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Connecting complex networks 
to nonadditive entropies
R. M. de Oliveira1, Samuraí Brito2*, L. R. da Silva1,3 & Constantino Tsallis3,4,5,6

Boltzmann–Gibbs statistical mechanics applies satisfactorily to a plethora of systems. It fails however 
for complex systems generically involving nonlocal space–time entanglement. Its generalization 
based on nonadditive q-entropies adequately handles a wide class of such systems. We show here that 
scale-invariant networks belong to this class. We numerically study a d-dimensional geographically 
located network with weighted links and exhibit its ‘energy’ distribution per site at its quasi-stationary 
state. Our results strongly suggest a correspondence between the random geometric problem and a 
class of thermal problems within the generalised thermostatistics. The Boltzmann–Gibbs exponential 
factor is generically substituted by its q-generalisation, and is recovered in the q = 1 limit when the 
nonlocal effects fade away. The present connection should cross-fertilise experiments in both research 
areas.

Boltzmann–Gibbs (BG) statistical mechanics constitutes one of the pillars of contemporary theoretical phys-
ics. As such is has uncountable successes for a great variety of physical systems. However, when the system 
constituents have a generically nonlocal space–time entanglement, this theory does not apply. Such is the case 
already pointed in 1902 by Gibbs himself, namely when the standard partition function diverges, e.g., gravita-
tion. It is in this context that it was proposed in  19881 the generalisation—hereafter referred to as nonextensive 
statistical mechanics—of the BG theory based on nonadditive entropies, namely Sq = k

1−
∑

i p
q
i

q−1
 , which recovers 

SBG = −k
∑

i pi ln pi in the q → 1 limit. The composition of two probabilistically independent systems A and 
B yields straightforwardly Sq(A+ B)/k = [Sq(A)/k] + [Sq(B)/k] + (1− q)[Sq(A)/k][Sq(B)/k] . As we see, the 
BG entropic additivity is recovered when q = 1 . The fundamental advantage associated with q  = 1 is that, for 
strongly correlated systems, it enables, as illustrated  in2, the preservation of the extensivity of the thermodynamic 
entropy, mandated in all circumstances by the Legendre structure of classical thermodynamics.

In parallel with the above, the study of complex networks has been intensified around the  world3–7. Networks 
can be found everywhere. Society is formed by humans linked through relationships. The Internet is a set of 
devices communicating with each other. The brain is formed by neurones communicating through synapses. 
All these completely different systems can be translated onto a simple set of nodes (or sites) and edges (or links) 
obeying some connection rule, and the tools of network science can be successfully used to study them. Typical 
applications of this area can be found in classical and quantum  internet8,9,  medicine10,11,  neuroscience12, and 
 sociology13,14. It was thought, during more than a decade, that most of real networks were purely scale-free mean-
ing that the distribution of the number of links in the network follows a power-law distribution. It was recently 
argued that most real networks are not pure scale-free15, paving the way for new possibilities to describe them.

During the initial years, network science and nonextensive statistical mechanics were seen as completely dif-
ferent areas. But meaningful connections started in  200516–22. It is nowadays known that the degree distribution 
of asymptotically scale-free networks at the thermodynamic limit is of the form P(k) ∝ e

−k/κ
q  , where the q-expo-

nential function is defined as ezq ≡ [1+ (1− q)z]
1

1−q ( ez1 = ez ). This form, more precisely pq(εi) = e
−βq εi
q /Zq , 

optimizes the entropy Sq under appropriate canonical constraints, εi being the site energy and βq the inverse 
temperature; the BG weight is recovered at the q → 1 limit. This thermostatistical approach has been successfully 
applied in a wide diversity of areas, such as long-range-interacting Hamiltonian  systems23, vortices in type II 
 supercondutors24, cold  atoms25, granular  matter26, high-energy physics experiments on  Earth27 and observations 
in the outer  space28,29, civil  engineering30, and for predicting COVID-19 peaks around the  world31,32.
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In this work, we introduce and study a geographically located d-dimensional network model. One of the main 
characteristics of this model is the possibility to control the long/short range nature of the interactions between 
the sites. BG statistics completely fails to describe systems that interact at long-range, and many theories have 
been proposed to approach this regime. The present model introduces a new property for this class of systems. 
In addition to the fact that Euclidean distances ( dij ) between the sites are relevant, it also takes into account 
the weights ( wij ) of the links (see Fig. 1) and associates them to the ‘energy’ ( εi ) of each site. Due to that new 
ingredient, we could compute the energy distribution of the ever growing network. This distribution turns out 
to have the functional form of the q-generalised BG distribution for nonextensive systems, based on nonad-
ditive entropy. These numerical results strongly suggest a neat correspondence between the random network 
geometrical problem and a particular thermostatistical problem within the generalised theory.

The model
Our growing d-dimensional network starts with one site at the origin. We then stochastically locate a second site 
(and then a third, a fourth, and so on up to N) through a probability p(r) ∝ 1/rd+αG (αG > 0) , where r ≥ 1 
is the Euclidean distance from the newly arrived site to the center of mass of the pre-existing cluster; αG is the 
growth parameter and d = 1, 2, 3 is the dimensionality of the system (large αG yields geographically concentrated 
networks).

The site i = 1 is then linked to the site j = 2 . We sample a random number wij from a distribution P(w) that 
will give us the corresponding link weight. Each site will have a total energy εi that will depend on how many 
links it has, noted ki , and the widths {wij} of those links. At each time step, the site i only has access to its local 
energy εi defined as:

The value of εi will directly affect the probability of the site i to acquire new links. Indeed, from this step on, the 
sites i = 3, 4, . . . will be linked to the previous ones with probability

where dij is the Euclidean distance between i and j, where j runs over all sites linked to the site i. The attachment 
parameter αA controls the importance of the distance in the preferential attachment rule (2). When αA ≫ 1 the 
sites tends to connect to close neighbours, whereas αA ≃ 0 tends to generate distant connections all over the 
network. Notice that, while the network size increases up to N nodes, the variables ki and εi (number of links and 
total energy of the i-th node; i = 1, 2, 3 . . . ,N ) also increase in time (see Fig. 1 for a sample of the ever growing 
network).

If we consider the particular case P(w) = δ(w − 1) , where δ(z) denotes the Dirac delta distribution, Eq. (2) 
becomes �ij ∝ ki/d

αA
ij (αA ≥ 0) , thus recovering the usual preferential attachment rule. Consequently, the pre-

sent model recovers the one  in19–21 as a particular instance. Note that, if we additionally consider the particular 
case αA = 0 , we recover the standard Barabási–Albert model with �i ∝ ki

5,6.

(1)εi ≡

ki
∑

j=1

wij

2
(wij ≥ 0)

(2)�ij ∝
εi

d αA
ij

(αA ≥ 0) ,

Figure 1.  Sample of a N = 100 network for (d,αA,αG , η,w0) = (2, 1, 5, 1, 1) . As can be seen, for this choice of 
parameters, hubs (highly connected nodes) naturally emerge in the network. Each link has a specific width wij 
and the total energy εi associated to the site i will be given by half of the sum over all link widths connected to 
the site i (see zoom of site i).
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We are considering here the case where w is given by the following stretched-exponential distribution:

which satisfies 
∫∞

0
dw P(w) = 1 . As particular cases of Eq. (3) we have: η = 1 , which corresponds to an expo-

nential distribution, η = 2 , which corresponds to a half-Gaussian distribution, and η → ∞ , which corresponds 
to an uniform distribution within w ∈ [0,w0].

Results
Our focus here is to analyse the energy distribution p(ε) of the N ≫ 1 network. We have in fact analyzed a 
large amount of typical cases in the space (d,αA,αG ,w0, η) , and have systematically found the same results for 
d = 1, 2, 3 within the intervals (αA/d ∈ [0, 10];αG ∈ [1, 10];w0 ∈ [0.5, 10]; η ∈ [0.5, 3]) . Similarly to previous 
 works16,19–21, p(ε) does not depend on αG ; also, it does not depend independently on d and αA , but only, remark-
ably, on the ratio αA/d ; p(ε) also depends on w0 and η (see Fig. 2a–d). Because of these features, and without loss 
of generality, we have once for ever fixed αG = 1 , and d = 2 . The simulations were done for 103 realisations of size 
N = 105 , which was verified to be enough for observing the asymptotic distribution p(ε) with high precision.

We know that the signature of the Boltzmannian systems is the presence of exponentials and Gaussians 
distributions. Similarly, the nonextensive systems based on the entropy Sq can be recognised by the emer-
gence of q-exponentials and q-Gaussians distributions. We have here found that, independent of the choice 
of (d,αA,αG ,w0, η) , the ‘energy’ distribution p(ε) associated with the network is invariably well fitted by the 
following q-exponential:

(3)P(w) =
η

w0 Ŵ

(

1
η

) e−(w/w0)
η

(w0 > 0; η > 0) ,

ε
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Figure 2.  In these plots we show p(ε) for typical values of d (a), αG (b), w0 (c) and η (d). (a) By fixing 
(αG , η,w0,αA/d) = (1, 1, 1, 1) the dimensionality d does not modify p(ε) . (b) By fixing (η,w0,αA/d) = (1, 1, 1) , 
αG has no influence on p(ε) . (c) We show that variations of w0 yield a p(ε) which remains invariant when 
expressed in terms of ε/w0 . (d) We show that for variations of η the curves of p(ε) versus εβq(η) collapse once 
again. For simplicity, the values of the fixed variables were set equal to unity, but the results remain independent 
from this choice. The numerical precision of all the collapses is verified to be quite impressive. Very tiny 
discrepancies might be due to the fact that both N and the number of realisations are finite, and/or to high-order 
metric-topological terms. The simulations were averaged over 103 realisations for N = 105.
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where pq(ε) represents the generalisation, within nonextensive statistical mechanics, of the BG energy weight 
with ε , βq and Zq playing respectively the roles of energy, inverse temperature and normalisation factor (see 
Fig. 3). Note that, when q → 1 , we do recover the standard Boltzmann distribution since e−β1ε

1 ≡ e−βε . This 
result exhibits an interesting emergence of correspondence between a random network geometric problem 
and a particular case within generalised thermostatistics. This fact definitively reminds the Kasteleyn–Fortuin 
 theorem33, which establishes an important isomorphism between the bond-percolation geometric problem and 
the qPotts → 1 limit of the qPotts-state Potts ferromagnet.

For all (d,αA,αG ,w0, η) , we found that:

with βq0 ≃ (−10.81e−1.36η + 6.04)/w0 and βq∞ ≃ (−4.81e−1.22η + 2.56)/w0 . As can be seen, q does not depend 
on (η,w0) , but only on the scaled variable αA/d . In contrast, βq is less universal and depends on all three param-
eters (w0, η,αA/d).

In Fig. 4a,d we show the numerical results for the index q as function of αA/d . This result is consistent 
 with19,20, where the behaviour of q characterises the existence of three regimes. As can be seen, q is constant and 
equal to 4/3 in the range 0 ≤ αA/d ≤ 1 . This interval describes the regime of strong-long-range interactions char-
acterised by the highest value of q. In the interval 1 < αA/d � 5 we have the moderately-long-range interaction 
regime, characterised by q smaller than 4/3 but still greater than 1. In this regime q displays no abrupt transition 
from 4/3 to 1 but instead it decreases exponentially with αA/d through the function e1−αA/d19,20. This behaviour 

(4)pq(ε) =
e
−βqε
q

Zq
,

(5)q =

{

4
3

if 0 ≤ αA
d ≤ 1

1
3
e1−αA/d + 1 if

αA
d > 1

(6)βq =

{

βq0 if 0 ≤ αA
d ≤ 1

(βq0 − βq∞) e2(1−αA/d) + βq∞ if
αA
d > 1

Figure 3.  In these plots we show the variations of p(ε) for fixed values η = 1 (a) , η = 2 (b) and η = 3 (c), 
for αA/d = 0, 1.5, 3, 10 . In (d) we show the variations of p(ε) for fixed values of (αA/d, η) = (1, 1) and 
w0 = 1, 5, 10 . In all figures, the black continuous lines are given by Eq. (4) with (q,βq) given by Eqs. (5,  6) 
respectively. Insets: lnq-linear representation of the same data; the slopes of the straight lines precisely yield the 
corresponding values of ( −βq ). The simulations were averaged over 103 realisations for N = 105.
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exhibits that the BG regime was not yet reached. In the last regime, αA/d � 5 , the Boltzmannian-like regime 
finally emerges and q = 1 . Similar results for q were found  in17 for a gas-like network model. In the Fig. 4b,c,e we 
show similar results for the parameter βq which equals βq0 in the range 0 ≤ αA/d ≤ 1 and, then, exponentially 
decreases with αA/d ; βq increases with η and decreases with w0 . However, if we plot (βq − βq∞)/(βq0 − βq∞) , 
all curves collapse as a function of αA/d . Moreover, we verify in Fig. 4f that the effective ‘temperature’ decreases 
with increasing q. There is no thermodynamical prescription which would impose that.  In30, for instance, both 
possibilities are in fact observed.

Discussion
All these results strongly suggest that the ‘energy’ distribution p(ε) of the network is given by the very same 
expression which q-generalises the Boltzmann–Gibbs weight when it is the nonadditive entropy Sq which is 
optimised. Naturally, since the present study is numerical, we can not exclude very minor corrections due to 
high-order metric-topological terms. The BG limit is rapidly reached when αA/d � 5 . Not less important, q 
and βq depend on αA and d only through the ratio αA/d ; also, interestingly enough, none of them depends on 
αG . The fact that q depends only on αA/d means that this ratio uniquely determines the entropic nonadditivity 
universality class. The quantity βq also depends on η and w0 . Consistently, w0 , which characterises the width 
of the stretched-exponential distribution P(w), plays here the same role as T in usual thermal BG problems. 
This seemingly is the first time that, in a complex network, we identify a parameter which plays the role of an 
external parameter that we may fix at will, similarly to the manner in which we fix, in BG statistical mechanics, 
the temperature at which the thermally equilibrated system is placed. In all previous connections with random 
 networks16–22, βq (sometimes noted 1/κq ) was univocally related to q. A single value for βq for a given value of q 
is analogous to traditional critical points in BG statistics. In our present case, we have, for a fixed value of q, the 
freedom of making βq to vary, like T in BG thermal statistics.

Figure 4.  (a) q as a function of αA/d ; q is constant in the range 0 ≤ αA/d ≤ 1 ( q0 = 4/3 ) and decreases 
exponentially with αA/d for αA/d > 1 , down to q∞ = 1 (black solid line). (b) βq as a function of αA/d for 
η = 1, 2, 3 and w0 = 1, 5, 10 , for typical values of αA/d ; βq increases with η and decreases with w0 and αA/d . 
(c) By plotting (βq − βq∞)/(βq0 − βq∞) , all curves collapse and exponentially decrease with αA/d > 1 (black 
straight line). Inset: βq0 and βq∞ exponentially vary with η ; βq∞ was estimated by fixing αA/d = 10 . In (d,e) 
we present log-linear representations of the same data as in (a,c) respectively, exhibiting the exponential 
dependence of both q and βq on αA/d , when αA/d ≥ 1 . (f) By eliminating the variable αA/d , we show 1/(w0βq) 
as functions of q for the same set of data shown in the previous plots; q is related with 1/(w0βq) through the 
equation 1/w0[βq∞ + 9(βq0 − βq∞)(q− 1)2] that is valid for all values of (w0, η ). For very large values of αA/d 
and the extreme regions η → 0 and η → ∞ , the numerical precision needed to attain the stationary-state 
distribution is too high for our present computational effort and further analysis would be needed, which is out 
of the present scope.
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The present results strongly support the conjecture of existence of a neat correspondence between geometrical 
random network (asymptotically) scale-invariant problems and the present specific class of many-body models 
within nonextensive statistical mechanics, constructed upon nonadditive entropies. This is analogous to the 
Kasteleyn-Fortuin theorem for the qPotts-state Potts model, whose qPotts → 1 limit rigorously corresponds to the 
bond percolation  problem33, and also to the de Gennes celebrated isomorphism for the n-vector ferromagnetic 
model, whose n → 0 limit precisely corresponds to the self-avoiding random  walk34, which constitutes a pillar in 
polymer physics. It is possible to think of a variety of applications of connections of the present kind, for exam-
ple the maintaining budgets to be distributed among cities connected within a large regional network of roads. 
Each city could, for instance, receive a support proportional to the sum of the widths of the roads arriving to it.

Methods
To calculate the relevant properties of our network model in a statistically relevant way, we used 1000 independ-
ent realisations within the standard Monte Carlo method to generate different instances of the our network. The 
network size was set to be N = 105 . All simulations were obtained through independent codes in C. To generate 
random numbers from the stretched exponential distribution we used the boost library available in https ://www.
boost .org/. Logarithmic binning was used to generate the histogram of the energies using Python packages of 
the numpy library.

Data availability
The data and the codes that support all the results within this paper are available from the corresponding authors 
upon request.
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