inter- and 
intra-observer differences and reduces risk of bias.

As this technique is using surface anatomy of the lower legs a high-resolution CT-scan is not necessary and 
the radiation dosage can be reduced to levels comparable to conventional X-ray8,20.

Using our proposed technique with 10 cases we were able to show that there are no rotational (torsional) 
differences between right and left human lower legs.

However, we found that the right lower leg was more likely in varus. This fact to our knowledge has not pre-
viously been mentioned in the literature. Unfortunately, we have no explanation for this finding while we can 
speculate that future studies would tell us more about this potential difference.

A limitation of our study is it´s limited sample size (10 cases). However, as our data was normally distributed 
the calculation of mean was not difficult. Of course, if we had larger sample size then the standard error of our 
means should have been smaller resulting in narrower confidence band.

Another limitation of our proposed technique is that in its current format, it is difficult to use it as an intra-
operative tool. This technique in this stage can either be seen as a pre-operative planning tool or for a post-
operative control tool.

Unfortunately, the process of importing data from hospital´s PACS and downloading them to a separate 
server is at the moment a highly time-consuming procedure7. This is the explanation of our small sample size.

Ideally with low dose CT scan protocols in place in radiological departments of the hospitals, a low dose CT 
scan of the lower legs, mirroring 3D images of the unaffected side and fusion of the proximal and distal part of 
the lower leg will reveal the torsional deformity.

Another benefit of this technique could be for 3D pre-operative templating as we have been able to show that 
human lower legs are symmetrical.

Conclusion
A new technique for measurement of the rotational deformities of the lower legs has been proposed. Using this 
novel image fusion technique, we found that human lower legs are symmetrical. It is therefore appropriate to 
use our proposed technique in clinical practice to get an accurate and precise answer to whether there are any 
rotational deformities in the lower legs following our surgical procedures. It is further appropriate to perform 
pre-operative templating using the unaffected side in for example corrective rotational deformities of the lower 
legs, fracture surgery etc. Future studies with larger sample size are needed to investigate the finding that the 
right lower legs were more likely in varus in our study.
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