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Analysis of the properties 
of a glass/sisal/polyester composite
Rivalani B. Baloyi, Sizo Ncube  *, Mufaro Moyo, Londiwe Nkiwane & Pethile Dzingai

Composites are gradually becoming an integral material for structural and manufacturing processes. 
Sisal fibre has the potential to be one of the leading reinforcement natural fibres, not only in 
Zimbabwe, but the world over for use in glass composites. This is mainly due to it being inexpensive, 
exhibiting a low density, high specific strength, a high stiffness to weight ratio, non-toxicity, its 
abundance in Zimbabwe and its renewability. With an aim of coming up with a composite for partition 
board applications in the construction industry, five samples of sisal-glass composite were prepared 
with varying sisal fibre content and different layering techniques. Sisal fibres were pre-treated with 
20% NaOH to enhance their crosslinking with the resin and reduce the chemical impurities such as 
lignin and waxes. Mechanical (flexural test, hardness, and tensile strength) and physical tests (density 
and water absorption) were conducted to analyse the properties of the composite. The results showed 
that treated sisal fibres had a higher breaking tenacity of 33.11 g/tex which is higher than untreated 
fibres with a breaking tenacity of 25.72 g/tex. The best properties were obtained in the sample with 4 
layers of glass and 9 layers of sisal fibres using 200 ml of resin. The composite had a tensile strength of 
57.60 MPa, flexural strength of 36 N/mm2, moisture absorption of 10% and a burning rate of 9.82 mm/
min. These results were then compared with those of the current partition boards in the market. It 
was noted that the composite was suitable for use in partition boards. Again, regarding cost, these 
composites are cheaper to produce at a rate of $11.33/m2 compared to the timber costing at $16/m2.

The advancements in the field of textiles led to many new and advanced materials. These gave rise to the develop-
ment of composites materials. Composite materials, in simple terms, are materials that are comprised of at least 
two different materials with one the materials remaining in a solid state during fabrication1,2. Glass reinforced 
fibre composite materials give the engineer an alternative of performance of materials for the automobile sector 
and building sector. The increased demand of natural fibre is due the fibres being inexpensive, low density, envi-
ronmental friendliness, inexhaustible supply and its profusion3–6. Due to the lightweight nature of natural fibres 
and the mechanical properties of natural fibre composites the number of application in the modern industry 
has increased and even includes transportation and aerospace industries1,4.

Fibres in composites.  Sisal fibres are a renewable resource, and the production of this fibre uses a small 
amount of energy4–6. While natural fibres traditionally have reinforced thermoplastic polymers, they have 
attracted greater attention in reinforcing glass fibres with their added advantage of mechanical properties which 
are required in automobile applications7. Use of sisal fibres to reinforce glass has several advantages such as 
reduced environmental impact from synthetic fibres and decomposability of components3,6,8,9. The most com-
monly used fibres are called bast fibres or skin fibres. They are located in the phloem of specific plants, mainly 
dicotyledonous plants. They provide the support to conductive cells and the necessary rigidity required by the 
stem6. Fibres are separated from the plant using a process known as retting. Generally, bast fibres exhibit higher 
strength when compared to other natural fibres hence their use in high quality textiles. Types of bast fibres found 
in nature include flax, hemp, jute and kenaf10. Bast fibres have been used to manufacture traditional textiles such 
as carpets, hessian or burlap, paper and sacks.

In more advanced textile materials they have been used to manufacture nonwovens and composite materials 
that have been used to make products such as mats, furniture materials, door panels for vehicles and carpets5. 
Short conventional fibres such as aramid, glass and carbon have recently found increasing number of products 
as reinforcement for polymeric materials. The objective of the use of short fibres is to improve the mechanical 
properties of polymeric material while keeping costs low11.
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Natural fibre composites.  The capability of the composite is dependent on the matrix as the matrix 
is responsible for the distribution of the loads on the composite material. Composites are made of a matrix 
and a reinforcement component. The matrix is important in the performance of the composites. Due to their 
ease of handling and good bonding between the matrix and fibres, thermosets have been used for the matrix 
component12. Thermosets have the advantage of the ability to be cured to a high degree that results in a 3D net-
work structure that is tough, resists creep and solvents. Due to fibre alignment the loading can be above 70%13.

Most of the work has centred on synthetics such as polyethylene, poly vinyl alcohol, polypropylene and 
polystyrene as they can be easily processed at temperatures below 200 °C, above which natural fibres would be 
damaged14. Dispersion of fibres in thermoplastic composites plays an important part in efficient and even dis-
tribution of fibres in composite materials8. Although the processability of the composite materials results in ion 
limited loading, thermoplastics composites exhibit good properties such as desirable toughness and mechanical 
properties. Fibres in the composite have been found to be of a randomly oriented nature leading to reduced 
property medication of thermoplastic composites. The resulting properties of the composite material will be 
determined by the fibre, fibre matrix interface and the aspect ratio of the fibre8.

Bonding between the fibre and the matrix is essential in determining the forces that the matrix can withstand. 
Strong bonding between matrix and fibres means that there will be a high level of force transfer as it moves from 
the matrix to the fibre, thereby allowing the fibres to effectively perform the load bearing function.

The thermal stability of the sisal fibre is critical in the manufacture of composite materials as high tempera-
tures are experienced during the curing stage of the thermosets14. During processing at high temperatures, the 
walls of the sisal fibre undergo pyrolysis which results in formation of charred layers. These charred layers will 
then form a protective layer around the lignocellulose to prevent further degradation. Thus the key factors in 
the fabrication of sisal reinforced composites are thermal stability of the fibre, bonding behaviour of sisal, and 
distribution of the fibre in the composites15.

Methodology
Fabrication of the composite.  The composite fabrication process was fabricated using the hand lay-up 
method. Unsaturated orthopthalic polyester resin was used as the polymer for the matrix. The resin with sup-
plied with an accelerator, that is, cobalt napthanate already mixed so the only additive that was added to the 
resin was the catalyst, Methyl ethyl ketone peroxide (MEKP). Wax was used as the release agent. A designed 
400 × 400 mm metal weight (10 kg) was used for the compression of the composite. Plastic brushes and a roller 
were used for the spreading of resin and removing air pockets respectively.

Preparation of materials.  Pre‑treatment of sisal fibres.  Natural fibres are generally extracted with some 
percentage of impurities and they contain cellulose and lignin which may prevent them from reacting with other 
chemicals. In order to remove this and increase the surface reactivity of sisal for cross linkage with the resin, pre-
treatment with a NaOH was done in a process known as mercerisation9. The Sisal fibres were treated to reduce 
the water absorbency of sisal fibres and to remove impurities and enhance the surface reactivity of sisal fibres.

The fibres were treated by immersing 200 g of sisal fibres in 20% sodium hydroxide for 1hour at room tem-
perature. The fibres were then rinsed with distilled water then dried in open air for 2 days. Treated fibres were 
also characterised for their strength properties using an Instron tensometer with a load cell of 3 kN. Obtained 
values from the test were recorded, averaged and compared to the tensile properties of the untreated fibres.

Treated and untreated sisal fibres were chopped into short lengths of 50 mm. The sisal fibres were randomly 
laid to produce mats of dimensions 300 mm × 300 mm. Each sisal mat had a mass of 10 g and each glass mat had 
a mass of 66 g. Each composite specimen consisted of totally 4 layers of glass mats and alternating layers of sisal 
fibres for the preparation of different samples, as shown in Table 1.

Characteristics of the woven glass roving.  Glass material which was used was E-glass, woven roving 
with a density of 450 gsm.The glass fabrics were cut into 5 weft and 5 warp direction specimens according to the 
dimensions 150 mm × 100 mm as described in the ASTM D5034 standard for grab test. The specimen were then 
tested for their individual tensile properties using a Titan universal strength tester with a load cell of 3 kN at a 
rate of 100 mm/s. Load was applied to the test specimen until it broke and values for maximum load and elonga-
tion were recorded. The Glass fibres matts were obtained from ACOL Chemicals, Bulawayo.

Preparation of resin.  The matrix used to fabricate the fibre material was preaccelerated orthophthalic poly-
ester with a density of 1.10 g/cc. Curing of the resin was initiated by a catalyst, methyl ethyl ketone peroxide 

Table 1.   Sample preparation.

Sample Arrangement of glass (G) and sisal (S) layers Number of layers of sisal Amount of resin used (ml)

1 G|S|G|S|G|S|G 3 (Untreated) 200

2 G|S|G|S|G|S|G 3 (treated with NaOH) 200

3 GG|SSS|GG 3 (Different layering) 200

4 G|SS|G|SS|G|SS|G 6 (Untreated) 200

5 G|SSS|G|SSS|G|SSS|G 9 (Untreated) 200
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(MEKP) which hardens the fibre composite without external heat. Curing time of the polyester resin was 18min-
utes from the time it was mixed with the hardener. To prevent hardening before finishing the fabrication process, 
mixing of the resin was done, using a steel rod, prior to the fabrication. A measured amount of polyester resin 
was taken for different fibre content and mixed with the hardener in the ratio of 1% w/v. The solution was mixed 
and stirred before applying on the laminate. The resin used was sourced from ACOL Chemicals, Bulawayo which 
supplied the preaccelerated orthophthalic polyester from the NCS Resin Company.

Fabrication of the composite material
A mixture of polyester resin and catalyst was hand laid on polyethylene film covered with a release film to prevent 
sticking. In this case, a thin layer of wax was used as the release film. The amounts of resin and catalyst used 
are shown in Table 1. The order of laying the materials is also shown in Table 1. Rollers were used to remove air 
pockets and allow resin to flow between the fibres. A weight was then placed on the fabricated composite with 
the polyethylene film placed in-between a 10 kg weight and the composite. Each composite sample had four 
layers of glass and 200 ml of resin was used for each.

Finally, these samples were left for 24 h for them to cure at room temperature (24 °C) to get the desired 
samples. After the composite material cured, the composite material was then taken out and post curing was 
carried out in an oven at 50 °C for 4 h. A laboratory type oven was used for post curing of the composite material.

Tensile properties.  This test method determines the in-plane tensile properties of polymer matrix compos-
ite materials. Tests were carried according to ASTM D3039 standard using an Instron Universal Testing Machine 
(UTM) at room temperature conditions and at a speed of 2 mm/min. 5 specimen were tested, each being aver-
aged from the 5 tests. Specimens used for testing were 250 mm length by width 25 mm.

The formulae that were used to calculate the values of tensile strength, strain, elongation and modulus of 
elasticity are given below:

where Ftu = ultimate tensile strength, MPa; Pmax = maximum load before failure, N; A = Average cross-sectional 
area (W × H), mm2; σ = Ultimate tensile stress; E = Elastic modulus; ε = strain at maximum load; Δl = change in 
length produced; l = initial length.

Flexural properties.  The standard used for flexural test was ASTM D790. A DMG Universal Testing 
Machine was used to carry out the Flexural test. Flexural test determines the maximum stress induced in the 
outermost fibre.

The flexural strength is calculated from the maximum load of the composite using the following formulas.

where Fmax = maximum force (N); L = length (100 mm); H = thickness and B = breadth

Moisture absorption test.  ASTM 5229- Is the Standard Test Method that is used for composite materials 
to determine the Moisture Absorption Properties and Equilibrium Conditioning. Five tests were carried out per 
sample. The tests for determining moisture absorption were carried out at room temperature.

Percentage water absorption is then calculated from:

Hardness test.  The hardness test was carried out following the procedures of the ASTM F1957 standard. 
The test characterizes the indentation hardness of materials through the depth of penetration of an indenter. The 
test is mostly used for composite materials to determine the curing degree of reinforced thermosets. There test 
also determines the resistance to plastic deformation by a material.

Flammability test.  The flammability test was carried according to ASTM D635 standard. The flammability 
test carried out to determine the rate at which a material will burn when placed near a flame.

(1)Ftu = Pmax/A

(2)E =

σ

ε

(3)Strain = �l/l

(4)Wb = B.H2/6

(5)Mbmax. = Fmax.L/4

(6)Flexural strength σb.B = Mbmax/Wb

(7)
Final weight− initial weight× 100

Initial weight
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Results and discussion
To obtain the properties of the fabricated composite, five samples of different fibre and matrix mass percentages 
were prepared. The respective mass percentages were obtained from the weighed masses of the composite using 
a digital analytical scale. The compositions of the composite samples were calculated using the formulas in the 
methodology section. From each of the samples, three test specimen were obtained and subjected to bending, ten-
sile, hardness and moisture absorption tests. The results of the fabrication of the composite are shown in Table 2.

Tensile test results.  Tensile test results show how much force the composite can withstand without break-
ing and from the load-elongation graph the tearing and deformation properties can be obtained. Table 3 gives 
the summarised maximum load values and extension and other calculated values from the load-extension graph.

Table 3 shows a comparison of the tensile strengths of the composites sample which were fabricated according 
to Table 1. The treated fibre composite (2) shows a higher tensile strength of 128 MPa which is higher by 16 MPa 
compared to that of sample 1, which is comprised of untreated fibres but of similar laying of fibres. Thus, sodium 
hydroxide treatment is shown to have caused a substantial increase in the tensile strength of the composite. The 
NaOH removed amorphous parts of the fibres, namely, hemicellulose and lignin which resulted in an increase 
in tensile strength of the fibres. Removal of the amorphous parts of the fibres also improved interfacial adhesion 
between the fibres and the matrix as exhibited by a higher tensile strength in the composites made using NaOH 
treated fibres than those made using the untreated fibres.

Comparing the tensile properties of current partition boards and the fabricated composite board, it can be 
clearly noted that the composite is stronger in tensile strength compared to soft wood boards which have a tensile 
strength of 23 MPa16. Again, with the medium strength cement board, the least strong composite can withstand 
a maximum force of 57.6 MPa which is almost nine times more than the fibre cement load of 6.99 MPa and two 
times that of the HDPE partition boards which have a tensile strength of 27.6 MPa17.

Figure 1 shows the relationship between force and extension of the treated and untreated composites. For 
the major portion of the above force extension curve, the extension of the composite is relatively proportional 
to the force being applied. That is to say it follows the Hooke’s law. Therefore, the slope of the curve where stress 
is proportional to strain can be calculated, which is the modulus of elasticity. Increased applied forces result in 
rapid stretching hence necking or wasting occur beyond the maximum force has been reached after which the 
final fracture occurs as shown in the tip of the curve.

As shown in Fig. 2, increase in the layers of sisal leads to a decrease in tensile strength. The composite with 
the least number of sisal fibres has more tensile strength. This can be as a result of the crosslinking between the 
sisal fibres and resin compared with that of glass and resin. If there are less layers of sisal fibres, the bond between 
the glass layers sandwiching the sisal is stronger than when there are more layers of sisal fibres between. Thus, it 
will need more load for it to break hence a higher tensile strength. The failure pattern of sample 1 and 3 can be 
attributed to the bonding between the sisal layers and the resin where the sample laminates initially separated 
before failing individually. Sample 2 had better bonding as the sisal fibres had been treated.

It is noted from Figs. 2 and 3, that the composite with alternating layers is stronger than the one which has 
all the sisal fibres sandwiched between outer layers of glass. Strength in sample 1 is more distributed than in 
sample 2 where the strength in the outer surface is greater than in the middle. This lowers the overall strength 
of the composite.

Fracture properties of composites under tension.  As shown in Fig. 4 fracture of short fibre compos-
ites will generally occur parallel to the fibre axis of the composite material. For a composite material the strength 
of the composite will be larger in the direction of the fibres compared to the transverse direction. Fracture of the 
composite materials may occur in either the fibre-matrix interface or within the matrix instead of the composite 

Table 2.   Density and thickness for the composites.

Sample 1 2 3 4 5

Density (g/cm3) 1.307 1.311 0.829 0.885 0.712

Thickness (mm) 5 5 6 8 10

Table 3.   Tensile test results for composite samples.

Sample 1 2 3 4 5

Area (mm2) 125 125 125 200 250

Max load (kN) 15.33 16.0 11.87 14.67 14.40

Extension (mm) 6.26 8.86 8.67 8.60 7.90

Tensile strength (MPa) 112.64 128 94.96 73.35 57.60

Strain at maximum load (MPa) 0.025 0.035 0.035 0.034 0.032

Elongation (%) 2.5 3.5 3.44 3.16 3.47
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Figure 1.   Tensile strength against treated (1) and untreated (2) composites.

Figure 2.   Tensile strength against sisal content (1) G4; S9, (2) G4; S6 (3) G4; S3.

Figure 3.   Tensile strength against sample type (1) Alternating (2) All sisal layers in the middle layers.
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surface as shown in the specimen. Fracture behaviour of the composite is also a result of the different layer failing 
at different stages leading to a high and low yield strength.

Bending test results and calculations.  Using sample 1, the tabulated results in Table 4 were obtained 
using the maximum load obtained from the bending test using Eqs. (4), (5) and (6). The rest of the results were 
calculated and tabulated as shown in Table 4 using the averaged maximum load values, samples length and width 
was 100 mm and 20 mm respectively.

Flexural stress of the composite with the highest flexural strength is 156 N/mm2 and its deflection at break is 
5.0 mm. this is because it is more brittle compared to the other specimens hence it quickly reaches the maximum 
load without too much deflection.

As shown in Fig. 5, treated composite (2), composed of three layers of sisal treated with NaOH, has flexural 
strength of 184 N/mm2 which is higher than that of untreated composites.

Figure 4.   Tearing behaviour of the composite specimen under tension.

Table 4.   Bending test results.

Sample FMax (N) H (mm) Wb (mm3) Mbmax (Nmm) δb (N/mm2)

1 520 5 83.333 13,000 156

2 615 5 83.333 15,375 184

3 170 5 83.333 4250 51.00

4 420 8 213.333 10,500 49.22

5 490 10 333.333 12,250 36.75

Figure 5.   Flexural strength against sample type.
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The interfacial zone between two surfaces in a composite material, namely between the fibres and the matrix 
plays an important part in the performance of the composite. Load transfer will depend on the interfacial zone 
between the fibre and the matrix thereby affecting strength characteristics of the composite. On the other hand, 
flexural failure will be determined by the bonding between the fibre and the matrix. Increase in the flexural 
strength can be attributed to the increase in effective surface area available to the matrix to bond. Flexural 
strength decreases with increase in sisal fibre content shown by the decrease in the graph size from sample 1 to 5. 
Due to the random orientation of the sisal fibres, more layers will cause more weak areas which are not uniform 
in their bonding strength, hence there is presence of more weak spots in the composite. Deformations can occur 
at lower loads than a composite with low sisal fibre content.

A composite with alternating layers of glass and sisal, that is comparing sample 1 and 3, has a higher flexural 
strength than that which has sisal fibres concentrated in the middle portions of the composite (sample 3). The 
difference in strength of the two fibres used will cause the composite to be stronger in the outer layers than the 
core area. Hence when a bending force is applied the core is likely to start deforming and cause the outer layers 
to break also. The sample with the lowest flexural strength, that is, sample 5 with a maximum bending load of 
490 N has greater flexural properties than that of the current gypsum board which has the same thickness, that 
is, 489N18. Compared to that of wood partitions the composite has also higher flexural properties than wood, 
which is 32 N/mm217.

Breaking tenacity.  Tests carried out for breaking tenacity showed that there is a higher breaking tenacity 
for the treated fibres as compared with the untreated fibres. Samples with treated fibres showed an average break-
ing tenacity of 33.11 g/tex while samples with untreated fibres had an average of 25.72 g/tex. Treatment with 
NaOH (mercerisation), allows for even distribution strength properties along the fibre length as it increases the 
lowest strength that the fibre can withstand at any point along its length19. Mercerisation also improves absorp-
tion of chemicals by the fibre by opening the lumen of the sisal fibres thereby allowing exposure of reactive sites. 
The opening of the reactive sites allows crosslinking of the resin and the fibre leading to better bonding, hence 
an increase in the strength of the composite material.

Moisture absorption test.  Table 5 shows the average weights of the initial and final samples.
The trend line in Fig. 6 shows that water absorption increases with an increase of sisal fibre content, this is 

because sisal fibres are fibrous and have more amorphous regions, hence they can absorb water and since there 
is increase in sisal fibre content in composite there is higher water absorption rate. Hardened polyester resin 
absorbs little amount of water.

The composite has an average water absorption percentage which is far less than that of sisal fibres and that 
of glass, separately. This is due to the use of the polyester resin which also absorbs little water. The composite 
absorbs less moisture compared to wood partition boards which has a moisture absorption of 12% which is also 
2% less than the highest absorption value of the composite16. Gypsum boards of 6 mm, which is close to sample 

Table 5.   Moisture absorption test results.

Time 1 h 5 h 24 h

Sample Original mass(g) Final mass (g)
Water Absorbed 
(%) Original mass(g) Final mass (g)

Water Absorbed 
(%) Original mass(g) Final mass(g)

Water absorbed 
(%)

1 13.94 14.58 4.46 14.01 14.70 4.96 15.02 15.68 4.38

2 14.96 15.58 4.12 15.07 15.73 4.39 14.07 14.59 3.69

3 14.31 15.94 7.61 14.42 15.51 7.59 14.44 15.42 6.79

4 15.51 17.21 10.96 17.60 19.27 9.40 17.70 18.96 7.11

5 19.71 21.70 10.11 19.69 21.67 9.81 19.74 21.78 10.34

Figure 6.   Effect of duration on moisture absorption.
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1, have a moisture percentage of 10% yet the composite is only 4.5%18. This shows that the composite has good 
properties than the currently used boards in terms of their water absorption20.

Hardness test results.  These tests determine the resistance of the composite to deformation caused by low 
impact forces such as indentations.

From Fig. 7, it can be seen that increase in volume ratio of sisal fibres improves the hardness of the composite. 
Treated fibre composite reduces the hardness as depicted by the bar for sample number 2 at 57.2 HRB whereas 
sample 4 has the highest value of 85HRB. Hardness of the sample with 3 layers of sisal but different layering as 
compared to (1) has the same hardness (78 HRB) as that of sample (1) despite the difference in arrangement.

The composite material is considered a hard material according to the classes of the ASTM standard F1957. 
Wood partitions are generally made from softwood, such as Pine wood16. It is a soft material when comparing 
its hardness properties to composite. It is easily scratched and leaves marking of low force indentions.

Burning test.  The behaviour of burning of the composite at various fibre layers was observed according to 
ASTM D 635-76 standard. The results of duration of burning are given in Table 6.

The following observations were made during the burning:

•	 The composite burnt with an orange flame producing a black soot with a chocking polyester/plastic smell
•	 The composite did not easily catch fire as it took 6 s but burnt easily after catching fire.

Figure 7.   Effect of fibre content and treatment on Rockwell hardness.

Table 6.   Results of the burning test.

Sample 1 2 3 4 5

Duration (min) 5.02 4.54 4.36 9.12 10.18

Speed mm/min 19.92 22.02 22.94 10.96 9.82

Figure 8.   Remains of the samples after the burning test.
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•	 The remains were black in colour with hard black particles as shown in Fig. 8.

Wood partitions are prone to fire hazards. They quickly catch fire and burn readily leaving white ashes. With 
the composite, it is slow at catching fire and the burning characteristics shows that it takes longer for the fire to 
spread.

Conclusion
The current and future application of sisal fibre in composite materials, specifically polymer based composites 
were explored. The low density and high specific properties of the composite material fabricated in the article, the 
composite material may find use in vehicle interiors. A sisal-glass composite was successfully developed. With 
the sample with 4 layers of glass mats and 9layers of sisal being the one preferred since it has the overall thickness 
which is almost that of the standard partitioning board, that is, 10 mm. Comparing the mechanical properties 
of the current timber boards in use, the composite has tensile strength and flexural strength which is greater by 
32.2 MPa and 4.63 N/mm2 respectively. This translates to 239% Also comparing the water absorption properties, 
the composite has a value of 10% on average which is 2% less that of wood. Mercerisation of sisal fibres results in 
changes in the structure of sisal fibres which lead to improvements as results show that the composite with treated 
fibres have higher mechanical properties though there is no difference in the burning properties. The removal 
of surface impurities on plant fibres may be an advantage for fibre to matrix adhesion as it may facilitate both 
mechanical interlocking and the bonding reaction due to the exposure of the hydroxyl groups to chemicals such 
as resins and dyes. However, sisal untreated fibres also show higher mechanical properties compared to wood, 
hence they can be used untreated to produce the composite without additional costs.
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