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A report on COVID‑19 epidemic 
in Pakistan using SEIR fractional 
model
Zubair Ahmad1, Muhammad Arif1, Farhad Ali2,3*, Ilyas Khan4 & Kottakkaran Sooppy Nisar5

Recently, novel coronavirus is a serious global issue and having a negative impact on the economy of 
the whole world. Like other countries, it also effected the economy and people of Pakistan. According 
to the publicly reported data, the first case of novel corona virus in Pakistan was reported on 27th 
February 2020. The aim of the present study is to describe the mathematical model and dynamics of 
COVID‑19 in Pakistan. To investigate the spread of coronavirus in Pakistan, we develop the SEIR time 
fractional model with newly, developed fractional operator of Atangana–Baleanu. We present briefly 
the analysis of the given model and discuss its applications using world health organization (WHO) 
reported data for Pakistan. We consider the available infection cases from 19th March 2020, till 31st 
March 2020 and accordingly, various parameters are fitted or estimated. It is worth noting that we 
have calculated the basic reproduction number R

0
≈ 2.30748 which shows that virus is spreading 

rapidly. Furthermore, stability analysis of the model at disease free equilibrium DFE and endemic 
equilibriums EE is performed to observe the dynamics and transmission of the model. Finally, the AB 
fractional model is solved numerically. To show the effect of the various embedded parameters like 
fractional parameter α on the model, various graphs are plotted. It is worth noting that the base of our 
investigation, we have predicted the spread of disease for next 200 days.

From the beginning the world is constantly facing disasters, in the form of earth quakes, tsunami, floods and 
pandemics occurred in different times and places. For example in different times the human being suffered by 
different kinds of infectious diseases, like HIV, Ebola virus, bird flu, dengue virus, malaria, TB, hepatitis B and 
C, diarrhea, influenza, chicken pox and rubella disease etc. These infectious diseases affected humans as well as 
other animals. Beside this, these infectious diseases not only spread in human and animals but it also spread in 
plants like, Pine wilt disease, Moko diseases, sugar cane, orange rust, Karnal bunt diseases and Dutchelm etc.1. 
These pandemics not only affected the economy of the world but also caused many deaths of mankind. The 
study of these infectious diseases is very important to investigate the spread of infectious diseases and to find 
out the behavior of these infectious diseases on living organisms. To look for the possible available resources 
which help to detect these diseases and prevent from them. The duty of humankind is to create a healthy envi-
ronment in which they live. The growth in human population is increasing with a great speed which also effect 
the environment. The nature of spreading of these viruses are different, some of them are fast spreading viruses 
while others are slow in spreading. In-spite of the spreading nature of these infectious diseases, they affected 
many humans as well as plants.

As discussed above, viruses may have different nature and having some specific visible history for differ-
ent stages of spreading these infectious diseases. In the present study we formulate the model for the globally 
spreading infectious disease namely novel corona virus (COVID-19). The first case of COVID-19 in human 
was reported in Wuhan China on December 31st 2019. Initially, the symptoms of this virus was considered as 
pneumonia. After the vaccination and treatment of pneumonia the infected patient was not recovered and the 
treatment was not  effective2. Secondly, it was observed that the transmission of this virus was very fast from 
human to human in China. Furthermore, the infected cases were not limited to the city of China Wuhan, it also 
spread in other cities of  China3. As the presence of this virus was not limited to China, but also spread in differ-
ent region of the world. It can be noticed from the behavior of corona virus that initially; it was considered as 
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epidemic disease. But the cases of corona virus spread in the whole world and then it became pandemic disease. 
Furthermore, it was found that symptoms of corona virus in human being takes 2–10 days4.

As this deadly virus spread rapidly in China and in the whole world, like Europe, North America, Germany 
and Italy and caused many deaths. The number of deaths due to COVID-19 was record in thousands. This 
virus also affects Asian countries specially Pakistan. In Pakistan the first case of Corona virus was detected in 
27th February  20205. From the 27th February 2020 till to 31st March 2020, the number of cases of COVID-19 
increased day by day. According to the data collected by  WHO5 the number of total infected cases were 1865 
and total reported deaths were 25 till 31st March 2020.

Fractional order modeling is quite important to understand the realistic situations of the dynamical models. 
Different researchers use different fractional operators to fractionalize their models. Like,  Zhang6 modeled the 
dynamics of COVID-19 in five different compartments and extended the model to the fractional order differ-
entiation to capture different memories using fractional operators of singular and non-singular kernels. Shaikh 
et al.7 investigated the spread of the deadly virus COVID-19 in India and fractionalized the classical model with 
Caputo–Fabrizio (CF) fractional operator. Baleanu et al.8 reported the numerical solutions of CF time fractional 
model of COVID-19 with different compartments by using homotopy analysis transform method. Yadav and 
 Verma9 examined the spread of COVID-19 in Wuhan, China through a dynamical CF fractional model with 
different classes and shown the effect of concentration of virus in the surrounding environment on these classes. 
Lu et al.10 investigated the dynamics of COVID-19 in different high concentrated cities of China using Caputo 
fractional model with six different compartments. Rajagopal et al.11 investigated the dynamics of COVID-19 in 
Italy using Caputo fractional model. They examined that results achieved through fractional model provides a 
closer forecast with the real data.  Higazy12 studied the spread of COVID-19 pandemic using SIDATHE fractional 
model with Caputo fractional operator. Besides this, fractional calculus is useful in various aspects of real-world 
problems such as Ozarslan et al.13 calculated the solutions of Malthusian growth model and falling body problem 
by considering the newly developed definition of Liouville–Caputo fractional conformable derivative and com-
pared their results with the Liouville–Caputo fractional derivative. Qureshi and  Aziz14 analyzed the solutions of 
chemical kinetic equation model through Laplace transform. They fractionalized their model by using Caputo 
operator and expressed their final solutions in the form of Mittag–Leffler function and power series expansion 
with double summation.

The aim of present study is to investigate the dynamics and transmission of COVID-19 through SEIR model. 
Furthermore, we transformed the classical model by newly developed Atangana–Baleanu time fractional model. 
The purpose of using AB time fractional derivative is that it has non-singular and non-local kernel and it may 
predict the spread of COVID-19 accurately. Qureshi et al.15 investigated the dynamics of diarrhea by considering 
AB fractional operator. They found that the diarrhea model under investigation estimates the real statistical data 
well enough when considered with the AB fractional order operator which has non-local and non-singular kernel. 
Bas and  Ozarslan16 investigated the analytical solutions of some dynamical models such as logistic equation, 
population growth/decay equation, blood alcohol model by considering AB fractional derivative. They concluded 
that AB fractional operator gives more accurate results to the derivative with exponential kernel. Bas et al.17 
analyzed the solutions of heating and cooling of building models by using the Laplace transform technique. They 
generalized their models by considering Caputo, Caputo–Fabrizio and Atangana–Baleanu fractional operators 
and by comparing their results, they noticed that AB-fractional derivative provides more precise results for the 
given models. They concluded that CF and AB fractional operators can better describes the dynamics of complex 
systems as compared to classical operators.

Recently, many researchers have chosen AB fractional model for dynamics of different infectious diseases, like 
the dynamics of  HIV18, chicken  pox19, hepatitis  E20, dengue  fever21, rubella  disease22,  measles23,  tuberculosis24. 
Besides this, AB fractional operator is also used by many researchers to investigate the dynamics of COVID-19. 
Gao et al.25 reported the investigation of dynamics of COVID-19 in Wuhan, China using AB fractional model. 
Atangana and  Araz26 reported a comprehensive study of spread of COVID-19 in South Africa and Turkey using 
Atangana-Seda numerical scheme. They generalized their classical model with AB fractional model and com-
pared the upcoming predictions of COVID-19 in Turkey and South Africa. Mohammad and  Trounev27 reported 
the numerical solutions of dynamical system of COVID-19 involving AB fractional operator. The applications of 
AB fractional derivative are not only limited to study the dynamics of infectious diseases but it has many applica-
tions in modern sciences and technologies e.g.  nanofluids28,  biofluids29, solar  collectors30, chaotic  processes31, 
electric  circuits32 etc.

More precisely, in the present research, we have taken the data of COVID-19 from 19th March 2020 to 31st 
March 2020 and parameterized the given model to the real data. Positivity and boundedness of the present model 
is also discussed. Fixed points and basic reproduction number is estimated. Stability analysis and some basic 
properties have been proved for the given model. A numerical scheme is developed for the given fractional model 
and displayed its results for the fractional parameter α through graphs. Some figures are plotted with different 
initial conditions for global asymptotical stability (GAS).

Mathematical modeling
In the present mathematical model, we have considered the spread of COVID-19 in human. The total popula-
tion is denoted by Nh(τ ) which is further subdivided into four sub-classes. The four subclasses are susceptible, 
exposed, infected and recovered people which are denoted by Sh(τ ), Eh(τ ), Ih(τ ) and Rh(τ ) respectively. The 
interaction among these subclasses has shown in the flow chart which is Fig. 1.

In the given model, the recruitment rate of susceptible population is �h which represents birth rate,ηh rep-
resents death rate of each subclass, �h represents interaction rate between susceptible and infected population 
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with the route �hShIhN  , ψh represents the rate at which exposed class completed their incubation period and enter 
into the infected class, γh is the removal or recovery rate of infected population.

Corresponding non-negative initial conditions

Non‑negativity and boundedness of the model
This section provided to prove the boundedness and positivity of the solutions of system (1). To show the positiv-
ity of the model (1), we state the following lemma:

Lemma 3.1 Suppose � ⊂ R× C
n is open, gi ∈ C(�, R), i = 1, 2, 3, . . . , n. If gi

∣

∣

xi(τ )=0,Xτ∈ C
n
+0

≥ 0 , 
Xτ = (x1τ , x2τ , . . . , xnτ )

T , i = 1, 2, . . . , n, then Cn
+0

{

ϕ = (ϕ1, ϕ2, . . . , ϕn) : ϕ ∈ C([−υ, 0], Rn
+0)

}

 is the 
invariant domain of the following equations.

where

Preposition 3.1 The system (1) is invariant in R4
+.

Proof By rewriting the system (1), we have:

We noted that

According to Lemma 3.1, R4
+ is invariant set.

Preposition 3.2 The system (1) is bounded in the region:

(1)

dSh(τ )

dτ
= �h − ηhSh −

�hShIh

N
,

dEh(τ )

dτ
=

�hShIh

N
− ηhEh − ψhEh,

dIh(τ )

dτ
= ψhEh − ηhIh − γhIh,

dRh(τ )

dτ
= γhIh − ηhRh,















































(2)S(0) = S∗ ≥ 0, E(0) = E∗ ≥ 0, I(0) = I∗ ≥ 0 and R(0) = R∗ ≥ 0.

(3)
dxi(τ )

dτ
= gi(τ , Xτ ), τ ≥ σ , i = 1, 2, . . . , n.

(4)R
n
+0{(x1, x2, . . . , xn) : xi ≥ 0, i = 1, 2, . . . , n}

(5)
dX

dτ
= M(X(τ )), X(0) = X0 ≥ 0,

(6)M(X(τ )) = (M1(X), M2(X), M3(X), M4(X))
T .

(7)

dSh(τ )

dτ

�

�

�

�

Sh=0

= �h ≥ 0

dEh(τ )

dτ

�

�

�

�

Eh=0

=
�hShIh

Sh + Ih + Rh
≥ 0

dIh(τ )

dτ

�

�

�

�

Ih=0

= ψhEh ≥ 0

dRh(τ )

dτ

�

�

�

�

Rh=0

= γhIh ≥ 0



























































,

Figure 1.  Flow chart of the given SEIR model.
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Proof Boundedness of the problem (1) can be verified by adding all equations of system (1), we obtained:

The solution of Eq. (8) takes the form:

It can be clearly seen from Eq. (9) that if τ → ∞ then Nh(τ ) ≤
�h
ηh

 which means that the feasible region for 
the given model will be:

Hence the solution of the system (1) is bounded.

Equilibrium points, basic reproduction number and local stability analysis
This section includes the possible fixed points of model (1). There exists two possible equilibrium points are 
calculated, i.e. Disease-free equilibrium (DFE) and endemic equilibrium (EE). Furthermore, basic reproduction 
number is calculated by next generation technique and discuss the local stable analysis of these equilibrium 
points. The steady state solution of model is given below by considering the rate of change w.r.t time becomes 
zero:

Using Eq. (11), model (1) becomes:

From steady state system (12), DFE can be obtained by assuming Eh = Ih = Rh = 0 and is denoted by

Similarly, EE of model (1) is obtained from system (12) and is given by: �EE = (S∗, E∗, I∗, R∗) , where,

The basic reproduction number R0 is calculated by next generation  technique33. The F and V matrices at 
DFE �0 is given as follows:

� =

{

(Sh(τ ), Eh(τ ), Ih(τ ), Rh(τ )) ∈ R
4 : Nh(τ ) ≤

�h

ηh

}

.

(8)
dNh(τ )

dτ
= �h − ηhNh, with Nh(0) = N0 ≥ 0.

(9)Nh(τ ) ≤ N0e
−ηhτ +

�h

ηh
(1− e−ηhτ ).

(10)� =

{

(Sh(τ ), Eh(τ ), Ih(τ ), Rh(τ )) ∈ R
4 : Nh(τ ) ≤

�h

ηh

}

.

(11)
dSh(τ )

dτ
=

dEh(τ )

dτ
=

dIh(τ )

dτ
=

dRh(τ )

dτ
= 0

}

,

(12)

0 = �h − ηhSh −
�hShIh

N
,

0 =
�hShIh

N
− ηhEh − ψhEh,

0 = ψhEh − ηhIh − γhIh,

0 = γhIh − ηhRh,































,

(13)�DFE = (S0, E0, I0, R0) =

(

�h

ηh
, 0, 0, 0

)

.

(14)

S∗ =
�h

�

η2h − γhψh − ηhψh

�

ηh
�

η2h + ηhγh + ηh�h − ηhψh − �hψh

� ,

E∗ =
�h(ηhγh + ηh�h + γhψh − �hψh)

(ηh + ψh)
�

η2h + ηhγh + ηh�h − ηhψh − �hψh

� ,

I∗ =
�h(ψh − ηh)(ηhγh + ηh�h + γhψh − �hψh)

γh(ηh + ψh)
�

η2h + ηhγh + ηh�h − ηhψh − �hψh

� ,

R∗ =
�h(ψh − ηh)(ηhγh + ηh�h + γhψh − �hψh)

ηh(ηh + ψh)
�

η2h + ηhγh + ηh�h − ηhψh − �hψh

� ,



























































(15)F =

[

0 �h

0 0

]

,

(16)V =

[

ηh + ψh 0h
ψh ηh + γh

]

,
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According  to33 the spectral radius ρ(FV−1) is the required reproduction number R0 which is calculated in 
the form:

Theorem 4.1 The DFE �0 of the system (1) is locally asymptotically stable if R0 < 1.

Proof The Jacobian matrix of system (1) at DFE is given by:

Suppose � denote the eigen values of the Jacobian matrix J�0 . Here, the two eigen values of the above matrix 
are negative i.e. − ηh (twice). The remaining required eigen values can be obtained by the following characteristic 
equation:

where

From Eq. (17), it can be clearly noticed that κ1 > 0 . Similarly, from Eq. (18), it can be noticed that κ2 > 0 when 
R0 < 1 . So, all the coefficients of characteristics equation are non-negative. Furthermore, according to Rough-
Hurtwiz criteria, the eigen values of the above characteristics equation are negative. Thus, all the eigen values of 
Jacobian matrix (15) are negative for R0 < 1 . Hence the model (1) is locally asymptotically stable when R0 < 1.

Fractional model and numerical scheme
Preliminaries. Definition 5.1 The Atangana–Baleanu (AB) time fractional derivative with fractional order 
α is defined  as34.

Here, I(α) is the normalization function and Eα(.) is Mittage–Leffler  function35.

Definition 5.2 The numerical scheme for the solution of fractional order ODE is defined by Toufik and 
 Atangana36:

Consider a non-linear fractional ODE:

The numerical scheme for Eq. (23) is defined  as36:

Fractional model. For the generalization of model (1), we replace classical time derivative with Atangana–
Baleanu time fractional derivative, model (1) takes the following generalized form:

(17)R0 =
�hψh

(ηh + ψh)(ηh + γh)
.

(18)J�0 =







−ηh 0 −�h 0

0 −ηh − ψh � 0

0 ψh −ηh − γh 0

0 0 γh −ηh






,

(19)�
2 + κ1�+ κ2 = 0,

(20)κ1 = γh + 2ηh + ψh,

(21)
κ2 = ηhγ + η2h + γhψh − �hψh,

⇒ κ2 = (ηh + γh)(ηh + ψh){1−R0}.

(22)AB
a ℘α

τ f (τ ) =
I(α)

1− α

τ
∫

a

Ea

(

−α(τ − t)α

1− α

)

f
′

(τ )dt, for 0 < α < 1.

(23)AB℘α
t y(t) = f (t, y(t)) with y(0) = y0,

(24)

yn+1 = y0 +
1− α

I(α)
f (tn, y(tn))

+
α

I(α)

n
�

k=0









hα f (tk , y(tk))

Ŵ(α + 2)

�

(n+ 1− k)α(n+ 2− k + α)− (n− k)α(n+ 2− k + 2α)
�

−
hα f (tk−1, y(tk−1))

Ŵ(α + 2)

�

(n+ 1− k)α+1 − (n− k)α(n+ 1− k + α)
�









.
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here, α is fractional parameter and AB0 ℘α
τ (.) is the AB time fractional derivative. All these variables and initial 

conditions for model (25) are positive.

Numerical scheme. Adopting the procedure  in36, model (25) takes the following appropriate form:

Furthermore, system (26) becomes:

Now, taking τ = τn+1 , n = 1, 2, . . ., Eqs. (27)–(30) adopt the following shape:

(25)

AB
0 ℘α

τ Sh(τ ) = �h − ηhSh −
�hShIh

N
,

AB
0 ℘α

τ Eh(τ ) =
�hShIh

N
− ηhEh − ψhEh,

AB
0 ℘α

τ Ih(τ ) = ψhEh − ηhIh − γhIh,

AB
0 ℘α

τ Rh(τ ) = γhIh − ηhRh,



































,

(26)

AB
0 ℘α

τ Sh(τ ) = χ1(t, Sh, Eh, Ih, Rh),

AB
0 ℘α

τ Eh(τ ) = χ2(t, Sh, Eh, Ih, Rh),

AB
0 ℘α

τ Ih(τ ) = χ3(t, Sh, Eh, Ih, Rh),

AB
0 ℘α

τ Rh(τ ) = χ4(t, Sh, Eh, Ih, Rh),























.

(27)Sh(τ )−Sh(0) =
1− α

I(α)
χ1(τ , Sh, Eh, Ih, Rh)+

α

I(α)Ŵ(α)

τ
∫

0

χ1(ζ , Sh, Eh, Ih, Rh)(τ−ζ )α−1dζ ,

(28)Eh(τ )−Eh(0) =
1− α

I(α)
χ2(τ , Sh, Eh, Ih, Rh)+

α

I(α)Ŵ(α)

τ
∫

0

χ2(ζ , Sh, Eh, Ih, Rh)(τ−ζ )α−1dζ ,

(29)Ih(τ )−Ih(0) =
1− α

I(α)
χ3(τ , Sh, Eh, Ih, Rh)+

α

I(α)Ŵ(α)

τ
∫

0

χ3(ζ , Sh, Eh, Ih, Rh)(τ−ζ )α−1dζ ,

(30)Rh(τ )−Rh(0) =
1− α

I(α)
χ4(τ , Sh, Eh, Ih, Rh)+

α

I(α)Ŵ(α)

τ
∫

0

χ4(ζ , Sh, Eh, Ih, Rh)(τ−ζ )α−1dζ ,

(31)

S(τn+1)− S(τ0) =
1− α

I(α)
χ1(τn, Sh, Eh, Ih, Rh)

+
α

I(α)Ŵ(α)

n
∑

m=0

τm+1
∫

τm

χ1(ζ , Sh, Eh, Ih, Rh)(τn+1 − ζ )α−1dζ ,

(32)

E(τn+1)− E(τ0) =
1− α

I(α)
χ2(τn, Sh, Eh, Ih, Rh)

+
α

I(α)Ŵ(α)

n
∑

m=0

τm+1
∫

τm

χ2(ζ , Sh, Eh, Ih, Rh)(τn+1 − ζ )α−1dζ ,

(33)

I(τn+1)− I(τ0) =
1− α

I(α)
χ3(τn, Sh, Eh, Ih, Rh)

+
α

I(α)Ŵ(α)

n
∑

m=0

τm+1
∫

τm

χ3(ζ , Sh, Eh, Ih, Rh)(τn+1 − ζ )α−1dζ ,

(34)

R(τn+1)− R(τ0) =
1− α

I(α)
χ4(τn, Sh, Eh, Ih, Rh)

+
α

I(α)Ŵ(α)

n
∑

m=0

τm+1
∫

τm

χ4(ζ , Sh, Eh, Ih, Rh)(τn+1 − ζ )α−1dζ ,
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Assuming the interval [τm, τm+1] and using the two-step Lagrange polynomial interpolation, Eqs. (31)–(34) 
becomes:

where l  is the step size.
By solving the integration terms in the above equations, Eqs. (35)–(38) gets the following iterative shape:

(35)

S(τn+1)− S(τ0) =
1− α

I(α)
χ1(τn, Sh, Eh, Ih, Rh)

+
α

I(α)Ŵ(α)

n
�

m=0



















χ1(τm, Sh, Eh, Ih, Rh)

l

τm+1
�

τm

(ζ − τm+1)
α−1(τn+1 − ζ )α−1dζ

−
χ1(τm−1, Sh, Eh, Ih, Rh)

l

τm+1
�

τm

(ζ − τm)
α−1(τn+1 − ζ )α−1dζ



















,

(36)

E(τn+1)− E(τ0) =
1− α

I(α)
χ2(τn, Sh, Eh, Ih, Rh)

+
α

I(α)Ŵ(α)

n
�

m=0



















χ2(τm, Sh, Eh, Ih, Rh)

l

τm+1
�

τm

(ζ − τm+1)
α−1(τn+1 − ζ )α−1dζ

−
χ2(τm−1, Sh, Eh, Ih, Rh)

l

τm+1
�

τm

(ζ − τm)
α−1(τn+1 − ζ )α−1dζ



















,

(37)

I(τn+1)− I(τ0) =
1− α

I(α)
χ1(τn, Sh, Eh, Ih, Rh)

+
α

I(α)Ŵ(α)

n
�

m=0



















χ3(τm, Sh, Eh, Ih, Rh)

l

τm+1
�

τm

(ζ − τm+1)
α−1(τn+1 − ζ )α−1dζ

−
χ3(τm−1, Sh, Eh, Ih, Rh)

l

τm+1
�

τm

(ζ − τm)
α−1(τn+1 − ζ )α−1dζ



















,

(38)

R(τn+1)− R(τ0) =
1− α

I(α)
χ1(τn, Sh, Eh, Ih, Rh)

+
α

I(α)Ŵ(α)

n
�

m=0



















χ4(τm, Sh, Eh, Ih, Rh)

l

τm+1
�

τm

(ζ − τm+1)
α−1(τn+1 − ζ )α−1dζ

−
χ4(τm−1, Sh, Eh, Ih, Rh)

l

τm+1
�

τm

(ζ − τm)
α−1(τn+1 − ζ )α−1dζ



















.

(39)
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Data fitting and numerical results
Data fitting. For data fitting of model (25) we have taken some values of parameters from the literature 
and the remaining values are fitted for the data collected for Pakistan. We have fitted our model solutions with 
the real data collected from WHO for Pakistan from 19th March 2020 to 31st March  20205. According to the 
publically reported data, the total population of Pakistan for the year 2020 is 220,410,55337. For the initial values 
we have considered N(0) = 220,410,553 in which the infected individuals are Ih(0) = 2039 and the exposed 
individuals are Eh(0) = 10,000 . We have combined the recovered and removed population in only one class and 
denoted by Rh(τ ) so that Rh(0) = dead+ recovered = 27+ 99 = 126 . The remaining population is considered 
as susceptible individuals so that Sh(0) = 220,398,388 . In Pakistan, for the year 2020 the life expectancy is 67.4 
so that ηh = 1

67.4
38. The corresponding birth rate in Pakistan is estimated as �h = N(0)× ηh which becomes 

�h = 3,270,186.2462 . Incorporating these values and after model simulation, we get different parameter values 
as shown in Table 1. The given model is fitted for α = 1 . We have estimated the basic reproduction number 
R0 ≈ 2.30748 using different parameter values given Table 1.

Numerical results. This section provides graphical results of the given study. Figure 1 describes the trans-
mission of COVID-19 between different compartments of the total population with the evolution of different 
parameters which are associated with the dynamics of virus. It is important to study the spread of COVID-19 
with the influence of these parameters to predict the spread of this deadly virus. Figure 2 depicts WHO reported 
cases of infected individuals for COVID-19. Figure 3 displays number of deaths confirmed by WHO due to 
COVID-19. Figure 4 highlights the total number of recovered individuals of COVID-19 in the selected period 
of time. Comparative bar chart and line plot of reported deaths and recovered individuals of COVID-19 has 
been shown in Fig. 5. Figure 6 represents WHO reported cases for COVID-19. Figure 7 shows the comparison 
between real data from WHO verses present considered model. From the figure, it can be noticed that our 
model shows a strong agreement with real data collected by WHO. Finally, it is necessary to mention here that 
from Figs. 2, 3, 4, 5, 6 and 7, all these figures have been plotted for the data collected by WHO from 19th March 
2020 till 31st March 2020. From the graphical analysis, one can observe that the rate of spread of COVID-19 in 
Pakistan in the above mentioned interval is very high as compared to the initial days. Moreover, to obtain the 
graphical results from the given model we have simulated the given iterative scheme through MATLAB software. 
Time unit is considered in days for the present model of COVID-19.

Fractional models are important to capture the different memories, decay and crossover behavior. Fractional 
operator can also demonstrate some upcoming situations for the dynamical models. Figure 8 depicts the influ-
ence of different values of fractional parameter α on the dynamics and transmission of COVID-19 for different 
subclasses of the total population. By varying α while keeping other values fixed, the obtained solutions gener-
ates interesting results and gives a variety of solutions of the present model. From the figure, we noticed that 
by increasing α results to decrease the number of exposed as well as infected individuals and delays the time of 
reaching the maximum number in each compartment. Decreasing α makes the curves of all population compart-
ments flatter except susceptible class. Furthermore, it can be observed from the figure that we have predicted the 

(41)
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�









.

Table 1.  Estimated and fitted values for different parameters of model 1.

Parameter Description Value Source

�h Birth rate 3,270,186.2462 Estimated

ηh Natural mortality rate 1/67.4 33

�
h

Contact rate 0.29 Fitted

ψh Incubation period 0.1243 Fitted

γh Recovery rate 0.09722 Fitted
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Figure 2.  WHO reported cases for COVID-19 from 19th March 2020 till 31st March 2020.

Figure 3.  WHO reported deaths by COVID-19 from 19th March 2020 till 31st March 2020.

Figure 4.  WHO reported recovered cases of COVID-19 from 19th March 2020 till 31st March 2020.
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Figure 5.  Comparative bar chart and line plot of reported deaths and recovered individuals of COVID-19.

Figure 6.  WHO reported cases for COVID-19 from 19th March 2020 till 31st March 2020.

Figure 7.  Real data verses model fitting.
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dynamics and transmission of COVID-19 for the next 200 days. Finally, Fig. 9 is obtained by considering the 
different initial values which provides the global asymptotical stability of our model equilibrium. 

Concluding remarks
To understand the spread different infectious diseases including COVID-19 among plants, human or any other 
animals, mathematicians implement the concept of differentiation and integration to model the dynamics of 
that disease in the form of ODEs or PDEs that could be used to predict the transmission of that disease within 
a specific population. For this task, they divide the total population into different compartments. The solution 
of these systems may deliver an indication to health and other sectors that how severe the spread can be and 
what parameter is needed to control the spread of virus or disease under consideration. In the present article, 
we have taken SEIR model for the dynamics and transmission of COVID-19. We have also proved that the given 
model is bounded and invariant. Two equilibrium points DFE and EE are calculated for the steady state of the 
presented model. Furthermore, the basic reproduction number R0 is calculated using next generation tech-
nique. Through stability analysis, we have concluded that the given model is locally asymptotically stable when 
R0 < 1 . It means that by taking R0 < 1 the total population tends to DFE and the disease will die out from the 
population. Additionally, we have generalized the classical SEIR model by applying the recently developed AB 
fractional model. The real data have been fitted for the classical model i.e. α = 1 . For the fitted values given in 
Table 1, we have approximated the basic reproduction number R0 ≈ 2.30748 . A numerical scheme is adopted 
for the solutions of AB fractional model. After simulation of numerical scheme different graphical results have 
been obtained. We have considered the unit of time in days. Furthermore, the dynamics and transmission of 
COVID-19 is predicted for the next 200 days. A decrease is noticed in the infected class by decreasing the values 
of AB fractional parameter α . As the infectious disease in not yet control in Pakistan as well as worldwide. We 
all know that the researchers and scientist are trying to find proper medical treatment or vaccination to control 

Figure 8.  The dynamics of COVID-19 in different classes with different values of fractional parameter α.



12

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22268  | https://doi.org/10.1038/s41598-020-79405-9

www.nature.com/scientificreports/

the spread of COVID-19. In future one may add the quarantine or vaccination or both the classes to the given 
model and show the effect of these classes on the spread of this deadly infectious disease.

Received: 5 June 2020; Accepted: 20 November 2020
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