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Gene expression in blood 
reflects smoking exposure 
among cancer‑free women 
in the Norwegian Women 
and Cancer (NOWAC) postgenome 
cohort
Nikita Baiju1*, Torkjel M. Sandanger1, Pål Sætrom2,3,4,5 & Therese H. Nøst1,5

Active smoking has been linked to modulated gene expression in blood. However, there is a need 
for a more thorough understanding of how quantitative measures of smoking exposure relate to 
differentially expressed genes (DEGs) in whole-blood among ever smokers. This study analysed 
microarray-based gene expression profiles from whole-blood samples according to smoking 
status and quantitative measures of smoking exposure among cancer-free women (n = 1708) in 
the Norwegian Women and Cancer postgenome cohort. When compared with never smokers and 
former smokers, current smokers had 911 and 1082 DEGs, respectively and their biological functions 
could indicate systemic impacts of smoking. LRRN3 was associated with smoking status with the 
lowest FDR-adjusted p-value. When never smokers and all former smokers were compared, no DEGs 
were observed, but LRRN3 was differentially expressed when never smokers were compared with 
former smokers who quit smoking ≤ 10 years ago. Further, LRRN3 was positively associated with 
smoking intensity, pack-years, and comprehensive smoking index score among current smokers; 
and negatively associated with time since cessation among former smokers. Consequently, LRRN3 
expression in whole-blood is a molecular signal of smoking exposure that could supplant self-reported 
smoking data in further research targeting blood-based markers related to the health effects of 
smoking.

Tobacco smoking is one of the major threats to public health, and it is currently responsible for more than 8 
million deaths worldwide each year1. Exposure to tobacco smoke is a risk factor for many chronic diseases, 
such as cardiac and pulmonary diseases and several cancers. Further, smoking can suppress the immune system 
and modifies a range of immunological functions2. Subclinical outcomes, such as increased oxidative stress, 
reduced antioxidant defences, increased inflammation, impaired immune status, and altered lipid profiles, have 
been observed in smokers when compared to their counterparts who never smoked3. Notably, more respira-
tory symptoms caused by exposure to tobacco smoke have been observed in women than men4,5. Thus, tobacco 
smoking has several detrimental health effects, which might appear not long after smoking initiation or up to 
several decades after exposure3,6.

The toxic components of tobacco smoke are first absorbed in the lungs and then enter the blood stream 
before being distributed throughout the body, making blood an appropriate biological material to study the 
systemic influences of exposure to tobacco smoke7. In addition, the collection of whole-blood (or simply, ‘blood 
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samples’) is easy and minimally invasive, and these samples can reveal features that are relevant for studies of 
human health effects8. Current exposure to tobacco smoke has been linked with modulated expression of many 
genes in blood, for example LRRN3, CLDND1, GPR15, ATF4, SOD2, and CDKN1C9–16. Altered gene expression 
in blood has also been linked to diseases for which smoking is a risk factor17. However, there is a need for a more 
thorough understanding of the variability in gene expression profiles in whole-blood in relation to quantitative 
measures of smoking exposure among ever smokers. Therefore, this cross-sectional analysis used data from 1708 
cancer-free women participating in the prospective, population-based Norwegian Women and Cancer (NOWAC) 
postgenome cohort. Microarray-based gene expression profiles from bio-banked whole-blood samples were 
assessed according to smoking status and quantitative measures of smoking exposure (hereafter referred to as 
‘smoking metrics’), such as smoking intensity, smoking duration, time since smoking cessation (TSC), pack-
years, and comprehensive smoking index (CSI) scores18. Enriched pathways and gene ontology (GO) categories 
of significant genes associated with smoking were also assessed.

Results
General characteristics of the study population.  The current study was based on microarray data 
from cancer-free women participating in the NOWAC postgenome cohort. The full cohort consists of approxi-
mately 50,000 women (mean age: 49.78 years; mean body mass index (BMI): 23.38 kg/m2), all of whom have 
given a blood sample. In total, 1708 of these women have been included as cancer-free controls in various stud-
ies and have gene expression profiles available for study, and only these women were included in the present 
analyses. All included women had completed up to three comprehensive questionnaires before blood collection 
(main questionnaires), and an additional questionnaire on lifestyle factors was completed at the time of blood 
collection. Thus, information was available for up to four time points in total. Smoking status and smoking met-
rics (smoking intensity, smoking duration, TSC, pack-years, and CSI scores) were based on information from 
all four questionnaires. Current smokers (CS) were defined as those who were currently smoking at the time of 
blood collection, former smokers (FS) were defined as those who reported smoking cessation prior to the time 
of blood collection, and never smokers (NS) were defined as those who reported they had never smoked either 
prior to or at the time of blood collection. CS and FS combined represented ever smokers. We defined passive 
smokers (PS) as those who were passively exposed to smoking at their homes as adults. Gene expression values 
were available for 7713 unique genes for all the women in this study.

We investigated associations between smoking status and potential covariates, such as age and BMI at blood 
collection, and white blood cell (WBC) proportions, using Chi-square or Kruskal–Wallis tests. We then per-
formed a ‘global test’ to indicate any association between these variables and the overall gene expression data. 
We considered variables that were significant in both of these tests as potential confounders and adjusted for 
these in further models (Supplementary Table S1).

There were 473, 613, and 622 CS, FS, and NS, respectively, among the 1708 women. The distributions of 
age and BMI at blood collection did not deviate markedly from normality, whereas the distribution of alcohol 
consumption was skewed (Fig. 1). Each of these distributions were similar across different categories of smoking 
status (Fig. 1A–C), but FS had the highest mean BMI and alcohol consumption, and NS had the highest mean 
age (Supplementary Table S1). Further, the smoking metrics—smoking intensity, smoking duration, pack-years, 
and CSI score had the highest means for CS as compared to FS (Fig. 1D–H). Finally, there were 192, 147, and 
100 PS among CS, FS, and NS, respectively.

Estimated white blood cell proportions.  We estimated proportions of 22 types of WBCs using an 
in silico gene expression deconvolution method. CD8 T cells, naive CD4 T cells, resting NK cells, M0 mac-
rophages, resting mast cells, and neutrophils were significantly associated with both smoking status and overall 
gene expression (Supplementary Table S2 and Supplementary Fig. S1). Further, we used linear regression to 
assess the associations between WBC proportions and smoking metrics. We observed that CD8 T cells were 
negatively associated with pack-years and CSI score; naive CD4 T cells were positively associated with smoking 
intensity, smoking duration, pack-years, and CSI score; resting NK cells were negatively associated with smok-
ing intensity, smoking duration, pack-years, and CSI score but positively associated with TSC; resting mast cells 
were negatively associated with smoking duration; and neutrophils were negatively associated with TSC (Sup-
plementary Table S3).

Differentially expressed genes dependent on smoking status.  We used two adjusted (minimally- 
and fully-adjusted) models to assess the relationships between smoking status and gene expression profiles, 
using the ‘limma’ package for gene-wise linear models. In minimally-adjusted models, we adjusted for technical 
variables such as laboratory batch (laboratory plates) and sample storage time, while in fully-adjusted models, 
in addition to the technical variables, we included the following variables that were associated with both the 
exposure and the outcome: selected WBC proportions, age, BMI, and use of hormone replacement therapy at the 
time of blood collection, as well as information on alcohol consumption and use of oral contraceptives, which 
was taken from the main questionnaires. The presence of differentially expressed genes (DEGs) was determined 
by three comparisons of smoking status groups: CS-vs-NS, CS-vs-FS, and FS-vs-NS. We considered Benjamini–
Hochberg false discovery rates (FDR) with the significance threshold FDR ≤ 0.05.

In minimally-adjusted models, there were 1009 DEGs in the CS-vs-NS comparison; 427 up-regulated and 582 
down-regulated genes. Correspondingly, in the CS-vs-FS comparison, there were 1371 DEGs (559 up-regulated, 
812 down-regulated). In fully-adjusted models, there were 911 DEGs in the CS-vs-NS comparison (355 up-
regulated, 556 down-regulated; Fig. 2A,D), and 1082 DEGs in the CS-vs-FS comparison (435 up-regulated, 647 
down-regulated; Fig. 2B,E). The two adjusted models had 670 overlapping DEGs in the CS-vs-NS comparison 
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(Supplementary Table S4) and 839 in the CS-vs-FS comparison (Supplementary Table S5). Similarly, the CS-
vs-NS and CS-vs-FS comparisons had 776 and 652 overlapping DEGs in the minimally- and fully-adjusted 
models, respectively. In the fully-adjusted models, there were 230 up-regulated and 422 down-regulated genes 
that overlapped between the CS-vs-NS and CS-vs-FS comparison and displayed the same direction of effects. 
The top-ranked gene (i.e., the gene with the lowest FDR adjusted p-values) in all comparisons was LRRN3 (Sup-
plementary Fig. S2). Receiver operating characteristics (ROC) curve analyses showed that expression levels 
of LRRN3, as measured by the Illumina arrays, could strongly distinguish CS from NS and moderately distin-
guish FS (with ≤ 10 years TSC) from NS (Supplementary Fig. S3). Moreover, in a subset of our dataset, LRRN3 
expression showed similar discriminative power as DNA methylation at the AHRR CpG site (cg05575921), 
which is a known marker for smoking exposure19. There were no DEGs in the FS-vs-NS comparison in either 

Figure 1.   Descriptive statistics of study participants by smoking status for (A) age at blood collection, (B) body 
mass index (BMI) at blood collection, (C) alcohol consumption at baseline, (D) smoking intensity, (E) smoking 
duration, (F) time since smoking cessation (TSC), (G) pack-years, and (H) comprehensive smoking index 
(CSI) scores. Yellow, blue, and red coloured violin plots represent kernel density estimates for never, former, and 
current smokers, respectively. White boxes extend from the 25th to the 75th percentile, vertical bars inside the 
box represent the median, whiskers extend 1.5 times the length of the interquartile range right and left side of 
the 75th and 25th percentiles respectively, and outliers are represented as black dots. The green diamond shaped 
dot represents the respective mean.
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model (Fig. 2C). However, LRRN3 was the only DEG that remained significant when we included only FS with 
TSC ≤ 10 years and compared it with NS in the minimally-adjusted model (with log2 fold-change (logFC) = 0.34 
and FDR = 3.63E−04). The p-values were uniformly distributed only in the FS-vs-NS comparison, but not in the 
other comparisons, as presented in quantile–quantile plots (Supplementary Fig. S4). Further, we used the ‘limma’ 
package to analyse the effects of passive smoking among NS, by contrasting all NS who were PS in adulthood 
with the other NS using the minimally-adjusted model. There were no DEGs when testing differences between 
PS (n = 100) and non-PS (n = 428).

Figure 2.   Volcano plots for the test statistics in fully-adjusted models from the tests of differentially expressed 
genes (DEGs) in comparisons of (A) current versus never smokers, (B) current versus former smokers, and 
(C) former versus never smokers; and forest plots for the 10 top-ranked DEGs in tests of DEGs in comparisons 
of (D) current versus never smokers and (E) current versus former smokers. In volcano plots (A–C), red 
dots display up-regulated genes, blue dots display down-regulated genes, while grey dots display genes with 
FDR > 0.05; the x-axis presents log2 fold-changes and the y-axis presents − log10 of FDR adjusted p-values; and 
gene names displayed are the 20 top-ranked DEGs in the respective tests. In forest plots (D and E), dots in the 
x-axis represent log2 fold-changes and the y-axis represents DEGS with the lowest FDR adjusted p-values ranked 
from the top; the horizontal line for each gene represents their confidence interval; and the vertical blue dotted 
line represents no difference.
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Analyses of smoking metrics within ever smokers.  To identify genes associated with magnitude of 
smoking exposure, we used the ‘limma’ framework to identify genes for which the expression level correlated 
with the given smoking metrics among ever smokers. Specifically, we extended the minimally-adjusted model to 
include the given smoking metrics and analysed CS and FS separately.

In analyses of CS, the top-ranked gene, LRRN3 (logFC = 0.60, FDR = 4.70E−05), was positively associated with 
CSI score (Fig. 3). Further, there were five genes positively associated and two genes negatively associated with 
smoking intensity (Supplementary Table S6), where LRRN3 was the top-ranked gene, with a positive association 
(Supplementary Fig. S5). Likewise, there were three genes positively associated and two genes negatively associ-
ated with pack-years (Supplementary Table S7), where LRRN3 was the top-ranked gene, with a positive associa-
tion (Supplementary Fig. S6). There were no genes significantly associated with smoking duration among CS.

Figure 3.   Distributions of expression values for the top-ranked gene (LRRN3) (A) among never (yellow) and 
former (blue) smokers and (B) among current smokers according to comprehensive smoking index (CSI) 
scores. In figure (A), boxes extend from the 25th to the 75th percentile, horizontal bars represent the median, 
whiskers extend 1.5 times the length of the interquartile range above and below the 75th and 25th percentiles, 
respectively, and outliers are represented as points. In figure (B), the red line represents the linear regression fit 
and the shaded grey area its standard error.
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In analyses of FS, the top-ranked gene, LRRN3 (logFC =  − 0.014, FDR = 2.63E−03), was negatively associated 
with TSC (Fig. 4). Correspondingly, NMRAL1 (logFC =  − 0.008, FDR = 2.72E−02) was negatively associated with 
pack-years (Supplementary Fig. S7). No genes were significantly associated with smoking intensity, smoking 
duration, or CSI scores among FS.

Functional enrichment analyses.  To investigate the potential common functions of the identified DEGs 
affected by smoking, we performed functional enrichment analyses to identify GO biological processes (BP), 
GO molecular functions (MF), GO cellular components (CC), Kyoto encyclopaedia of genes and genomes 
(KEGG) pathways, and REACTOME pathways enriched for DEGs in the CS-vs-NS and CS-vs-FS comparisons 
(Supplementary Tables S8–12, Fig. 5, and Supplementary Fig. S8). Analyses were performed for DEGs in fully-

Figure 4.   Distributions of expression values for the top-ranked gene (LRRN3) (A) among never (yellow) 
and current (red) smokers and (B) among former smokers according to time since smoking cessation (TSC). 
In figure (A), boxes extend from the 25th to the 75th percentile, horizontal bars represent the median, 
whiskers extend 1.5 times the length of the interquartile range above and below the 75th and 25th percentiles, 
respectively, and outliers are represented as points. In figure (B), the blue line represents the linear regression fit 
and the shaded grey area its standard error.
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Figure 5.   Summary of functional enrichment analyses for up- and down-regulated genes for the (A) GO(BP) 
and (B) REACTOME pathway databases. The colour of the dots indicates the adjusted p-value, where red dots 
represent the most enriched categories; the ‘GeneRatio’ indicates the proportion of genes overlapping between 
lists of differentially expressed genes (DEGs) and the genes in gene ontology categories. GO: gene ontology; BP: 
biological processes; CS-vs-NS: comparison of current smokers versus never smokers; CS-vs-FS: comparison of 
current smokers versus former smokers; U: Up-regulated genes; D: Down-regulated genes.
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adjusted models and separately for up-regulated and down-regulated genes. The numbers of enriched terms in 
the respective categories are presented in Table 1.

For both up-regulated and down-regulated genes, enriched categories overlapped considerably for genes that 
were significant according to the FDR in the CS-vs-NS and CS-vs-FS comparisons. However, there were more 
enriched categories among genes in the CS-vs-NS comparison, except for GO(MF), where there were significant 
categories only in the CS-vs-FS comparison. Considering the terms themselves, up-regulated genes were mostly 
enriched for terms related to translation, such as ribosome (KEGG and GO(CC)), protein localisation to endo-
plasmic reticulum (GO(BP)), and translation (REACTOME). Terms were also related to immune responses, 
such as humoral immune response, inflammatory response, and B cell activation (GO(BP)). In contrast, down-
regulated genes were enriched for many terms related to circulatory functions, including response to wounding 
and regulation of blood vessel size (GO(BP)), and extracellular signalling, such as G protein-coupled receptor 
ligand binding (REACTOME), and plasma membrane region (GO(CC)).

Discussion
This study presents DEGs across categories of smoking status, as well as genes associated with different smoking 
metrics within ever smokers in the whole-blood of cancer-free women from the NOWAC postgenome cohort. 
These assessments, which used quantitative and repetitive smoking metrics, bring novel knowledge about the 
systemic responses to smoking exposure within ever smokers.

The study participants had similar proportions of CS, FS, and NS. They had comparable mean age and BMI 
at the time of blood collection as that of the full cohort, and to that of participants in other studies targeting the 
relation between smoking exposure and gene expression9–11. Among the 7713 genes assessed, 911 and 1082 genes 
were differentially expressed in CS-vs-NS and CS-vs-FS comparisons, respectively. When looking at the DEGs 
in the CS-vs-NS comparison and the significant genes indicated in corresponding tests in a large meta-analysis 
containing 10,233 participants (51% women), we found that among the 285 DEGs in our study that overlapped 
with the 1270 DEGs in that study, 282 genes had the same direction of effects11. Moreover, the mean expres-
sion levels for the 285 DEGs between CS-vs-NS that overlapped with DEGs identified in corresponding tests in 
the meta-analysis were higher (7.56) than those DEGs that did not overlap (6.83; t = 5.23, p-value = 2.63E−07). 
Still, the average absolute logFC for the overlapped (0.12) and non-overlapped DEGs (0.09; W = 128,066, 
p-value = 1.29E−14) were similar. This implies that the relation to smoking was consistent for hundreds of genes 
between these studies and demonstrates the comprehensive effects of smoking on gene expression in blood.

Around 40% of the genes were over-expressed in CS as compared to both NS and FS (i.e., 60% were under-
expressed). Although higher proportions of up-regulated genes have been observed more frequently in other 
studies7,9–11, higher proportions of down-regulated genes have also been observed14,16. Interestingly, there could 
be sex differences in the directionality of observed DEGs, as one study comparing smokers and non-smokers 
observed that 29% of DEGs in men were down-regulated, compared to 62% in women7. However, only about 
4% of the DEGs in our study were in X-chromosomes in both the CS-vs-NS and CS-vs-FS comparisons. Nota-
bly, differences in gene expression between adult men and women do not need to originate in genes on the 
X-chromosomes, but a meta-analysis of sex expression differences in blood found that 25% of DEGs do map to 
the sex chromosomes20. Thus, it is unlikely that the higher proportion of down-regulated genes in our study was 
due to the inclusion of women only.

Among NS, there were no genes associated with self-reported passive smoking in their homes as adults when 
compared to individuals with no passive smoking exposure. This could indicate that gene expression was more 
influenced by tobacco smoking of the women themselves. However, this could also be due to lack of statistical 
power or an imprecise exposure measure (lack of detailed information on timing, duration, and intensity of 
exposure).

Among CS, there were one, five, and three significant genes that were positively associated with CSI scores, 
smoking intensity, and pack-years, respectively. Among these, the top-ranked gene, LRRN3, was up-regulated 
in CS, which demonstrated that even within CS, LRRN3 had a higher expression among those with a higher 
smoking exposure, as represented by increasing CSI scores, smoking intensity, and pack-years. Among FS, there 
was one significant gene that was negatively associated with TSC (LRRN3) and one that was negatively associ-
ated with pack-years (NMRAL1). This demonstrated that within FS, those who had quit smoking recently had a 
higher expression of LRRN3 than those who had quit long ago, and FS with more pack-years had a lower expres-
sion of NMRAL1 than those with fewer pack-years. Also, when restricting the FS-vs-NS comparison to recent 

Table 1.   Number of enriched terms in different categories of enrichment analyses in comparisons of current 
versus never smokers (CS-vs-NS) and current versus former smokers (CS-vs-FS).

Database

CS-vs-NS CS-vs-FS

Up-regulated genes 
(n = 355)

Down-regulated genes 
(n = 556)

Up-regulated genes 
(n = 435)

Down-regulated genes 
(n = 647)

GO(BP) 33 51 22 41

GO(MF) 4 0 6 5

GO(CC) 23 6 14 4

KEGG 1 7 1 0

REACTOME 31 9 34 1
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quitters (with TSC ≤ 10 years), LRRN3 remained significant in minimally-adjusted models. This indicates that 
there are differences in gene expression related to ongoing smoking exposure in women that persist for LRRN3 
in those who recently stopped smoking. Thus, LRRN3 expression increases during smoking exposure and years 
after smoking cessation, but it eventually reverts back to levels similar to those of NS. However, according to 
the results of our linear model (Fig. 4), it appeared to take approximately 20–30 years for LRRN3 expression in 
FS to reach the average expression among NS. The difference in results from the overall FS-vs-NS comparison 
and those restricted to FS with TSC up to 10 years emphasises that TSC needs to be taken into account when 
analysing smoking effects in FS.

LRRN3 was the top-ranked DEG in most comparisons, and its expression differences were large compared 
to the other DEGs identified. LRRN3 has been consistently indicated to be over-expressed in the whole-blood 
of CS or FS in previous studies9–11,13,14,16,21,22. This gene is highly expressed in the adrenal glands, the brain, and 
the lungs, but also in 11 other tissues23, and LRRN3 codes for a membrane protein. The GO database has little 
information on LRRN3′s potential functions, except that electronic annotations indicate that it is involved in 
the positive regulation of synapse assembly23,24. Notably, LRRN3 has six known SNPs25 but genetic variants in 
participants were not available in this study. Top-ranked DEGs other than LRRN3 in the CS-vs-NS and CS-vs-FS 
comparisons were PID1, RGL1, and STAB1, and in the analyses of ever smokers was NMRAL1. These genes are 
expressed in various tissues that differed across genes. The main functions of the aforementioned genes are to 
increase the proliferation of pre-adipocytes (PID1)26; to be involved in probable guanine nucleotide exchange 
factor (RGL1)27; and to act as a scavenger receptor for acetylated low-density lipoprotein, bind to both gram-
positive and gram-negative bacteria, and to play a role in the defence against bacterial infection (STAB1)28. 
However, the interpretation of the potential function of these genes in blood in relation to smoking is not clear.

We performed functional enrichment analyses for GO(BP), GO(MF), and GO(CC) categories; and for KEGG 
and REACTOME pathways. This gave insight into the underlying biology and provided knowledge of pathways 
for the identified DEGs29. The overlap in the enriched categories of the up-regulated and down-regulated genes 
in the CS-vs-NS and CS-vs-FS comparisons indicated that similar GO categories and pathways were enriched 
when current smoking exposure was compared to both FS and NS. Still, the enrichment was clearer when CS were 
compared to NS than to FS. The latter might be because the effect of smoking was not completely absent or was 
being slowly reduced in FS. In addition, the overall lack of overlap for enriched categories of the up-regulated and 
down-regulated genes likely demonstrated that these separate groups of genes are involved in different pathways.

The GO enrichment analysis indicated categories such as peptide metabolic and biosynthetic processes, 
protein formation and translation, humoral immune response, structural constituent of ribosome and molecule 
activity, ribosomal subunits, and adherens junction were up-regulated in CS. In contrast, processes such as 
response to wounding, circulatory system, regulation of blood vessels and tube size and diameter, neuron projec-
tion development, drug and hydrogen peroxide catabolic processes, heme binding, cell body, and hemoglobin 
complex were down-regulated. Categories indicated in the KEGG and REACTOME enrichment analyses were 
largely in line with those in GO analysis. In summary, these categories indicate that the DEGs we identified were 
enriched for functions related to the physiological effects of smoking on the human body, which are well docu-
mented in the literatures. This is particularly relevant for the physiological functions linked to the cardiovascular 
system, as DEGs measured in blood could be directly influenced by such altered functions. For example, carbon 
monoxide binds to haemoglobin, thereby reducing the blood’s oxygen-carrying capacity30. Accordingly, our 
results indicated that smoking could also down-regulate genes involved in the haemoglobin complex, thereby 
potentially exacerbating smoking’s negative effects on oxygen transport. Further, smoking causes several nega-
tive vascular effects, including decreased coronary blood flow and myocardial oxygen delivery, as well as adverse 
effects on lipids, blood pressure, and insulin resistance31. Thus, the down-regulated processes for blood vessel size 
and diameter, and vascular processes in the circulatory system. The general circulatory system processes indicated 
in whole-blood in this study could be related to these known physiological effects of smoking. We identified 
that oxidoreductase activity was down-regulated, which is in line with smokers experiencing measurable and 
immediate oxidative damage, resulting in oxidative stress3. We also observed down-regulated wound healing and 
haemostasis, which is in agreement with observations of a reduced capacity to heal wounds among smokers3,30. 
Lastly, categories related to immune responses were up-regulated in CS. Smoking can compromise the immune 
system and immune homeostasis as a whole3, and gene enrichment analyses of genes related to smoking in other 
studies have indicated effects on the regulation of immune system processes9,10,13–16. GO analyses in a large meta-
analysis of genes related to smoking demonstrated enrichment mainly for activation of platelets and lymphocytes, 
immune response, and apoptosis11. The enriched terms for the DEGs in our study only were largely the same as 
for those for DEGs that overlapped between the meta-analysis and our study (results not presented). Further, the 
expression of LRRN3 has been linked to the methylation of a CpG site on the AHRR gene19 and AHRR is linked 
to AHR and CYP proteins, which represent detoxifying mechanisms in the liver. This can be a plausible physi-
ological influence of smoking exposures. Still, considering the great variety of molecules in tobacco smoking, it 
can potentially influence multiple pathways, which was observed in the GO categories indicated.

In general, gene expression profiles in whole-blood are affected by the underlying composition of WBCs in the 
respective samples. Thus, skewed WBC proportions could act as confounders when identifying gene expression 
differences related to exposures like smoking, which can disturb WBC populations16. Neutrophils constituted 
a large fraction of estimated WBCs but was considerably lower as estimated from gene expression than what is 
typical in blood32,33 as well as estimated from DNA methylation in a subset of the samples (n = 324)19. Still, we 
observed that WBC proportions and smoking metrics—especially resting NK cells but also CD8 T cells, resting 
mast cells, and neutrophils—were negatively associated with increasing smoking exposure. Further, naive CD4 
T cells were positively associated with several smoking metrics. These results are in line with observations that 
smoking may have detrimental effects on the immune capacity of the body. Indeed, smoking has been shown to 
be a significant and reversible cause of elevated WBC counts in healthy adults34. These estimated cell proportions 
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were included in our fully-adjusted models when assessing DEGs. Still, the top-ranked genes identified in fully-
adjusted models were similar to those from the minimally-adjusted models, indicating that these genes were 
likely not substantially confounded by the distributions of WBC.

The main strength of this study was its use of smoking metrics based on detailed, repeated information on 
past and recent smoking history of the study participants when assessing DEGs in blood between smoking sta-
tus groups. Among the women we included in our study, 51%, 24%, and 25% had information available at four, 
three, and two time points, respectively. Still, this study was based on self-reported smoking information from 
questionnaires, as in most other studies9,10,13–16. Many studies have measured concentrations of the metabolite 
of nicotine, cotinine, in blood, urine or saliva in addition to self-reported smoking status9,14–16. However, due to 
its relatively short half-life (16–19 h)35, it would not have provided valuable information for FS. Further, DNA 
methylation at specific CpG sites have also showed promising abilities as markers of smoking status and could 
reflect smoking exposures even decades after cessation36,37. In a subset of our data, LRRN3 demonstrated similar 
ability to discriminate CS and FS (with ≤ 10 years TSC) from NS as compared to methylation at the CpG cite 
in the AHRR gene. Therefore, the abilities of LRRN3 expression as a quantitative marker for discrimination of 
smoking status should be investigated in other population samples and with the comparison to other markers.

This study comprised a large number of women (n = 1708), whereas most studies targeting associations 
between smoking exposure and gene expression in blood have been conducted in rather small samples, ranging 
from 9 to 219 participants9,10,13–15. The two exceptions are one population-based cohort study in the Netherlands 
with 3319 participants (65% women)16 and a meta-analysis with 10,233 participants (51% women)11. As men-
tioned, our results are in line with those observed in these studies. The present study included only cancer-free 
women, although we cannot disregard influences of other common chronic diseases. Further, this study was based 
on whole-blood samples, which is a relevant tissue to investigate the effects of smoking, as it expresses a large 
proportion of the genes in the human genome16. Still, the current cross-sectional study results represent snapshots 
of gene expression in blood38. Lastly, although RNA-sequencing has become a routinely used technology, results 
from microarray technology, like those in this study, are still reliable and overall comparable to RNA-sequencing 
results39. However, RNA-sequencing technology would be relevant for studying the effects of smoking exposure 
on other genes not captured by the Illumina microarray technology, such as most non-coding RNAs.

In conclusion, our results demonstrated associations between smoking exposure and gene expression profiles 
in whole-blood of cancer-free women in the NOWAC postgenome cohort. The use of quantitative, reliable, and 
repeated measurements of past and recent smoking exposures was the novelty of this study, as it contributes new 
knowledge on systemic responses of smoking exposure. Close to a thousand DEGs in comparisons between CS 
and NS or FS, LRRN3, was the top-ranked gene. LRRN3 was also associated with CSI score, smoking intensity, 
and pack-years among CS; and with TSC among FS. Consequently, LRRN3 expression in blood is a molecular 
signal of smoking exposure that could supplant self-reported smoking data in gene expression studies of the asso-
ciation between smoking exposure and specific phenotypes. The biological functionality of the DEGs identified 
were linked to circulatory functions, translation, and immune responses, and could indicate systemic impacts of 
smoking. Genes that are differentially expressed depending on smoking exposure could be of interest in studies 
that focus on the effects of smoking exposure on health. This study has provided knowledge on the relationship 
of genes and pathways with detailed information on smoking exposure among cancer-free women.

Methods
Study population.  The NOWAC study is a nation-wide, population-based prospective cohort study initi-
ated in 1991. Currently, it includes approximately 172,000 Norwegian women aged 30–70 years. Women were 
randomly selected from the Norwegian National Population Register and sent an invitation letter along with a 
first questionnaire, which included a detailed set of questions related to smoking exposure, height, weight, repro-
ductive history, hormone replacement therapy, alcohol consumption, family history of breast cancer, dietary 
patterns, use of medication, and others. Since then, each woman has answered between one and three follow-up 
questionnaires (main questionnaires). The NOWAC study database takes information from the Cancer Registry 
of Norway, as well as national death and emigration registries. Details about the NOWAC study are available in 
Lund et al.40.

The current study was based on data from the NOWAC postgenome cohort41,42, a sub-cohort of the NOWAC 
study. This consists of approximately 50,000 women who, between 2003 and 2006, had blood samples collected 
in PreAnalytiX (PAX) gene-tubes for gene expression analysis and, at the same time, answered a less extensive 
questionnaire about their lifestyle. The current study incorporated microarray-based expression profiles in bio-
banked whole-blood samples from cancer-free women in the NOWAC postgenome cohort, who were originally 
enrolled as controls in several studies on breast, lung, ovarian, and endometrial cancers, and diabetes. We 
obtained relevant questionnaire and registry information from NOWAC databases and excluded those women 
that did not respond to any questions on smoking exposure, those who participated in more than one study, and 
those who were diagnosed with cancer before 2017. This resulted in a final analytical sample of 1708 women.

Smoking status and smoking metrics.  The main questionnaires included detailed questions regarding 
past and current smoking exposures, including ages at smoking initiation and cessation, average number of 
cigarettes smoked per day across age intervals, and details about passive smoking. Smoking status and smoking 
metrics (smoking intensity, smoking duration, TSC, pack-years, and CSI scores) were based on information 
from all main questionnaires and the questionnaire completed at the time of blood collection. Smoking intensity 
was defined as the average number of cigarettes smoked per day during years of active smoking, smoking dura-
tion was the duration of active smoking in years, and TSC was the time since smoking cessation in years. Pack-
years quantify individual, long-term exposure to tobacco smoking43; this variable was calculated by the formula: 
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Number of pack-years = (smoking intensity/20) × smoking duration. We considered 20 cigarettes in 1 pack, which 
is standard in the Norwegian context. CSI score is a cumulative measure of smoking exposure that incorporates 
smoking intensity (int), smoking duration (dur), and TSC (tsc). CSI scores were calculated using the formula18: 
CSI = (1 − 0.5dur*/τ)(0.5tsc*/τ) ln(int + 1), where τ is an estimated half-life parameter, and δ is an estimated lag time 
parameter describing TSC and total duration as follows:

Laboratory analyses and pre‑processing of the gene expression data.  Total RNA was extracted 
and purified from PAX gene-tube samples according to the PAX gene blood RNA kit protocol at the Genomics 
Core Facility, Norwegian University of Science and Technology (NTNU), Trondheim. A NanoDrop ND 8000 
spectrophotometer (ThermoFisher Scientific, Wilmington, DE, USA) was used to assess RNA purity, and bio-
analyser capillary electrophoresis (Agilent Technologies, Palo Alto, CA, USA) was used to assess RNA integ-
rity. Complementary RNA (cRNA) was prepared using the Illumina TotalPrepT-96 RNA amplification kit, and 
hybridised to Illumina human WG-3 or HT-12 expression bead chip microarrays. The raw microarray images 
were processed in Illumina genome studio. The laboratory analysis date varied from January 2011 to January 
2015.

For each study sample set separately, potential outliers were evaluated based on plots such as principal com-
ponent analysis (PCA) plots and boxplots of probe signals displaying variation along with the laboratory quality 
measures44. We performed background correction, removed bad quality probes, and filtered probes detected 
in less than 20% of samples. Further, we performed log2 transformation and quantile normalisation before all 
data were combined and inspected for batch effects using PCA plots. We performed gene annotation using the 
Bioconductor packages ‘lumi’, ‘lumiHumanIDMapping’, and ‘illuminaHumanv4.db’45–47. If there were more than 
one probe annotated to each gene, the probe with the largest inter-quartile range was kept, which resulted in 
7713 unique genes in the data analysed. Estimates for the proportions of 22 populations of WBCs in samples 
were obtained using the CIBERSORT procedure48.

Statistical analyses.  We considered covariates and WBC proportions as potential confounders if they 
were significantly associated with smoking status according to Chi-square or Kruskal–Wallis tests, and with 
overall gene expression data according to the ‘global test’ from the Bioconductor package ‘global test’49. We used 
two adjusted (minimally- and fully-adjusted) models to assess the relationship between smoking status and 
gene expression profiles. We also performed linear regression analysis between WBC proportions and smoking 
metrics to assess their associations.

We performed all the main analyses using R version 3.2.1 and 3.6.250. We used the Bioconductor package 
‘limma’51 for the gene-wise linear models. The presence of DEGs was determined by three comparisons of 
smoking status groups: CS-vs-NS, CS-vs-FS, and FS-vs-NS, using a significance threshold of FDR ≤ 0.0552. We 
performed analyses of smoking metrics within CS and FS separately, and for adult PS within NS. Further, data on 
DNA methylation at the CpG site AHRR gene, cg05575921, was available in a subset of participants (n = 324)19. 
Therefore, we compared the ability of the top-ranked gene in our analyses and CpG site in the AHRR gene 
(cg05575921) using ROC curves. Differences in average expression and log2FC between groups of DEGs were 
tested using t-test and Wilcoxon rank sum test, respectively. To evaluate common biological functions of results 
of the gene-wises tests, we performed functional enrichment analyses of all significant up-regulated genes and 
all significant down-regulated genes. We used the bioconductor packages ‘clusterProfiler’53 and ‘ReactomePA’54 
to conduct functional enrichment analyses of GO(BP), GO(MF), and GO(CC) categories, and KEGG55 and 
REACTOME pathways for DEGs from different smoking status groups.

Ethical statement.  The Regional Ethical Committee of North Norway (REK) has approved the NOWAC 
study and the NOWAC postgenome cohort (Reference Numbers: 2010/2075/REK Nord and 2014/1605/REK 
Nord, respectively), and the collection and storage of human biological material, the individual case–control 
studies, and gene expression analyses that this project was constructed from. The women gave written informed 
consent for the blood collection and for gene expression analyses42. All methods were carried out in accordance 
with relevant guidelines and regulations in the manuscript for human.

Data availability
Data cannot be shared publicly because of local and national ethical and security policy. Data access for research-
ers will be conditional on adherence to both the data access procedures of the Norwegian Women and Cancer 
Cohort and the UiT –The Arctic University of Norway (contact via Tonje Braaten <tonje.braaten@uit.no> and 
Arne Bastian Wiik <arne.b.wiik@uit.no>) in addition to an approval from the local ethical committee.
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