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Wetland hydroperiod predicts 
community structure, 
but not the magnitude 
of cross‑community congruence
Jody Daniel   & Rebecca C. Rooney*

A major focus in community ecology is understanding how biological interactions and environmental 
conditions shape horizontal communities. However, few studies have explored whether cross-
community interactions are consistent or non-stationary across environmental gradients. Using 
the relative abundance of birds, aquatic macroinvertebrates and plants, we examined how cross-
community congruence varied between short and long-hydroperiod prairie pothole wetlands in 
southern Alberta. These wetlands are structured by their hydroperiod: the length of time that ponded 
water is present in the wetland. We compared the strength of cross-community congruence and the 
strength of congruence between each horizontal community and wetland hydroperiod in wetlands 
that typically contain ponded water throughout the year to wetlands that dry up every summer. 
The strength of cross-community relationships was similar between more permanent and more 
ephemeral wetland classes, suggesting that biological interactions have a near equivalent role in 
shaping community composition, regardless of hydroperiod. However, because cross-community 
congruence, measured as the Procrustes pseudo-R value, was, on average, 77% ± SE 12% greater than 
that between each horizontal community and measures of wetland hydroperiod, we concluded that 
community structure is not shaped by hydroperiod alone. We attribute the observed cross-community 
congruence to (1) plants and aquatic macroinvertebrates influence birds through habitat and food 
provisioning, and (2) birds influence plants and aquatic macroinvertebrates by dispersing their 
propagules.

Understanding the mechanisms that explain the composition of biological communities is a major focus of 
community ecologists. Both environmental conditions and interactions between horizontal communities (i.e. 
sets of species sharing common needs in terms of resources or space)1 are known to dictate which species will 
establish in a given habitat2–4, and thus numerous studies have attempted to partition their relative influences on 
community composition5–8. However, apart from examination of the stress gradient hypothesis among plants9–11 
and predation-permanence gradient model with aquatic macroinvertebrates and their predators12, only a few 
studies have explored whether the strength of biological interactions among multiple taxa is influenced by envi-
ronmental conditions along a gradient13–15 beyond simply gradients in space or time16,17. Questions arising from 
this gap include: (1) do relationships among horizontal communities change along environmental gradients, and 
(2) does the strength of cross-community relationships vary with environmental conditions? By investigating 
whether the strength of cross-community relationships change across environmental gradients, we could better 
understand how communities assemble.

Because species differ in which environmental conditions are optimal for their growth and development, we 
may observe changes in the strength of interspecific cross-community interactions (herein referred to as non-
stationarity) across environmental gradients18–20. Non-stationarity in cross-community relationships is widely 
reported in geographic space and across time21,22, and we would expect similar mechanisms as those deemed 
causal in studies of spatial or temporal gradients to explain non-stationarity in cross-community relationships 
along other environmental gradients. Indeed, such studies often attribute the spatial or temporal pattern to a 
correlated pattern in environmental conditions, though without explicitly quantifying those conditions. Across 
geographic space, we can attribute non-stationarity in plant-plant relationships to differences in environmental 
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conditions under which species were able to establish19; the rate at which established species increased their 
abundances determined whether there was space for later-arriving species to also establish. The influence of 
differential tolerances and requirements among species on population structures has also been observed in preda-
tor–prey interactions. For instance, authors of one study argued that predation rates are lower in wetlands with 
shorter hydroperiods because fewer predators are able to sustain populations under these stressful conditions 
when the diversity and abundance of prey is lower12. Non-stationarity across environmental gradients could also 
be explained by species requiring additional defenses to combat new predators or competitors. For example, 
Alaska paper birch in nutrient-poor environments used carbon- vs. nitrogen-based defenses to herbivory, which 
resulted in them differing in their palatability to snowshoe hares across a gradient in soil chemistry23. More recent 
examinations of cross-community relationships across environmental gradients demonstrate non-stationarity 
between zooplankton and fish24, plants and insect herbivores25 and numerous other pairwise interactions15. Given 
these observations of non-stationarity of interspecific interaction outcomes along environmental gradients, 
we wanted to determine whether congruence between horizontal communities would be consistent across an 
environmental gradient. Or alternatively, whether one end of an environmental gradient might exhibit lower 
cross-community concordance than is evident at the other end of that gradient.

Congruence is a measure of the correlation between two multivariate matrices26. Typically, these comparisons 
are made between the relative abundance patterns evident in species belonging to different horizontal commu-
nities, commonly within a single taxon, to estimate the strength of inter-community interactions27 or between 
the pattern of relative abundances in one horizontal community and environmental conditions28,29 to estimate 
the strength of the dependency of a particular horizontal community on a given set of physicochemical factors.

While strong congruence between a horizontal community and some measure of environmental conditions in 
its habitat can indicate a structuring role of abiotic factors on community composition, strong cross-community 
congruence could be explained by either biological interactions30, horizontal communities responding similarly 
to a gradient in environmental conditions31,32, or a common biogeographic history among taxa33,34. If biological 
interactions are responsible for cross-community agreement among matrices of species’ relative abundance, 
we expect that cross-community congruence will exceed the strength of congruence between either horizontal 
community and a matrix of environmental variables, particularly if the system is characterized by a simple 
dominant environmental gradient (Fig. 1A,B). In contrast, if the strength of cross-community congruence is 
equal to or less than the strength of congruence between a matrix of environmental variables and one of species’ 
relative abundances for a given horizontal community, then we must concluded that the cross-community con-
gruence we observe could be attributed to a common response to environmental conditions or even a common 
biogeographic history35 (Fig. 1C,D), biogeography and environmental conditions being typically correlated and 
difficult to partition.

This approach to evaluating the relative importance of cross-community interactions and environmental 
filtering on community composition is best implemented in a system that is largely structured by a single environ-
mental gradient (e.g., a moisture-aridity gradient such as that created by variation in inundation time in wetlands 
or precipitation in desert ecosystems) because differences in the species pools between habitats can be explained 
by their response to the environmental gradient36. Along such a gradient, the availability of water can act as a clear 
environmental filter, excluding taxa that lack adaptations to persist under either dry or inundated conditions37. 
This results in the emergence of distinct communities, dependent on moisture availability38,39. Prairie pothole 
wetlands, for example, differ in the diversity and community composition of birds, aquatic macroinvertebrates 
and plants along a gradient in hydroperiod from ephemeral to permanently-ponded36. Hydroperiod in these 
wetlands influences whether a wetland supports only wet meadow species or includes more water-loving robust 
emergent species like cattails and bulrushes or even submersed aquatic and floating vegetation40. Hydroperiod 
also dictates if a wetland will support aquatic macroinvertebrates that cannot survive dry-down events or if 
such taxa will be excluded37. Since the foraging and nesting opportunities of migratory birds are determined 
by wetland vegetation characteristics and the availability of aquatic macroinvertebrate prey, hydroperiod also 
indirectly dictates bird community composition41. Given these three taxa exhibit distinct communities at differ-
ent positions along the hydroperiod gradient, we can test whether the strength of cross-community congruence 
differs between short and long-hydroperiod prairie potholes.

In an earlier study, beta diversity was inversely correlated with wetland hydroperiod for wetland birds, aquatic 
macroinvertebrates and plants36. The authors speculated that species in wetlands with longer hydroperiods had 
more time to progress toward community equilibrium through interspecific interactions, whereas community 
composition in wetlands with brief hydroperiods was more a product of ecological drift. If this hypothesis were 
correct, we expect to see weaker cross-community congruence in short-hydroperiod than long-hydroperiod 
prairie pothole wetlands. We consequently asked three questions, using relative abundances of three horizontal 
communities (birds, aquatic macroinvertebrates and plants): examining species from prairie potholes ranging 
from short- to long-hydroperiods (1) is there significant congruence among these three horizontal communities; 
and (2) if so, does a common response to the dominant environmental gradient (hydroperiod) alone explain the 
observed cross-community congruence; then, after partitioning the dataset into long- and short-hydroperiod 
prairie potholes, (3) is there evidence of non-stationarity in cross-community congruence between prairie pot-
holes of long vs. short-hydroperiod wetlands?

Materials and methods
Study area.  Our study took place in the Grassland and Parkland Natural Regions of Alberta, Canada (Fig. 2). 
Wetlands in the region are called prairie potholes and comprise water-filled depressions that were formed in the 
last glacial period42. The climatic conditions are semi-arid since annual precipitation exceeds evapotranspiration 



3

Vol.:(0123456789)

Scientific Reports |          (2021) 11:429  | https://doi.org/10.1038/s41598-020-80027-4

www.nature.com/scientificreports/

rates43. While mixed-grass prairie dominates the Grassland Natural Region, both deciduous forest and prairie 
are widespread in the Parkland Natural Region44.

Study design.  Our 96 study sites spanned a gradient in hydroperiod, i.e., they ranged in pond perma-
nence from temporary to permanent40. Further, they were selected to represent the size-frequency distribution 
of wetlands within their respective sub-watersheds, based on the Alberta Merged Wetland Inventory45. As such, 
most were small (mean size 0.81 ± 0.12 ha). Importantly, wetlands classified as short- vs. long-hydroperiod were 
equivalent in their size (t-test: t = 0.187, df = 90.4, p-value = 0.852).

Biological surveys.  Birds.  Birds were surveyed using both visual and auditory surveys, twice during the 
peak breeding season (May–June in either 2014 or 2015). Importantly, species abundances were summed across 
visits, rather than averaged, to account for the staggered breeding seasons among species. More details on these 
bird surveys are provided in another study46. In brief, surveys commenced half an hour before sunrise and went 
no later than six hours thereafter. Surveys were rescheduled if weather conditions were unfavorable to bird ac-
tivity (e.g., rain, traffic sounds, or wind enough to rustle field notes). First, 10-min long visual surveys from a 
vantage point that covered the entire open water zone were undertaken to record any foraging or nesting birds 
before the site was entered, as observers entering the site can flush waterfowl. Next, observers conducted audi-
tory surveys that were 8-min long, 100 m fixed-radius point counts, typically carried out at the center of the wet-
land. In larger wetlands (> 3 ha), multiple auditory surveys were carried out, spaced > 100 m from any wetland 

Figure 1.   Hypothesized measures of congruence if cross-community congruence (A) was best explained by 
the influence of wetland hydroperiod (B), or if cross-community congruence was best explained by biological 
interactions (C) and not solely the influence of wetland hydroperiod (D). When the strength of cross-
community relationships is similar in magnitude to that between each horizontal community and hydroperiod, 
we would expect that high cross-community congruence is explained by each horizontal community responding 
similarly to wetland hydroperiod (A, B). However, when cross-community relationships are much stronger 
than that between each horizontal community and hydroperiod, we would expect that high cross-community 
congruence is mostly explained by biological interactions (C, D).
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edge and > 200 m from any other point count location to ensure independence. Counts across multiple auditory 
point counts within a wetland were summed to reflect differences in wetland size. The identity and abundance 
of species detected by visual and auditory survey techniques was recorded (species list in Supplemental Material 
1). We ensured not to double count individuals that were recorded during the visual survey in the point count 
surveys, or birds that relocated between point count surveys, where multiple point counts were warranted by the 
size of the wetland.

Aquatic Macroinvertebrates.  Aquatic macroinvertebrates were sampled during the same period as birds, using 
the quadrat-column-core method47, which was revised48 for use in our study region. Sampling was stratified 
between the open-water zone (submersed and floating vegetation) and the emergent zone (cattail, bulrush, or 
other robust perennial sedges), presuming both zones were present. Three replicates of each sample type were 
collected in each wetland zone: (1) a 10 cm deep, 4.8 cm diameter sediment core, collected using a steel corer; 
(2) a 0.25 m2 vegetation sample, clipped from the emergent or submersed vegetation and then washed vigor-
ously to remove clinging invertebrates; and (3) two, 10 cm diameter water column samples obtained using a 
tube-sampler inserted to just above the sediment. The replicates of each sample type were composited, yielding a 
single water column, sediment core, and vegetation sample per wetland vegetation zone (open water and emer-
gent). These were then sorted to remove aquatic macroinvertebrates so they could be identified to the lowest 
practical taxonomic level (typically Family)49,50. For vegetation samples, we used a Marchant box to sub-sample 
based on the protocol of the Canadian Aquatic Biomonitoring Network51, where the taxon abundances were 
area-weighted to estimate density per meter-squared. Similarly, counts from water samples were scaled to the 
meter squared, and then water and sediment densities were summed to represent each wetland zone, and aver-
aged across zones to obtain wetland-level data on invertebrate relative abundances. Ultimately, sediment core 
sample fractions were excluded from analysis because: (1) densities were low and (2) there were no taxa in the 
sediment cores that were novel to the combined water column and vegetation samples. A comprehensive list of 
taxa observed is provided in Supplemental Material 1.

Plants.  Plant surveys occurred in late July to August, which coincided with peak aboveground biomass and 
when most herbaceous species could be confidently identified. First, the extent of each plant assemblage was 

Figure 2.   Map of study our region, situated in the northern prairie pothole region (inset map). Our 96 wetland 
sites covered the Grassland and Parkland Natural Regions, and represented temporary (n = 28), seasonal (n = 35), 
semi-permanent (n = 17), and permanent (n = 14) ponded-water permanence classes.
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mapped, and this was based on their vegetation structure (e.g., deciduous tree, coniferous tree, dead deciduous, 
dead coniferous, deciduous shrub, coniferous shrub, robust emergent, narrow-leaved emergent, forb, broad-
leaved emergent, floating-leaved vegetation) and then by co-dominant or dominant species. These extents were 
determined in the field by mapping the assemblage boundaries with a GPS/GNSS unit with sub-meter real-time 
accuracy (SX Blue II receiver, by Geneq Inc., Montreal, Canada). For each 100–5000 m2 sized community, the 
identity and percentage cover (modified Braun-Blanquette approach) of each vascular plant species within five, 1 
m2 quadrats were recorded. For communities larger than 5000 m2, an additional quadrat was surveyed per 1000 
m2 of community area over the 5000 m2 threshold. In addition to vascular plants, the identity and percentage 
cover of the following classes were also included: algae, bare ground, litter, moss, rock, seedling/unidentified 
forb, standing dead litter, and open water (species list in Supplemental Material 1). Note, only the percent cover 
of vascular plants was included in subsequent analyses. More details on these plant surveys are provided in 
another study52.

Hydroperiod.  We consider hydroperiod a latent variable that is indicated by several measurable variables such 
as the approximate number of days the wetland contained ponded water, the maximum water depth, the ratio of 
water amplitude to the maximum water depth, or an index of evaporative loss based on stable isotope analysis. 
In our study, we used these four measurements to approximate hydroperiod. At each wetland, we installed a staff 
gauge in May at the deepest point of the open water zone. We collected water depth measurements from these 
staff gauges every 3–5 weeks between May and September. If the wetland dried out entirely, we recorded the date 
that this was first observed. If the wetland remained flooded until September, then we considered it to possess 
ponded water for 365 days. The difference between our deepest and shallowest water depth measurement was 
the wetland’s amplitude. Lastly, we collected 30 mL water samples from each wetland in May, which was later 
used to estimate evaporative loss. For details on the stable isotopes analysis, see53.

Statistical analysis.  Congruence.  To determine if we could (1) detect cross-community congruence, (2) 
attribute cross-community congruence to a dominant environmental gradient (hydroperiod) and (3) detect a 
difference in the strength of congruence in short vs long-hydroperiod wetlands, we used a Procrustes analysis. 
In terms of our general approach, we first measured the strength of congruence between each pair of horizontal 
communities: (1) birds and plants, (2) birds and aquatic macroinvertebrates, and (3) plants and aquatic mac-
roinvertebrates. Next, we measured congruence between each horizontal community individually and the four 
measures of wetland hydroperiod. Then, we compared cross-community congruence and congruence between 
each horizontal community and measures of wetland hydroperiod to determine whether a common response to 
variation in hydroperiod could explain any observed cross-community congruence (Fig. 1C,D). Next, to test for 
non-stationarity in any observed cross-community congruence in short vs. long-hydroperiod wetlands, we sub-
divided the dataset into wetlands of low (temporary and seasonal) permanence class and wetlands of high (semi-
permanent and permanent) permanence class and then recalculated both cross-community congruence and 
congruence between each horizontal community and the matrix of hydroperiod indicators. We then compared 
the strength of these congruence measures between the low and high permanence class wetland subgroups.

Though the Mantel test is popularly used to measure congruence in ecology26, Peres-Neto and Jackson showed 
that Procrustes analysis is better at detecting significant relationships (lower risk of type II errors). Additionally, 
in a majority of studies testing for multivariate correlations, Procrustes analysis can be substituted for a Mantel 
test26, apart from when the aim is to test for a relationship between community dissimilarity and geographic 
distance55. To measure congruence in a Procrustes analysis, matrices are rotated and translated until finding 
the lowest possible variance that still maximizes their fit in Euclidean space54. As a measure of fit, we use the 
sum of square residuals between the matrices in their optimal configurations and a pseudo-R value54. Another 
advantage of the Procrustes analyses is that it is insensitive to differences in dimensionality between matrices. 
Zero-filled columns are added to the smaller matrix to match dimensions of the larger matrix, and this is unlikely 
to affect measures of congruence26,56. Given our aim to assess how congruence changes with pond permanence, 
we were confident that Procrustes analysis was most appropriate for our study, which was implemented using 
the protest function in the vegan package57. For each horizontal community, we applied a Hellinger transforma-
tion to our relative abundance matrices to make our data suited for projection in Euclidean space26, as required 
by the Procrustes analysis.

Rarefication.  Sample size can influence estimates of congruence58. To ensure our sites were representative 
of the frequency distribution of permanence classes in our wetland inventory, we sampled an unequal number 
of wetlands across permanence classes (Fig. 2). Unequal treatments and small sample sizes can cause: (1) higher 
than expected estimates of congruence for classes with spatially aggregated wetlands (e.g. permanently-ponded 
wetlands), or (2) an inability to detect congruence in classes with fewer wetlands. To determine if sample size 
influenced our ability to detect congruence, or the magnitude of congruence, we rarefied our data to identify 
the sample size threshold at which the sensitivity to sample size plateaued. First, we subsampled our Hellinger-
transformed relative abundance matrices, increasing n from 3 to 40 and selecting the same sites from each hori-
zontal community in the cross-community comparison (birds versus macroinvertebrates, birds versus plants, 
macroinvertebrates versus plants). Then, for each subsample and cross-community comparison, we measured 
congruence. Since congruence can be influenced by this random subsampling, we repeated the rarefication 100 
times. We repeated these sensitivity tests in analyzing congruence between each horizontal community and our 
matrix describing hydroperiod. We found the mean and standard error across iterations for the 3 to 40 subsam-
pled sites (Supplemental Material 2). On average, changes in congruence were marginal with > 23 sites. Thus, we 
combined the temporary and seasonally classified wetlands (short hydroperiod: n = 65) and our semi-permeant 
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and permanently classified wetlands (long hydroperiod: n = 31) into separate groups, such that this threshold 
was exceeded.

The long-hydroperiod group still constituted fewer sites (n = 31) than the short-hydroperiod group (n = 65), 
which could bias our comparison of congruence between wetland permanence class groups. To counter this bias, 
we stratified our horizontal community relative abundance matrices and the matrix describing hydroperiod by 
permanence class. Using the package fifer59 in R, we then subsampled and randomly selected 31 sites (without 
replacement) from the (1) entire dataset and (2) short-hydroperiod wetlands (including both seasonally-ponded 
and temporarily-ponded wetlands). We compared this to all 31 long-hydroperiod wetlands (including both 
semi-permanently ponded and permanently-ponded wetlands). We repeated this random sampling 1000 times, 
measuring congruence for each iteration.

Results
Congruence.  The strength of cross-community congruence (Fig. 3A) was much larger than that between 
each horizontal community and measures of hydroperiod (Fig. 3B), when we consider all wetlands surveyed. 
Using the Procrustes pseudo-R value, the strength of bird cross-community relationships (i.e., bird-aquatic 
macroinvertebrate, bird-plant) were 84% higher in magnitude than that between birds and hydroperiod. With 
aquatic macroinvertebrates, relationships with both birds and plants were 52% larger in magnitude than aquatic 
macroinvertebrate-hydroperiod relationships. Similarly, for plants, cross-community relationships were 95% 
larger in magnitude than that between plants and hydroperiod. For a full list of Procrustes pseudo-R values and 
the associated p-value, see Supplemental Material 3.

Differences in congruence based on permanence class (short hydroperiod: temporary and seasonal; long 
hydroperiod: semi-permanent and permanent) were marginal, contrary to our prediction. While birds and mac-
roinvertebrates had marginally stronger congruence with hydroperiod in long-hydroperiod wetlands (Fig. 3B), 
difference in cross-community congruence between the long and short hydroperiod wetlands were negligible.

Discussion
Biological interactions are important drivers of community composition and some argue that biological interac-
tions are equally as important in shaping community composition as are environmental filters2,3. Without under-
standing the relationship between one horizontal community and another, we have an incomplete understanding 
of how communities assemble. It is difficult to disentangle the relative influence of biological interactions and 
environmental filters on community composition in the absence of manipulative experiments60,61, especially 
with the use of natural experiments as opposed to causal-based models (e.g., structural equation models)5,62. 
However, our results confirm that hydroperiod alone cannot explain patterns in species relative abundances, 
despite sampling across a strong hydroperiod gradient, since there were stronger relationships among the hori-
zontal communities we surveyed than between each horizontal community and our measures of hydroperiod. 
Similar to our findings, a Norway study reported a strong relationship between biological interactions and plant 
biomass in alpine grasslands along a precipitation gradient63 and a highly relevant Brazilian study of floodplain 
wetlands also found a relationship between hydroperiod and woody plants64. Interestingly, although the authors 
observed a high congruence among the horizontal communities that they studied, including birds, plants and 

Figure 3.   Congruence among horizontal communities (A) and between each horizontal community and 
hydroperiod (B) using a Procrustes Analysis. We measured congruence for our balanced rarefied datasets at 31 
sites. Over 1000 iterations, we sampled without replacement: (1) all sites, regardless of permanence class (n = 96) 
and (2) short-hydroperiod wetlands (including both seasonally-ponded and temporarily-ponded wetlands; 
n = 65); thus, error bars are 90% confidence intervals from bootstrapping. Long-hydroperiod wetlands were 
inclusive of those that were semi-permanently and permanently ponded; “*” indicates that congruence was 
significantly greater than zero (p-value < 0.1).
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spiders, they concluded that horizontal communities evidencing the highest concordance were more strongly 
associated with the same environmental factors, such as hydroperiod and flood intensity.

Interestingly, though cross-community congruence was high compared with the congruence between each 
horizontal community and the matrix of hydroperiod indicators, we did not detect a difference in the strength 
of cross-community congruence between wetlands of short and long hydroperiods. We attribute our failure to 
detect this non-stationarity in the strength of cross-community relationships to two factors. First, out of the three 
horizontal communities that we studied, hydroperiod had the strongest relationship to aquatic macroinverte-
brates, filtering out those invertebrates missing the capacity to survive drawdown and desiccation. Therefore, 
it is likely that the influence of vegetation on the abundance of macroinvertebrates is masked by the stronger 
influence of hydroperiod37. Work in Australian ephemeral wetlands suggests that the influence of hydroperiod 
on aquatic macroinvertebrates may be similar to that on plants, and authors reported that the duration of inun-
dation and water depth will dictate which plants will establish65. Consequently, from short to long-hydroperiod 
wetlands, we should observe plant and aquatic macroinvertebrates that are adapted to the same conditions, and 
this would mean that plants will have the same magnitude of influence on aquatic macroinvertebrates across 
the hydroperiod gradient. Second, birds select wetlands based on whether their foraging and nesting needs can 
be met66 (traits listed in Supplemental Material 4), which is typically dependent on vegetation in both short and 
long-hydroperiod wetlands. As an example, our long-hydroperiod wetlands were occupied by waterbirds, whereas 
our short-hydroperiod wetlands were more associated with upland birds (Supplemental Material 5A.D). Thus, 
while we may observe birds that feed on aquatic plants/insects or nest in reeds in long-hydroperiod wetlands, 
birds in short-hydroperiod wetlands likely had foraging and nesting behaviors suitable for the prey and nesting 
habitat available. In other words, the birds are cueing to vegetation in their selection of wetland habitat across 
the measured hydroperiod gradient.

For wetland biota that are active dispersers, cross-community biological interactions may be more important 
in shaping their community composition than for sessile species. We demonstrate that bird abundances were 
most strongly tied to plant and aquatic macroinvertebrate abundances, and birds were the strongest dispers-
ers of the horizontal communities we studied. Birds in the NPPR are migratory, and they are known to choose 
wetlands for pairing and brood rearing based on the vegetation structure within the landscape and wetland-
scale vegetation characteristics67. Thus, birds occupying the wetlands we surveyed actively selected these areas 
because their foraging and nesting needs could be met. For aquatic macroinvertebrates, however, some families 
are able to colonize neighboring wetlands with better-suited hydroperiod regimes, when in their adult phases; 
for those invertebrates incapable of moving between wetlands (i.e., those in their aquatic stage), drawdown may 
extirpate them from a wetland, if they do not have desiccation-adapted traits68,69. Consequently, because aquatic 
macroinvertebrates are not generally able to select wetlands based on their preferred hydroperiods, plants may 
have a smaller role in structuring their communities than for birds. For plants, which are passive dispersers, the 
water depth gradient may determine which subset of the seedbank will germinate at a given location65,70 (traits in 
Supplemental Material 4). Because plants in these short-hydroperiod wetlands had seeds that are typically animal 
dispersed (Supplemental Material 5C,F), we can conclude their abundances may also be influenced by birds. 
Seed dispersal by birds is widely reported to influence wetland plant abundances71–74; cyclic drying increases 
seedbank diversity as the sediment is frequently exposed75,76. However, the authors also argue that seedbank 
composition and richness are congruent along the water depth gradient; when comparing seedbanks between 
wetlands, they are often indistinguishable. This would suggest that while seed dispersal by birds can influence 
seedbank diversity, it is hydroperiod that determines which plants within the seedbank establish65. Though 
plant abundances are related to seed dispersal by birds, the strong filtering of hydroperiod on their abundances 
results in birds being more sensitive to cross-community interactions as they can select which wetland meets 
their foraging and nesting needs.

There are caveats that warrant consideration in explaining the weaker congruence between each horizontal 
community and hydroperiod than among the horizontal communities. First, our vegetation surveys focused on 
emergent and meadow species, not submersed aquatic vegetation in the open water, which in short-hydroper-
iod wetlands is often gone by August. Submersed aquatic vegetation is characteristic of wetlands with longer 
hydroperiods40. Thus, incorporating submersed aquatic vegetation could increase the strength of the plant-
hydroperiod congruence. However, because congruence between hydroperiod and the other horizontal com-
munities (i.e., birds and aquatic macroinvertebrates) were similar in magnitude to that of plants, we believe that 
exclusion of submerged plants did not overly affect our results. Another factor that could have diminished our 
measures of congruence between each horizontal community and hydroperiod is that the variables we used to 
measure hydroperiod, such as permanence class, are proxies of the duration of inundation and the persistence 
of ponded water in the wetlands. However, there was strong agreement among the proxies across a gradient in 
Natural Region, climate and land use, evidencing that they are robust indicators of hydroperiod in our study77,78.

Conclusion
Contrary to our predictions, we did not detect non-stationarity in cross-community relationships across an 
environmental gradient. This was surprising because we hypothesised that longer hydroperiods would facilitate 
more time for cross-community interactions, and our failure to detect any differences suggests that horizontal 
communities in short to long-hydroperiod wetlands are equally related to each others’ abundances. Secondly, 
we detected stronger correlations between horizontal communities than between each horizontal community 
and measures of hydroperiod, and this was strongest for birds and plants. We hypothesize that these stronger 
correlations suggest that plant abundances are important in determining whether a bird will occupy a wetland, 
and that birds likely influence plant abundances when they disperse their seeds.
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