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Fluctuating environmental light 
limits number of surfaces visually 
recognizable by colour
David H. Foster

Small changes in daylight in the environment can produce large changes in reflected light, even over 
short intervals of time. Do these changes limit the visual recognition of surfaces by their colour? 
To address this question, information-theoretic methods were used to estimate computationally 
the maximum number of surfaces in a sample that can be identified as the same after an interval. 
Scene data were taken from successive hyperspectral radiance images. With no illumination change, 
the average number of surfaces distinguishable by colour was of the order of 10,000. But with an 
illumination change, the average number still identifiable declined rapidly with change duration. In 
one condition, the number after two minutes was around 600, after 10 min around 200, and after an 
hour around 70. These limits on identification are much lower than with spectral changes in daylight. 
No recoding of the colour signal is likely to recover surface identity lost in this uncertain environment.

Changes in natural light affect how the world appears and how we interact with it. The movement of shadows 
alters the perception of contour and depth1,2 and the setting sun makes directly lit surfaces appear more red and 
shadowed areas more blue3,4. These spatial and spectral variations are evident over intervals of an hour or more. 
But there are other changes in illumination that have a shorter time scale and which might also affect appearance.

Even in a visibly cloudless sky, the solar beam undergoes randomly varying attenuation from unobservable 
cirrus clouds and aerosols, including sulphate, black carbon, organic materials, and dust1,5,6. The intensity varia-
tions over intervals of minutes are small, of the order of 0.1% around midday, well below the threshold for visual 
detection7, though they do increase around dawn and dusk8,9. Yet there is an important difference between these 
fluctuations in the light incident on a scene and the fluctuations in the light reflected by its constituents, espe-
cially the three-dimensional, spatially and spectrally complex surfaces of natural scenes10–12. Are the changes in 
reflection large enough to impair the visual recognition of surfaces by their colour, and if they do, by how much?

A straightforward way to address these questions is to measure, directly or indirectly, the perceived or appar-
ent colour of surfaces in a scene before and after an illumination change13,14. If the difference in appearance of 
a particular surface is not too large, that is, within some tolerance defined by the observer’s sensitivity or inter-
pretation of colour differences or colour categorization15,16, then a correct surface match should be possible. But 
this approach neglects the other surfaces in the scene whose colour differences may also be within tolerance. 
Any one of these surfaces could offer an incorrect surface match17,18.

Instead, a more comprehensive approach is needed, one that accommodates the similarities of appearance 
in any sample of surfaces drawn from a scene and the changes of the appearance in the sample over time. Each 
is intrinsically uncertain.

The effect of similarity on performance is governed not just by the gamut of surface colours in a scene19 but 
also by the differing abundances or relative frequencies of different colours. These relative frequencies influence 
the composition of any random sample from the scene and therefore their distinguishability20,21.

The effect of illumination changes is usually considered in relation to the phenomenon of colour con-
stancy, the invariance of perceived or apparent colour under changes in the intensity and spectrum of the 
illumination15,16,22,23 or with atmospheric scatter24. These changes in illumination are conventionally assumed 
to be uniform across a scene or have a smooth spatial gradient, and they can be largely offset by scaling cone 
signals7,25 or establishing correspondences between cone signals18. Yet real-world changes in light are more likely 
to be geometric—a redistribution of light over the scene—than spectral. These changes are typified by the shifting 
dappled illumination in forests and woodland26,27 under the changing path of the solar beam1.

Happily, there is a simple measure that is sensitive to both similarities of surface appearance and changes 
in appearance over time. It is the number of surfaces in a sample that can be recognized by their colour despite 
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the illumination change; that is, more precisely, the number that can be identified as the same over the interval 
containing the change17,21. Estimates of this number can be made computationally by information-theoretic 
methods28, which provide a theoretically best possible limit, a least upper bound on the average number pos-
sible for the given conditions18,29. In these calculations, only the spectral properties of the light reflected from 
each surface in a sample are considered, not the local spatial features, for example, texture, shape, location, and 
proximity to other surfaces, which, unlike the illumination, are assumed to remain constant.

Source data for these estimates were taken from successive hyperspectral radiance images of 18 natural, 
outdoor scenes that included both undeveloped and developed stationary land cover30,31. Pairs of images were 
available separated by intervals of about one to fifteen minutes, and, for four of the scenes, multiple pairs were 
also available with intervals ranging up to several hours. It is stressed that the illumination changes were those 
actually recorded. Simulations of spectral changes in daylight were used solely as a control21,29.

The main outcome of this work is that even over short time intervals, fluctuations in environmental light 
severely limit surface recognition by colour, and much more so than with spectral changes in illumination.

Results
Amplifying variation by reflection.  As a preliminary, to illustrate the physical differences in the varia-
tion of direct and reflected light, radiance data were sampled selectively from a scene containing both sky and 
a mixture of landcover types. The hyperspectral radiance images of the scene were acquired at 14:09, 14:11, 
and 15:16 in the course of a previous study32. The images in Fig. 1 show colour renderings of the radiance data. 
Sample areas were defined by a thin horizontal strip, size 896 × 30 pixels (leftmost image, white rectangle near 
top). Radiance values were transformed into long-, medium-, and short-wavelength-sensitive cone excitations. 
The standard deviation (SD) of the differences in excitations at 14:09 and 14:11 and separately at 14:11 and 15:16 
were obtained as a function of the vertical position of the strip in the 1344 × 1024-pixel image. The size of the 
strip was a compromise between making reliable estimates of the SD and avoiding bias.

The plots in Fig. 1 show the SD of the magnitude of the differences in cone excitations relative to the mean 
over the sample at each vertical sample position, plotted on the left and right axes. Data from regions of the 
scene with mainly sky, mountains, trees, or buildings are demarcated by horizontal grey lines. The left plot is 
for differences between cone excitations at 14:09 and 14:11. For direct light from the sky, the relative SD varies 
between 0.22% and 0.27%. These values for a 2-min interval are of the same order as those from independent 
pyrheliometer recordings from other scenes. For light reflected from distant mountains, the relative SD increases 
to about 1.1%, but from the nearer trees and buildings it is between 2.7% and 12.7%, which should be detectable 
by a normal trichromatic observer with sensitivity characterized by the Weber-Fechner fraction7 or rather larger 
values33 or by colorimetric measures34,35.

The right plot is for differences between cone excitations at 14:11 and 15:16. For direct light from the sky, 
the relative SD increases little across this larger, 65-min interval, as expected, whereas for light from trees and 
buildings it is an order of magnitude larger (the horizontal scale is five-times larger in this plot).

Illumination fluctuations are to be expected with plant canopies27,36, which add to the spatial and spectral 
variance12. Even so, foliage movement seems to contribute little to the variance in Fig. 1 since the multiplicative 
increase in relative SD between the left and right plots is about the same for mountains and trees. In the remainder 
of this analysis, samples were not limited to strips and were drawn freely from the whole image.
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Figure 1.   Variation in cone excitations across two different time intervals as a function of the vertical sample 
position. The sample area is a thin horizontal strip (leftmost image, white rectangle near top). Its vertical 
position is plotted on the leftmost axis in pixels and on the rightmost in degrees of visual angle. Variation is 
quantified by the standard deviation (SD) of the differences in cone excitations relative to the mean of the 
sample, plotted on the horizontal axis in per cent. Data are for a 2-min interval in the left plot and for a 65-min 
interval in the right plot, which has a larger horizontal scale.
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Representations of radiances by cone excitations are useful for quantifying the physical effects of illumination 
changes, but they are poorly suited to quantifying observer responses7,25. Equally different cone excitations do 
not generally imply equally distinguishable radiances.

Numbers of distinguishable surfaces.  A colour space standardized by the Commission Internationale 
de l’Eclairage (CIE) was used to represent radiances in a perceptually relevant way37. This space CIECAM0238 has 
axes corresponding to lightness, redness-greenness, and yellowness-blueness and is approximately uniform in 
the sense that equal Euclidean distances correspond to approximately equal perceived colour differences39,40. As 
a control, another colour space S-CIELAB41 was also tested, which though less uniform than CIECAM02 space, 
simulates the spatial-frequency filtering of the whole image by the eye42 and the resulting spectral mixing43.

To provide a reference level for similarities in surface appearance, estimates of the number of surfaces dis-
tinguishable by colour were obtained for single radiance images from each of the 18 scenes in Fig. 2. Although 
population estimates of these numbers have been made previously20, sample estimates are needed for the scenes 
used in this analysis. Estimates depend both on scene composition and on illumination. They also depend on 
an observer threshold, without which the number of surfaces may not be well defined43.

The first data row in Table 1 shows the estimated number of distinguishable surfaces averaged over the 18 
scenes, with confidence limits in Supplementary Table S1 online. Values are for two models of observer internal 
noise, one a Gaussian distribution and the other a uniform distribution. The width of each distribution was 
referred to a hard discrimination threshold ΔEthr of 0.5, equivalent to a just perceptible colour difference in 
CIECAM02 space44.

Figure 2.   Colour images of the 18 scenes used in the analysis. Each image is from one of a pair of hyperspectral 
radiance images separated by a time interval of between about 1 min and 15 min (only one member of each 
pair is shown). For the four scenes in the top row, multiple hyperspectral image pairs were available with time 
intervals ranging from about 1 min to at least 4.6 h. The hyperspectral images had dimensions 1344 × 1024 
pixels and spectral range 400–720 nm sampled at 10-nm intervals12,32.
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With Gaussian internal noise, the average estimated number of distinguishable surfaces is about 12,000 and 
with uniform internal noise about 19,000. Both values are compatible with earlier estimates20. Notice that these 
estimates refer to the underlying radiance image, not the discrete hyperspectral sample that approximates it21.

With S-CIELAB space, the corresponding estimates are much smaller, about 760 and 1200, that is, about 6% 
of those with CIECAM02 space, for both models of observer internal noise (Supplementary Table S2 online). 
The reduction seems less to do with spatial-frequency filtering and more to do with the properties of CIELAB 
space itself, which gives much smaller estimates than CIECAM02 space (not shown here).

Doubling ΔEthr reduced the average estimated number of distinguishable surfaces to about 1600 and 2600 
with CIECAM02 space and the two models of observer internal noise (Supplementary Table S3).

Recall that these estimates take no account of illumination changes.

Numbers of surfaces identifiable over short time intervals.  What, then, are the effects of an illumi-
nation change? Estimates of the number of surfaces identifiable by their colour over intervals of about 1–15 min 
were obtained for single pairs of radiance images from each of the scenes in Fig. 2. Over these short intervals, the 
spectrum of the solar beam did not measurably change according to recordings from a neutral reference surface 
in the field of view21. The second data row in Table 1 shows the estimates.

With CIECAM02 space, the average estimated number of identifiable surfaces per scene is about 270 with 
both models of observer internal noise and a reference discrimination threshold ΔEthr of 0.5. This average estimate 
is almost two orders of magnitude smaller than that for the number of distinguishable surfaces. Doubling ΔEthr 
reduced the average estimate from about 270 to about 180 (Supplementary Table S3).

With S-CIELAB space, the corresponding average estimates differ from those with CIECAM02 space by about 
a factor of two (Supplementary Tables S2).

There was no reliable correlation between the number identifiable and the length of the time interval with 
this range of intervals.

Long time intervals.  How does increasing the interval between images beyond 15 min affect the number 
of surfaces identifiable by their colour? Estimates of this number for intervals �t ranging from about 1 min to at 
least 4.6 h were obtained from the four scenes in the top row of Fig. 2. For each scene, at least 100 pairs of images 
with different intervals were available. Colour images of the main sequences are shown elsewhere32. This analysis 
used the same methods as in the preceding section. Again to provide a reference level, estimates of the number 
of distinguishable surfaces were also obtained.

The third data row of Table 1 shows the estimated number of distinguishable surfaces averaged over the mul-
tiple images from each of the four scenes, with confidence limits in Supplementary Table S1 online. The average 
estimates of about 9500 and 15,000 for the two models of observer noise are somewhat smaller than with the set 
of 18 scenes in the first data row, but they come from images recorded later in the day.

Figure 3 shows the logarithm of the estimated number of identifiable surfaces plotted against the logarithm 
of the interval �t between images from each scene represented in CIECAM02 colour space with Gaussian 
internal noise and a reference discrimination threshold ΔEthr of 0.5. The sample values of log Δt are distributed 
nonuniformly because of the linear timing regime used in the original image acquisitions32. The dashed lines are 
linear regressions. Similar plots were obtained with the assumption of uniform internal noise and with images 
represented in S-CIELAB space.

If the magnitude of the illumination changes were constant with increasing interval, then the linear regres-
sions would be flat, whereas the logarithm of the estimated number identifiable declines rapidly with log Δt. 
The regressions account for between 63% and 94% of the variance over the approximately 4.6 h range. Still, as 
an explanatory variable, Δt is only a proxy measure for the unspecified change in the spectral and geometric 
properties of the illumination. The actual change and the resulting variance about the regression line depend 

Table 1.   Numbers of distinguishable surfaces and surfaces identifiable over time intervals. Entries are 
logarithmic inverses of mutual information estimates averaged over images, image pairs, and regression 
estimates. Estimated 95% confidence limits are in Supplementary Table S1 online. Entries to 2 significant 
figures. a Gaussian and uniform models of observer internal noise were referred to a hard discrimination 
threshold ΔEthr = 0.5 b Number of images from each scene acquired at different times. c All scenes in Fig. 2 d Top 
row scenes in Fig. 2.

Surface measure Images/sceneb Interval

Observer internal noisea

Gaussian Uniform

18 scenesc

Distinguishability 1 – 12,000 19,000

Identifiability over intervals 2 1–15 min 270 270

4 scenesd

Distinguishability > 17 – 9500 15,000

Identifiability over intervals > 110 2 min 580 580

10 min 210 210

1 h 69 69
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on the reflecting surfaces in the scene, the level of illumination, the time of day, and the differential effects of 
changing solar altitude and azimuth on the distribution of shadows.

Nonetheless, the regression fits can be used to estimate the number identifiable for representative values 
of Δt, say 2 min, 10 min, and 1 h. The bottom three data rows in Table 1 summarize these estimates averaged 
over the four scenes, with confidence limits in Supplementary Table S1 online. With CIECAM02 space and 
Gaussian internal noise, the average estimated number identifiable at 2 min is about 580, falling to about 210 at 
10 min, and 69 at 1 h. The same values were obtained with uniform internal noise. The value of 210 at 10 min is 
compatible with the average of 270 for the 18 pairs of images with intervals of 1–15 min (see confidence limits, 
Supplementary Table S1 online). With S-CIELAB space, average estimates varied from being smaller than with 
CIECAM02 space at short intervals to being larger at long intervals, due presumably to spatial-frequency filtering.

As noted earlier, these illumination changes were mainly geometric, with little or no change in spectrum.

Spectral changes in illumination.  Are the effects of changes in illumination of the kind considered 
here similar to those with purely spectral changes in illumination on a scene? Spectral changes are usually 
simulated18,45 since they are difficult to record naturally. To answer this question, estimates of the number of 
surfaces identifiable by colour were obtained under a change in a global illuminant that was equivalent to a shift 
in daylight spectrum from a correlated colour temperature of 6500 K, corresponding to typical daylight, to one 
of 4000 K, corresponding to the setting sun.

With CIECAM02 space and Gaussian internal noise with a reference discrimination threshold ΔEthr of 0.5, 
the estimated number of surfaces identifiable under this spectral illuminant change was about 4400 per scene 
averaged over the four scenes in the top row of Fig. 2. With uniform internal noise instead of Gaussian noise, 
it was about 5500 per scene. Both values are manifestly greater than the corresponding values of 580 obtained 
with real-world changes in illumination over 2 min (Table 1).

Discussion
The reflecting properties of materials in a natural environment vary randomly from point to point owing to 
variations in their composition, texture, orientation, weathering, and other factors10,21. The light within this 
environment also varies randomly from point to point, with mutual reflection, occlusion, and transilluminance 
producing chromatic variation extending beyond the daylight locus12,46. The effect of this diversity on vision is, 
however, moderated by the differing abundances of surface colours20,47. Thus the average number of surfaces in 
a scene that can be distinguished by their colour is of the order of 10,000, much less than the number of colours 
that can be distinguished within the scene20,47.

Even then, the number of distinguishable surfaces does not represent the number that retain their visual 
identity over time. Illumination and surface reflection together determine the image presented to the eye. And 
because natural illumination varies, even over intervals as short as a few minutes, there can be large physical 
changes in reflected light from some or all of a scene. The number of surfaces that can therefore be identified by 
their colour after an interval is much less than the number that can be distinguished. In one condition of this 
study, the average number that can be identified is around 600 after two minutes, equivalent to about 5% of the 
number distinguishable, and it falls to around 200 after 10 min, and to around 70 after an hour. Crucially, though, 
it is not these particular values that are significant, but the order of magnitude of the effects they represent.

∆

Figure 3.   Estimated number of identifiable surfaces as a function of time interval Δt between successive 
radiance images of each of the four scenes shown above the plots. Images from the scenes were represented in 
CIECAM02 colour space with a Gaussian model of observer internal noise referred to a hard discrimination 
threshold ΔEthr of 0.5. Logarithmic scales are used to stabilize variance and linearize dependencies. Vertical axes 
are adjusted for the range of data available. The dashed lines are linear regressions and the grey vertical lines 
mark intervals of 2 min and 1 h.
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These estimates may be the best possible for a normal trichromatic observer, yet they do depend on the 
observer model. Most obviously, increasing observer internal noise decreases both the number of distinguish-
able surfaces and the number identifiable after an interval. Similarly, including spatial-frequency filtering of the 
image by the eye with S-CIELAB colour space reduces the number of distinguishable surfaces but also reduces 
the rate at which the number of identifiable surfaces declines with the length of the interval. These reductions 
are attributable partly to the use of CIELAB colour space instead of the more uniform CIECAM02 colour space 
and partly to the reduction in uncorrelated variance between images.

The present findings on real-world illumination changes appear to confirm an earlier speculation20 that 
colour constancy, or the lack of it, does not generally determine the extent to which surfaces can be identified 
by their colour in natural scenes under different illuminants. To be clear, this speculation was based on other 
phenomena: the effect of relative frequency of different colours on the distinguishability of surface colours and 
the effect of simulated spectral changes in daylight. In fact, as shown here, real-world illumination changes have 
an even greater impact than relative frequency.

Still, it might reasonably be argued that the contribution of higher-level cognitive mechanisms has not been 
considered. There is a long history of the study of observers’ ability to separate the appearance of surfaces from 
judgements about them45,48–51, specifically, to be aware of a difference in illumination and, at the same time, of 
the stability of surface reflectance. Yet it is one thing to be aware of this stability and another to correctly identify 
individual surfaces by their colour. These two competencies are distinct, and the one does not necessarily imply 
the other.

There are several qualifications to this analysis. First, the information-theoretic estimates, despite provid-
ing a least upper bound on the number identifiable, do not actually indicate which surfaces are identifiable. To 
find those surfaces, a specific mapping from one image to the other needs to be defined, and its performance is 
usually imperfect29. Illustrations of some errors in identification with mappings defined by standard chromatic 
adaptation transformations are given elsewhere21,29.

Second, observers were assumed to behave optimally. Procedural factors were not taken into account, for 
example, how search for a particular surface might be implemented52 or affected by peripheral colour awareness53, 
attention54, or memory55,56. Observers’ search strategies can turn out to be far from optimal, with local scene 
colour57, context58, and salience59 all influencing performance. Global image properties can also affect appear-
ance judgements13,60,61. As a consequence, observers presented with a possible match may accept colour differ-
ences that exceed conventional threshold values16,18,62. In short, the numerical limits reported here are likely to 
be overestimates.

Third, these limits are contingent on the chosen sample of 18 scenes. They included near, middle, and distance 
views drawn from the main land-cover classes30,31, containing shrubs, ferns, flowers, rock, stone, urban build-
ings, and farm outbuildings. Larger data sets might reveal different limits, though the control measurements 
with simulated spectral changes in daylight on the 18 scenes were consistent with those previously reported 
with 50 scenes20.

Fourth, and last, the limits are also contingent on the characteristics of the illumination variations. In the 
presence of cloud, changes in solar altitude and azimuth may produce changes in the pattern of reflected light 
qualitatively different from those considered in this analysis.

Throughout this analysis, the concern has been only with the spectral properties of the light reflected from 
individual surfaces in samples drawn from a scene. If, instead, observers had access to more than just spectral 
properties, for example, local spatial features such as texture63 and shape64, a more robust response might be 
achieved. But spatial features remain defined by the light they reflect, which, in turn, depends on the fluctuat-
ing incident beam. They are therefore subject to the same information-theoretic limits that affect recognition 
by colour. By the nature of these limits, any recoding of the colour signal, including the usual transformations 
associated with colour constancy, is unlikely to retrieve surface identity lost in this uncertain environment.

Methods
Irradiance fluctuations.  An independent estimate of the minimum level of irradiance fluctuations was 
obtained from pyrheliometer recordings archived by the World Radiation Monitoring Center (WRMC). The 
station nearest to the site of the hyperspectral recordings used in this study was Cener in Sarriguren, Navarra, 
Spain8,9. Normal incidence recordings of surface irradiance were extracted for days in June and October contain-
ing fewest interruptions of the solar beam36. The standard deviation (SD) of the mean at 1-min intervals was 
derived by a method proposed by Rice for nonparametric residual variance estimates65. Its value divided by the 
mean, i.e. the relative SD, varied through the day. On 3 June 2010, it had a minimum of 0.13% at 13:00 and on 19 
October 2010 a minimum of 0.09% at 13:00. On both days it remained less than 0.5% between 7:00 h and 16:00 
but increased outside this interval.

Hyperspectral radiance data.  Eighteen pairs of unaveraged hyperspectral radiance images of outdoor 
vegetated and nonvegetated stationary scenes were extracted from sets of hyperspectral data collected from the 
Minho region of Portugal in 2002 and 2003. One consisted of 14 scenes from which single pairs of images were 
available separated by intervals of about 1 min to 15 min12,19. The other set consisted of four scenes from which 
multiple pairs of images were available separated by intervals of about 1 min up to 4.6 h32. Pairs of images were 
excluded if significant movement in the scene was detected during the acquisition or became obvious during 
subsequent image registration operations. Each image had dimensions 1344 × 1024 pixels and spectral range 
400–720 nm sampled at 10-nm intervals. The angular subtense of each scene at the hyperspectral camera was 
approximately 6.9° × 5.3°, so that each pixel in the image represented the integrated image radiance over approxi-
mately 0.3 × 0.3 arcmin32.
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The contribution of noise in the imaging system to differences in successive hyperspectral images was negli-
gible in comparison with the effects of illumination change, even over 2 min, as illustrated by the plots in Fig. 1.

Colour renderings of one member of each image pair are shown in Fig. 2. Telespectroradiometer recordings 
of the correlated colour temperature of the direct illumination on a neutral reference surface in the field of view 
did not differ reliably between acquisitions up to 15 min apart. Reliable changes in correlated colour temperature, 
e.g. from 5949 K to 3014 K, were, however, recorded across much larger intervals of 4.6 h with the scene at the 
top right in Fig. 2.

Each hyperspectral image was registered over wavelength by uniform scaling and translation to compensate 
for variations in optical image size, especially at the ends of the spectrum. Each pair or sequence of hyperspectral 
images for each scene was then registered over acquisition time by translation to compensate for any residual 
differences in optical image position. All image registrations were performed to subpixel accuracy with in-house 
software. For some scenes, padding artefacts a few pixels wide were visible at the edges of the images, and were 
subsequently trimmed. Images were calibrated for spectral radiance against independent spectral radiance data 
recorded from a neutral reference surface or surfaces embedded in the scene or in the field of view21. Data from 
these image pairs has not been previously reported.

Simulated illumination changes.  As a control, a reflected radiance image L(u, v; �) , indexed 
by spatial coordinates u, v, and wavelength λ, was represented as the product of an effective spec-
tral reflectance R(u, v; �) and a global illuminant E0(�) , defined by a daylight with the same corre-
lated colour temperature as the direct beam; that is, L(u, v; �) = E0(�)R(u, v; �) . Notation follows pre-
vious use21,38. Given R(u, v; �) and two fixed daylight illuminants, E1(�) and E2(�) , corresponding 
radiance images were then obtained as L1(u, v; �) = E1(�)R(u, v; �) = (E1(�)/E0(�))L(u, v; �) and 
L2(u, v; �) = E2(�)R(u, v; �) = (E2(�)/E0(�))L(u, v; �) . The fixed daylight illuminants were drawn from 
around noon and towards the evening, with respective correlated colour temperatures of 6500 K and 4000 K4,66.

Cone excitations.  For demonstration only, the spectral radiance L(u, v; �) at time t, was converted to long-, 
medium-, and short-wavelength-sensitive cone excitations qL(u, v, t), qM(u, v, t), qS(u, v, t) in a standard way38. 
Integrals were evaluated numerically over the spectral range 400–720 nm in 10-nm steps. For each k = L, M, S, 
cone excitations qk(u, v, t) were subjected to von Kries scaling7 by the corresponding spatial mean qk(t) of the 
sample points; that is, q′k(u, v, t) = qk(u, v, t)

/

qk(t) . Sample areas were defined by a thin horizontal strip, size 
896 × 30 pixels. At each point (u, v) in the sample, the magnitude of the physical difference in cone excitations at 
times t1 and t2, i.e. �q′k(u, v) = q′k(u, v, t2)− q′k(u, v, t1) , was summarized by the unweighted Euclidean norm 
�e(u, v) =

[
∑

k �q′k(u, v)
2
]1/2 . The SD of �e(u, v) was then evaluated over (u, v) and the result recorded as a 

function of the vertical position of the strip in the 1344 × 1024-pixel image. Because of von Kries scaling, the SD 
was defined relative to the mean of the sample.

Uniform colour spaces.  Hyperspectral radiance images were represented in the approximately uniform 
colour space CIECAM0238 and, for comparison, S-CIELAB41, where S-CIELAB is an extension of CIELAB that 
incorporates pattern-separable spatial filtering (https​://githu​b.com/wande​ll/SCIEL​AB-1996/). The spectral radi-
ance L(u, v; �) was converted to normalized tristimulus values and then into CIECAM02 coordinates and into 
CIELAB coordinates for S-CIELAB space39,40. The coordinates of CIECAM02 are J , aC, bC , where J correlates 
with lightness, ranging from 0 to 100, and aC and bC correlate with redness–greenness and yellowness–blueness, 
respectively. The corresponding coordinates of CIELAB are L∗, a∗, b∗ . There are, however, differences in the 
degree of uniformity of CIECAM02 and CIELAB spaces67. Their physiological plausibility has been evaluated 
with electroencephalographic and magnetoencephalographic methods68.

Observer uncertainty.  The effect of uncertainty in the observer was modelled in CIECAM02 and 
S-CIELAB spaces as internal additive noise20,69. The underlying probability density function or pdf was assumed 
to be either Gaussian or uniform, with the latter providing a link to the deterministic or hard discrimination 
thresholds ΔEthr used in colorimetry7. A just perceptible colour difference corresponds to a value for ΔEthr of 0.5 
in CIECAM02 space, which is approximately equivalent44 to a value of 1.0 in CIELAB space40,70,71, though larger 
values may be defined by acceptability criteria62 and in categorization tasks16. Memory effects are not considered 
here55,56.

The Gaussian and uniform distributions were each parameterized by a nominal width w, which was referred47 
to values of ΔEthr. For a Gaussian distribution with SD σ , say, w was defined as 121/2σ . For a uniform distribu-
tion, w was defined as the width of the support of the distribution. Since the SD of the uniform distribution is 
12−1/2w , Gaussian and uniform distributions with the same w then have the same variance. Values of ΔEthr were 
set to 0.5 and 1.0 in CIECAM02 space and to 1.0 in S-CIELAB space.

Mutual information and distinguishable points.  The method used to estimate the number of sur-
faces distinguishable by their colour follows previous studies20,21,47. Scenes were not segmented into regions, 
except for the trivial limit defined by pixel resolution. Critically, points are assumed to be drawn randomly from 
each scene29. At each instant, the triplets J , aC, bC in CIECAM02 space or L∗, a∗, b∗ in S-CIELAB space can be 
treated as instances a , say, of a three-dimensional continuous random variable A with pdf f (a) , which underlies 
the observed distribution of colours in the scene. Notice that the spatial filtering associated with S-CIELAB is 
applied before the random draw rather than afterwards.

The uncertainty in the random variable A is quantified28 by the Shannon differential entropy h(A) given by

https://github.com/wandell/SCIELAB-1996/
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which is measured in bits if the logarithm is to the base 2 (the symbols h and a should not be confused with col-
orimetric quantities). When f is the uniform function, that is, when the colours are equally probable, the entropy 
coincides with the logarithm of the conventional volume of the colour gamut.

Observer responses can also be treated as instances of a three-dimensional continuous random variable, B 
say. The amount of information that B provides about A is given by the mutual information28, written I(A;B) . 
Its inverse logarithm may be interpreted as the approximate number of points N in the scene that can be distin-
guished in the presence observer uncertainty; that is,

To evaluate I(A;B) , it can be expressed as a combination of the differential entropies h(A) , h(B) , and h(A,B) , 
where h(A,B) is the differential entropy of A and B taken jointly; that is,

Suppose that observer internal noise is represented by a three-dimensional continuous random variable W , 
so that B = A+W . If W is obtained by drawing pseudorandom values from the assumed noise distribution, 
the right hand side of (2) can be estimated numerically. But using histograms in place of the unknown pdf f in 
(1) can lead to biases in estimates. Instead, the more accurate Kozachenko-Leonenko kth-nearest-neighbour 
estimator72,73 was used in conjunction with an offset method29 (https​://githu​b.com/imari​nfr/klo). Though this 
calculation sets a limit on the number of distinguishable points, the number of distinguishable surfaces cannot 
exceed this limit43.

Mutual information and identifiable points.  The method used to estimate the number of surfaces iden-
tifiable by their colour after an interval is similar. At times t1 and t2 , the triplets in CIECAM02 space or S-CIELAB 
space are treated as instances of three-dimensional continuous random variables A1 and A2 . If observer responses 
are treated as instances of a three-dimensional continuous random variable B = A2 +W , then the amount of 
information that B provides about A1 is given by the mutual information I(A1;B) = I(A1;A2 +W) , which can 
be estimated as before. Its inverse logarithm may be interpreted as the approximate number of points N in the 
scene that can be identified between times t1 and t2 in the presence observer uncertainty.

For the special case in which the time interval is zero, so that t1 = t2 and A1 = A2 = A , say, the inverse loga-
rithm of the mutual information I(A;B) = I(A;A+W) reduces to the number of distinguishable points. An 
intuitive rationale for this interpretation is provided elsewhere20,21. This relationship between distinguishability 
and identification across time does not imply that the same processes necessarily mediate observer judgements74.

Although it might seem counterintuitive, N is not presented as a proportion of the total number of points in 
the scene, defined in some way, since N is independent of sample size providing that the sample is sufficiently 
large. This independence can be confirmed empirically18 by plotting the variation in the number of points identi-
fied by nearest-neighbour matching29 as sample size is progressively increased: the number of matched points 
asymptotes below what is theoretically possible.

Because of the linearizing effect of a logarithmic scale on estimates of N, means and 95% BCa confidence 
limits75 over scenes were calculated for the corresponding values of mutual information and then inverse loga-
rithms taken.

Data availability
Hyperspectral radiance data analysed in this study are available at https​://doi.org/10.6084/m9.figsh​are.c.52404​
20 and at https​://perso​nalpa​ges.manch​ester​.ac.uk/staff​/d.h.foste​r/ and https​://sites​.googl​e.com/view/sergi​onasc​
iment​o/home/scien​tific​-data. Software for estimating differential entropy and mutual information for multivari-
ate data is available at https​://githu​b.com/imari​nfr/klo.
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