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Bulk‑edge correspondence 
of classical diffusion phenomena
Tsuneya Yoshida* & Yasuhiro Hatsugai

We elucidate that diffusive systems, which are widely found in nature, can be a new platform of the 
bulk-edge correspondence, a representative topological phenomenon. Using a discretized diffusion 
equation, we demonstrate the emergence of robust edge states protected by the winding number for 
one- and two-dimensional systems. These topological edge states can be experimentally accessible 
by measuring diffusive dynamics at edges. Furthermore, we discover a novel diffusion phenomenon 
by numerically simulating the distribution of temperatures for a honeycomb lattice system; the 
temperature field with wavenumber π cannot diffuse to the bulk, which is attributed to the complete 
localization of the edge state.

In these decades, the notion of topology in condensed matter physics enhances its significance1–7. One of the 
characteristic topological phenomena is the emergence of robust gapless edge states due to topological properties 
in the bulk which is known as the bulk-edge correspondence; the chiral edge states emerge8 corresponding to 
a finite value of the Chern number in the bulk of systems without symmetry9, which is elucidated in Ref.10. The 
topologically protected edge states are sources of novel phenomena, such as the quantized Hall conductance9,11, 
the emergence of Majorana fermions12–18, etc.

Remarkably, recent works extended the bulk-edge correspondence to several classical systems which are 
governed by Maxwell equations, Newton equation, etc.19–35. These progresses beyond quantum systems provide 
universal understanding from the topology and result in invention of new devises (e.g., the topological laser36,37) 
thanks to the robust edge states. Therefore, further extending the bulk-edge correspondence beyond quantum 
systems is considered to be significant in term of both the scientific viewpoint and applications.

In this paper, we point out that classical diffusive systems can be a new platform of the bulk-edge correspond-
ence, which highlights topological aspects of the classical diffusion phenomena; the diffusive systems include a 
wide variety of systems (e.g., thermal diffusion38,39, diffusion of impurities in metals40, diffusion of droplets of 
inks in water, etc.). To this aim, we discretize the diffusion equation based on Fick’s law. The discretized diffusion 
equation allows us to discuss the bulk-edge correspondence of diffusion phenomena for classical systems; the 
governing equation is expressed in a matrix form that is mathematically equivalent to a tight-binding model of a 
quantum system. Our numerical data verify the bulk-edge correspondence for diffusion phenomena in the clas-
sical systems. Furthermore, our numerical simulation of the temperature distribution elucidates a novel diffusion 
phenomenon for a honeycomb lattice system; the temperature field with wavenumber kx = π cannot diffuse into 
the bulk, which is attributed to the complete localization of the edge state with kx = π . Here, we stress that sys-
tems we discuss are classical systems in contrast to a previous work41 analyzing topology of diffusion of electrons.

Discretizing the diffusion equation
We introduce a discretized diffusion equation [see e.g., Eq. (3)] based on Fick’s law.

Before addressing the discretization, let us briefly review Fick’s law and the diffusion equation of a continuum 
scalar field φ(t, x) in one dimension

where ∂t(x) denotes derivative with respect to time t (spatial coordinate x). Here, depending on which system 
we consider, the scalar field φ(t, x) corresponds to the field of temperatures, the density of the diffusing mate-
rial, etc.. Fick’s law indicates that the corresponding flux J is given by J = −D∂xφ(t, x) , where D is the diffusion 
coefficient. By combining this equation and the equation of continuity ∂tφ(t, x)+ ∂xJ(t, x) = 0 , we obtain the 
diffusion Eq. (1).

Now, let us discretize the diffusion Eq. (1) connecting the diffusion phenomena to tight-binding models of 
quantum systems. In order to show the essential idea, we focus on one-dimensional systems.

Consider a system composed of two sites where the values of the discretized field φ0 and φ1 are assigned 
at each site (see Fig. 1a); for the heat conduction equation, consider two balls (e.g., macroscopic iron balls) 

(1)∂tφ(t, x) = D∂2xφ(t, x),
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where temperatures are T0 and T1 . Recalling Fick’s law, we can write the flux flowing from site 0 to 1 with φ’s, 
J0→1 = −D(φ0 − φ1) . Here, we have chosen the distance between the sites as the unit of length. Thus, the time-
evolution of the vector �φ = (φ0,φ1)

T is described by

Therefore, for a one-dimensional chain composed of Lx sites (see Fig. 1b), the time-evolution of the vector 
�φ = (φ0,φ1, . . . ,φLx−1)

T is described by 

which is a discretized form of the diffusion Eq. (1). Here, we have imposed the periodic boundary condition. 
In Sec. I of Supplemental Material, we derive Eq. (3) for Lx = 3 . Equation (3) bridges the diffusion phenomena 
and quantum systems; the matrix Ĥ corresponds to the Hamiltonian of a one-dimensional tight-binding model.

In the continuum limit, Eq. (3) is reduced to Eq. (1). To see this, we diagonalize the matrix Ĥ and focus on 
the long-wavelength limit. By applying the Fourier transformation, φjx = 1√

Lx

∑

kx
eikx jxφkx , we obtain eigen-

values as ǫ(kx) = D(2− 2 cos kx) with kx = 2πnx/Lx ( nx = 0, 1, . . . , Lx − 1 ). For kx ∼ 0 , we have ǫ(kx) ∼ Dk2x , 
meaning that the time-evolution is described by Eq. (1) in the long-wavelength limit. Here we have used the 
correspondence kx ↔ −i∂x.

In the above, by discretizing the diffusion equation, we have shown that the diffusive dynamics of classical 
systems can be described by the tight-binding model of quantum systems [see Eq. (3)]. This result implies that 
the diffusive systems serve as a new platform of topological physics beyond quantum systems.

SSH model of the heat conduction equation
In order to demonstrate that the diffusive dynamics of classical systems indeed shows topological phenomena 
we analyze a one-dimensional system with dimerization (see Fig. 2a) which corresponds to the Su-Schrieffer-
Heeger (SSH) model42,43 of quantum systems. In the rest of this paper, we discuss the discretized version of the 
heat conduction equation for the sake of concreteness.

Let us consider a one-dimensional system illustrated in Fig. 2a. The temperature at each site is described by 
the following vector, �T =

(

T0A T0B T1A · · · TLx−1B

)T . Here, the temperature at each site Tixα ( α = A,B ) is 
defined as the difference from the temperature of the wall Tw.

In a similar way to derive Eq. (3), we obtain the following equation

with δ := D′/D > 0 . For details of the derivation and the specific form of the matrix ĤSSH , see Sec. IIA of Sup-
plemental Material.

Firstly, let us discuss topological properties in the bulk. Namely, temporarily abandoning the boundary 
condition illustrated in Fig. 2a, we first impose the periodic boundary condition. In the momentum space, the 
matrix ĤSSH is rewritten as

with kx = 2πnx/Lx and nx = 0, 1, . . . , Lx − 1 . Here, the corresponding vector denoting the temperature is written 

as �T(kx) =
(

TA(kx) TB(kx)
)T
. The Pauli matrices σ ’s act on the sublattice degrees of freedom [ σ1 =

(

0 1
1 0

)

 , 

(2)∂t �φ(t) = −D

(

1 − 1
−1 1

)

�φ(t).

(3a)∂t �φ(t) = −Ĥ �φ(t),

(3b)Ĥ = D













2 − 1 0 · · · − 1
−1 2 − 1 · · · 0
0 − 1 2 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 2













,

(4)∂t �T(t) = −ĤSSH �T(t),

(5)ĥSSH(kx) = D

(

1+ δ δ + eikx

δ + e−ikx 1+ δ

)

,

Figure 1.   (Color Online). Sketch of the one-dimensional system. (a) System composed of two sites coupled 
with the diffusion coefficient D; the flux flowing from site 0 to site 1 is written as �J0→1 = −D(φ0 − φ1) , where 
φ ’s denote the discretized field. (b) One-dimensional chain under the periodic boundary condition for Lx = 10.
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σ2 =
(

0 − i
i 0

)

 , and σ3 =
(

1 0
0 − 1

)

 ]. Before analyzing the topological properties, we note that the system 

shows a gap and preserves the chiral symmetry. Diagonalizing the matrix, we obtain the spectrum 

ǫ±(kx) = D
[

(1+ δ)±
√

(δ + cos kx)2 + sin2 kx

]

 . This result indicates that the spectrum shows a gap for δ  = 1 . 

The system also preserves the chiral symmetry; ĥ′SSH := ĥSSH − D(1+ δ)σ0 satisfies σ3ĥ′SSH(kx)σ3 = −ĥ′SSH(kx) . 
Here, we note that the shift described by the identity matrix σ0 does not affect the eigenvalue problem, meaning 
that topological properties of the eigenvectors are encoded into ĥ′SSH.

Because ĥ′SSH shows the gap and preserves the chiral symmetry, it may possesses the topologically nontrivial 
properties which are characterized by the winding number:

The winding number counts how many times the off-diagonal element of ĥSSH winds around the origin of the 
complex plane, and thus, it takes an integer44. Computing the winding number, we can see that the winding 
number takes the value one ( W = 1 ) for 0 ≤ D′ < 1 while it takes the value zero ( W = 0 ) for 1 ≤ D′.

For one-dimensional quantum systems with chiral symmetry, the winding number predicts the number of 
the gapless edge modes localized around the edges, which is typical example of the bulk-edge correspondence. 
We show that the bulk-boundary correspondence can be observed in our classical system. Figure 2b shows the 
spectrum of ĤSSH under the fixed boundary condition. This figure indicates that corresponding the winding 
number W = 1 ( W = 0 ), there exists an edge state (no edge state) localized at each edge, which is represented 
as a blue dot for each value of D′ . Here, the edge state appears at ǫ = D + D′ because of the term proportional 
to the identity matrix.

The above results demonstrate that the diffusive dynamics of classical systems exhibit the bulk-edge cor-
respondence which is a unique topological phenomenon. We stress that the edge states appear due to the topo-
logical properties in the bulk, which implies the following behaviors as is the case of quantum systems10: (1) 
The edge states survive even in the presence of perturbation (2) A states is localized at the boundary of two SSH 
models δ > 1 and δ < 1 which would results in the essentially same behavior as the one shown in Fig. 2c. We 
note that imposing the free boundary condition breaks the chiral symmetry, which shifts the eigenvalue of the 
edge state away from D(1+ δ).

How to experimentally access the edge states
So far, we have shown that the edge states emerge at ǫ = D + D′ because of the topological properties in the bulk. 
In the following, let us discuss how to experimentally access the edge states.

(6)W = −
∫ π

−π

dkx

4π i
tr[σ3ĥ′−1

SSH(kx)∂kx ĥ
′
SSH(kx)] ∈ Z.

Figure 2.   (Color Online). (a) Sketch of the model under the fixed boundary condition for Lx = 6 . The sites 
labeled by (ix ,α) are coupled to the neighboring sites or walls whose coupling strength is denoted by the 
diffusion coefficient D′ (brown) or D (gray). We assume that the heat capacity of the wall is sufficiently large, 
i.e., the wall works as a heat bath. (b) Spectrum of ĤSSH for D = 1 and Lx = 240 . Here, the fixed boundary 
condition is imposed. For 0 ≤ D′ < 1 the system exhibits the edge states denoted by blue dots because of the 
bulk topological properties. (c) The time-evolution of �T0A(t) in the case for (D,D′) = (1, 0.2) [ (D,D′) = (0.2, 1) ] 
where the system is topologically nontrivial (trivial). The function −(D + D′)t is plotted with a black line. We 
have subtracted A = log[(T0A(t = 0)− T f )/T f ] for comparison. The data are obtained with T f = T0A(t = 50) 
and Lx = 240 . We set the initial state as �Tiα = δi0δαA . These data are obtained by imposing Dirichlet-type 
boundary conditions. Namely, for the spatial direction, we imposed the fixed boundary condition. For time-
direction, we imposed the initial condition T(0)iα = δi0δαA . In either case of parameters, the temperature 
decays monotonically, which is compatible with the boundary condition of time �T(∞)iα = 0.
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One possibility is to observe the time-evolution of the temperature at the edge which is considered to decay 
exponentially T0A ∼ e−(D+D′)t . In Fig. 2c, the time-evolution of the temperature at edge (ix ,α) = (0,A) is plot-
ted. The temperature T0A shows exponential decay for t � 2τ with the half-life τ = 1/(D + D′) = 0.83 for 
(D,D′) = (1, 0.2) due to the edge state, while it deviates from the line of the exponential decay around t = 0.5 
which is shorter than the half-life for (D,D′) = (0.2, 1) . The above behaviors should be observed even in the 
presence of the disorder preserving the chiral symmetry. This is because regardless of the details of the system, a 
finite value of the winding number predicts edge states localized around the boundary as is the case of quantum 
systems. Therefore, we conclude that observing the time-evolution allows us to experimentally access the edge 
states induced by the bulk topological properties. We note that the time-evolution of the temperature at each site 
has been measured in Ref.38 for continuous systems; when the system is composed of aluminum, the half-life τ 
is estimated to be τ ∼ 1ms (for more details, see Sec. IIB of Supplemental Material).

We also consider that at least in principle, the eigenvectors and eigenvalues of the matrix ĤSSH can be 
extracted from the experimental data in the following procedure. (1) Prepare a set of initial conditions �T(i)(t = 0)l 
( l = 0, . . . , Lx − 1 ) which are linearly independent each other; for instance, such initial conditions can be pre-
pared by heating at a site. (2) Observe the temperature �T(f )

l  at time t0 for each case of initial condition. Here, 
these two sets of experimental data satisfy

with T̂(t0) = (�T(f )
0 , �T(f )

1 , . . . , �T(f )
Lx−1) and T̂(0) = (�T(i)

0 , �T(i)
1 , . . . , �T(i)

Lx−1) . (3) Diagonalizing T̂(t0)[T̂(0)]−1 , which 

is identical to e−ĤSSHt0 , we obtain the eigenvalues and eigenstates of ĤSSH.
Figure 3a shows eigenvalues of T̂(t0)[T̂(0)]−1 . The eigenvalues are obtained with the initial condition 

[ �T(i)
l ]ixα = Tlαδlix δαlα with αl = A,B and Tlα taking a random value between 0.5 and 1. (Concerning the tem-

perature, specific choice of the unit does not matter because the ratio of the temperature is discussed throughout 
this paper.) The eigenvalues e−ǫ′t0 almost reproduce the ones of ĤSSH . We note that the deviation for 2.5 � ǫ � 3 
is due to the rounding error; the matrix elements of T̂(t0)ji exponentially decay. Figure 3b shows the edge state 

(7)T̂(t0) = e−HSSHt0 T̂(0),

Figure 3.   (Color Online). (a), (b) The eigenvalues (the edge state) obtained from ĤSSH and T̂(t0)[T̂(0)]−1 for 
D = 1 , D′ = 0.2 , Lx = 24 , and t0 = 17 . The eigenvalues of the matrix T̂(t0)[T̂(0)]−1 are defined as e−ǫ′nt0 . The 
set of labels (ix ,α) is represented as ĩx as follows: ĩx takes ix [ ix + 0.5 ] for (ix ,A) [ (ix ,B)].

Figure 4.   (Color Online). (a) Sketch of the honeycomb lattice for Lx = 16 and Ly = 8 . Here, the fixed 
boundary condition is imposed both for the x- and y-directions. The numbers along the x- (y-) direction 
represent ix = 0, 1, 2, . . . , 15 ( iy = 0, 1, 2, . . . , 7 ). (b), (c) Time-evolution of temperature Ticz [ Tica ] along a zigzag 
edge [an armchair edge] for Lx = Ly = 40 and D = 1 . The subscript icz = (Lx/2− 1, 0) [ ica = (0, Ly/2− 2) ] 
specifies the site on the zigzag [armchair] edge. For Lx = 16 and Ly = 8 , the site specified by icz = (7, 0) 
[ ica = (0, 2) ] is denoted by the green (blue) arrow in panel (a). The function −3Dt is plotted with a black line. 
The temperature T f is set to Ticz (t = 50) [ Tica (t = 50) ] for the zigzag (armchair) edge. We have subtracted 
A = log[(Ticz(ica)(t = 0)− T f )/T f ] for comparison.
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ψ ′ obtained from the matrix T̂(t0)[T̂(0)]−1 which corresponds to the edge mode. The eigenvector ψ ′ also is in 
nice agreement with the edge state ψ of ĤSSH.

Honeycomb lattice system
Topological phenomena of the diffusive dynamics can also be found for two-dimensional systems. To show this, 
we analyze a honeycomb lattice system illustrated in Fig. 4a. We have supposed that the sites are coupled with 
the diffusion coefficient D. The dynamics of the temperature at each site �T is described by ∂t �T = −Ĥhoney

�T . 
As is the case of the SSH model, Ĥhoney corresponds to the honeycomb lattice of the tight-binding model; 
Ĥ ′
honey := Ĥhoney − 3D1l preserves the chiral symmetry.

Under the periodic (fixed) boundary condition for the x- (y-) direction, the system can be regarded as a set of 
one-dimensional systems aligned along the momentum space −π ≤ kx < π . Noting that the one-dimensional 
system specified by kx preserves the chiral symmetry, we can compute the winding number; the winding number 
takes the value one ( W = 1 ) for 2π/3 < |kx | < π , while it takes the value zero ( W = 0 ) for 0 ≤ |kx | < 2π/3 . 
Correspondingly, only for 2π/3 < |kx | < π , the edge state appears13,45. We note that along the armchair edge, no 
edge states can be observed. For more details of the spectrum, see Sec. IIIA of Supplemental Material.

The presence or absence of the edge state can affect the diffusive dynamics. Figure 4b,c shows the time-
evolution at site icz ( iaz ). Figure 4b shows the dynamics obtained for the two cases of the initial condition spatially 
modulating either kx = 0 or kx = π . The data of kx = π are obtained by subtracting data obtained with the initial 
condition 2�Tiz1 from the ones obtained with �Tiz2 (For specific form of �Tiz1 and �Tiz2 , see Sec. IIIB of Supplemental 
Material). Figure 4b indicates that at the zigzag edge, the temperature field with kx = π exponentially decays 
Ticz ∼ e−3Dt while the data of the temperature field with kx = 0 deviates from e−3Dt . The above time-evolution 
is consistent with the presence of the edge state for 2π/3 < |kx | < π whose eigenvalue is 3D. We note that the 
time-evolution of the armchair edge deviates from e−3Dt for either initial condition (see Fig. 4c).

Furthermore, the edge state at kx = π results in counter intuitive dynamics; for the zigzag edge, the initial 
state with kx = π cannot diffuse to the bulk (see Fig. 5a) while for the armchair edge, the initial state diffuses to 
the bulk (see Fig. 5b). This intriguing behavior is due to the complete localization of the edge state with kx = π . 
The above counterintuitive behavior is due to the complete localization of the state around the zigzag edge.

Summary
In this paper, we have elucidated the topological aspect of the diffusive dynamics, providing a new platform of 
the bulk-edge correspondence.

Specifically, based on Fick’s law, we have introduced the discretized form of the diffusion equation, bridging 
the diffusive dynamics of classical systems and a tight-binding model discussed for quantum systems. The cor-
respondence between the classical and quantum systems allows us to discuss the topological phenomena (e.g., 
the bulk-edge correspondence) for the diffusive dynamics of classical systems; we have numerically elucidated 
that topological properties characterized by the winding number in the bulk induces the edge states for the one-
dimensional system and the honeycomb lattice system. Furthermore, our numerical simulation has revealed a 
novel diffusion phenomenon for the honeycomb lattice system; at zigzag edges, the temperature field with spatial 
modulation kx = π cannot diffuse to the bulk.

Our results provide topological insights into diffusion phenomena, indicating the potential existence of diffu-
sion phenomena analog of topological insulators for other symmetry classes and higher-order insulators. Their 
realization is left as future works to be addressed.

Received: 28 August 2020; Accepted: 15 December 2020

Figure 5.   (Color Online). (a), (b) Color plot of �T(t = 1)/T0 for a zigzag (an armchair) edge. The initial 
condition is chosen as �Tiz3 ( �Tia3 ) for data of zigzag (armchair) edges, which allows us to observe the mode with 
kx = π ( ky = π ) for the zigzag (armchair) edge. For more details of the initial condition, see Fig. 2 and Sec. IIIB 
of Supplemental Material. The data shown in panel (a), (b) are obtained under the periodic and fixed (fixed and 
periodic) boundary conditions along the x- and y-directions. Here, we have taken T0 = 0.0497 (0.0292) for data 
of zigzag (armchair) edges. The data are obtained for Lx = Ly = 40 and D = 1.
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