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Intracellular role of IL‑6 
in mesenchymal stromal 
cell immunosuppression 
and proliferation
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Interleukin (IL)‑6 is a pleiotropic cytokine involved in the regulation of hematological and immune 
responses. IL‑6 is secreted chiefly by stromal cells, but little is known about its precise role in the 
homeostasis of human mesenchymal stromal cells (hMSCs) and the role it may play in hMSC‑mediated 
immunoregulation. We studied the role of IL‑6 in the biology of bone marrow derived hMSC in vitro 
by silencing its expression using short hairpin RNA targeting. Our results show that IL‑6 is involved in 
immunosuppression triggered by hMSCs. Cells silenced for IL‑6 showed a reduced capacity to suppress 
activated T‑cell proliferation. Moreover, silencing of IL‑6 significantly blocked the capacity of hMSCs to 
proliferate. Notably, increasing the intracellular level of IL‑6 but not recovering the extracellular level 
could restore the proliferative impairment observed in IL‑6‑silenced hMSC. Our data indicate that IL‑6 
signals in hMSCs by a previously undescribed intracellular mechanism.
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Mesenchymal stromal cells (MSCs) are multipotent progenitor cells with the capacity to self-renew and to 
differentiate into multiple lineages. MSCs can be isolated from a variety of tissues, although bone marrow 
is the most common source for research and clinical purposes. MSCs are attractive cell candidates for tissue 
engineering applications, in particular for bone and cartilage repair due to their ability to differentiate into the 
chondrocyte, osteoblast or adipocyte  lineages1,2. Many studies have described that MSCs exert beneficial effects 
when administered during a narrow therapeutic window, and their immunomodulatory features and capac-
ity to home to damaged tissues have placed MSCs in the spotlight as advanced therapies for a broad range of 
autoimmune  disorders3–5. The precise mechanisms by which MSCs regulate immune functions are still not fully 
understood, although many studies have described different soluble factors to be involved in these processes, 
including indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), transforming growth factor-β, hepato-
cyte growth factor, interleukin (IL)-10, and the human leukocyte antigen-G6. It is known that the inflammatory 
environment in which MSCs are exposed after infusion is a critical determinant of their regulatory process, 
as immunosuppression by MSCs is not constitutive but rather triggered by crosstalk with cells of the immune 
 system7–10. Accordingly, different pathological scenarios will lead to distinct responses from MSCs, which should 
be considered when designing clinical interventions, together with treatment dose, timing and frequency of 
administration, as well as the source of MSCs.

We previously demonstrated that human MSCs (hMSCs) modulate T-cell responses through TNF-α-mediated 
activation of NF-κB, underlining the importance of this transcription factor in the immunomodulatory capacity 
of  hMSCs11. To better understand the involvement of NF-κB in this process, here we studied the role of one of 
the most important NF-κB targets, IL-6.

IL-6 is often referred to as a pleiotropic cytokine that acts on numerous cell types and influences multiple 
biological activities. IL-6 can be synthesized and secreted by many cell types including monocytes, T-cells, 
fibroblasts and endothelial  cells12. Binding of IL-6 to its cognate membrane-bound receptor IL-6R triggers the 
binding of a second trans-membrane protein, gp130, which serves as a signal transducer of IL-6. While gp130 is 
expressed on all cells of the  body13, the expression of IL-6R is restricted to hepatocytes, neutrophils, monocytes 
and CD4+ T-cells14,15. In the past few years, a critical role for IL-6 has been demostrated in numerous inflamma-
tory diseases (reviewed  in12). IL-6 can signal through two distict pathways, known as classic- and trans-signaling. 
Whereas classic signaling via membrane-bound IL-6R is considered mostly protective and regenerative, the 
alternative IL-6 “trans”-signaling pathway through a soluble form of the IL-6 receptor (abundant in extracel-
lular fluids) is believed to represent a stress response of the body to maintain  homeostasis15. The role of IL-6 
in the regulation of the immune system has been described both as pro-inflammatory and anti-inflammatory. 
For instance, IL-6 induces endothelial permeability and cell recruitment, as well as B-cell maturation and T-cell 
 survival16–18. However, it is also involved in the secretion of well-known anti-inflammatory molecules, such as the 
IL-1 receptor antagonist or IL-10, and reduces the abundance of TNF-α. A better understanding of the regulation 
of IL-6 signaling is fundamental to comprehend both the physiological and the pathophysiological functions of 
this pleiotropic cytokine, and to develop therapeutic strategies exploiting its  properties12,19.

In the present work, we explored the involvement of IL-6 in the immunomodulatory capacity of hMSCs 
using lentiviral-mediated short hairpin RNAs (shRNAs) to silence its expression. We found that silencing of 
IL-6 diminished the ability of hMSCs to suppress T-cell proliferation. At the same time, we observed that IL-6 
silencing has no impact on hMSC survival but reduces cell proliferation by blocking the progression of the cell 
cycle. Finally, our data strongly suggest that IL-6 regulates these processes through an intracellular signaling 
pathway, highlighting the importance of this intracellular mechanism over the extracellular effects of IL-6 on 
hMSC physiology.

Materials and methods
Human samples. Human bone marrow-derived MSCs (hMSCs) were obtained from the Inbiobank Stem 
Cell Bank (www.inbio bank.org) as  described20. Briefly, cadaveric bone marrow was harvested from brain-dead 
donors after informed consent and under the supervision of the Spanish National Organization of Transplants 
(in Spanish, Organizacion Nacional de Transplantes). The study was approved by the Clinical Research Ethi-
cal Committee of the Hospital Donostia (Donostia, Spain), and all procedures were carried out in accordance 
with Spanish law (14/2007) on biomedical research and the Royal Decree 1716/2011 regulating activities related 
to the use of human tissues in Spain. Generated hMSCs display a typical CD29+ , CD73+ , CD90+ , CD105+ , 
CD166+ , CD146+ , CD34− , CD45− , CD14− , CD19− and CD31− phenotype; a fibroblast-like morphology; and 
at least tri-lineage potential, including osteocyte, chondrocyte and adipocyte  generation21. hMSCs were cultured 
in low-glucose DMEM (Sigma-Aldrich, Madrid, Spain) supplemented with 10% FBS (Fisher Scientific, Madrid, 
Spain). On reaching confluence, hMSCs were collected with trypsin and seeded at 1 × 103 cells/cm2. Cells were 
obtained at passage three from the Stem Cell Bank and all experiments were performed with cultures at passage 
4 to 8. Cells were passaged when they reached 75% confluency to avoid excessive cell density. When indicated 
MSC were treated with TNF-α (R&D Systems, Minneapolis, MN, 210-TA).

Blood samples and data from patients included in this study were provided by the Basque Biobank for 
Research-OEHUN (www.bioba ncova sco.org) and were processed following standard operating procedures with 
appropriate approval of the local Ethical and Scientific Committees. Peripheral blood mononuclear cells (PBMCs) 
were purified from buffy coats by density gradient using Lymphoprep (ATOM, Barcelona, Spain). PBMCs were 
frozen for preservation until use.

Cell culture. PBMCs were stimulated with Dynabeads Human T-Activator CD3/CD28 (Life Technologies, 
Foster City, CA) plus IL-2 (10 ng/ml, R&D Systems), as  described11. A ratio of 1:1 of CD3/CD28 beads to PBMCs 
was used, as recommended by the manufacturer. PBMCs (250,000 cells) were cultured in RPMI medium sup-

http://www.inbiobank.org
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plemented with 10% FBS in the presence or absence of hMSCs (10,000 cells) during 6 days. Expansion indices 
were calculated with FlowJo analysis software (Treestar Inc., Ashland, OR). When indicated, cells were treated 
with dexamethasone (Sigma-Aldrich, 1 nM), indomethacin (Sigma-Aldrich, 5 μM), etoricoxib (Sigma-Aldrich, 
5 μM), recombinant human IL-6 (rhIL-6; R&D Systems, 206-IL) or an anti-IL-6 neutralizing antibody (eBiosci-
ence, San Diego, CA7069-85).

Transduction of shRNAs. shRNA expression vectors were constructed using standard cloning procedures. 
The following shRNA sequences have been published  previously22 and were purchased from Sigma-Genosys 
(Oakville, ON, Canada): IL-6ia: AGA TGG ATG CTT CCA ATC TGG and IL-6ib: AAG GCA AAG AAT CTA GAT 
GCA. Both targeting sequences were purchased from the RNAi Consortium (www.broad insti tute.org/rnai). We 
used two different target sequences to avoid off-target effects. Oligonucleotides were annealed and cloned into 
the pSUPER plasmid carrying an H1 promoter using BglII–HindIII sites. The H1-shRNA expression cassette 
was then excised and cloned into pLVTHM (Addgene plasmid 12,247, www.addge ne.org) using EcoRI–ClaI 
 sites21. Viral particles were produced as described by the Viral Vector Platform at Inbiomed  Foundation21. hMSC 
transduction was carried out at a multiplicity of infection of ten in order to achieve 100% infection. When indi-
cated, transduction was performed to obtain 50% infection to compare from the same population the effect of 
infection on GFP+ and GFP- cells.

Flow cytometry. Cell cycle analysis was performed as described Briefly, hMSCs were fixed and washed 
twice with PBS and resuspended in PBS containing 5  mg/ml propidium iodide (PI) and 10  μg/ml RNase A 
(Sigma-Aldrich). Cell cycle analysis was performed on GFP (530/30BP emission filter)-positive and living cells, 
excluding  doublets23.

IL-6 levels were measured in samples with a custom cytometric bead array kit (CBA; BD Biosciences, San Jose, 
CA) for IL-6 following the manufacturer’s  instructions11. Samples were incubated with the CBA during 30 min 
and were mixed with the combined cocktail of phycoerythrin (PE)-conjugated antibodies. IL-6 concentration 
was measured via quantification of PE fluorescence in reference to a standard curve.

Apoptosis was evaluated by flow cytometric determination of Annexin-V DY634 (Immunostep, Salamaca, 
Spain) staining on GFP (530/30BP)-positive cells, excluding  doublets24. Briefly, hMSCs were treated overnight 
with IL-6 (10 ng/ml, R&D Systems, 206-IL), stained with Annexin-V DY634 in 1 × binding buffer (10 mM 
HEPES [pH 7.4], 140 mM NaOH, 2.5 mM  CaCl2) for 15 min at room temperature in the dark and analyzed on 
a FACSCanto flow cytometer (BD Biosciences) using FlowJo software (www.flowj o.com). Data represent the 
mean of three independent experiments performed in triplicate.

Expression analysis. Total RNA was extracted using the RNAeasy Extraction Kit (Qiagen, Hilden, Ger-
many). cDNA was obtained using the GeneAmp Reverse Transcriptase Kit (Applied Biosystems, Foster City, 
CA). Quantitative PCR was performed using the Power SYBRR Green PCR Master Mix (Applied Biosystems). 
IL-6, IDO, COX2 and GAPDH were amplified using the following oligonucleotide pairs: IL-6–AAC GCT CCT 
CTG CAT TGC CATT and GAG CAG CCC CAG GGA GAA; IDO–CTA CCA TCT GCA AAT CGT GAC TAA G and 
GAA GGG TCT TCA GAG GTC TTA TTC T; COX2–GAA TCA TTC ACC AGG CAA ATTG and TCT GTA CTG CGG 
GTG GAA CA; GAPDH–TGC ACC ACC AAC TGC TTA GC and GGC ATG GAC TGT GGT CAT GAG. Reactions 
were carried out in a Step One Plus Thermocycler (Applied Biosystems). Data were compared using the com-
parative CT method, normalizing all samples against hMSCs infected with the empty vector control (pLVTHM 
emp). GAPDH was used as a housekeeping gene control.

For western blot analysis, 1 × 105 infected cells were stimulated or not with TNF-α (15 ng/ml) or IL-6 (20 ng/
ml) and lysed, as  described25. Proteins were then separated in 10% w/v SDS–polyacrylamide gel (SDS-PAGE) 
and subsequently transferred onto polyvinylidene difluoride membrane. Immunodetection was performed with 
the following primary antibodies: IL-6, (rabbit), cyclin D1 (mouse) (both from Santa Cruz Biotechnology, Sant 
Cruz, CA), ERK1/2, phospho-ERK1/2 (BD biosciences, Mouse) and GAPDH (Sigma-Aldrich, Mouse). Secondary 
antibodies were HRP-conjugated sheep anti-rabbit IgG or HRP-conjugated sheep anti-mouse IgG (GE Healthcare 
Amersham, Little Chalfont, UK).

Detection of prostaglandin E2. PGE2 levels were determined using a commercial ELISA kit (R&D Sys-
tems) on supernatants of hMSC cells transduced with pLVTHM emp or pLVTHM IL-6i, treated or not, as indi-
cated, with indomethacin or etoricoxib for 48 h.

Immunofluorescence. To determine the intracellular localization of p65 or KI-67, cells were fixed with 4% 
paraformaldehyde solution (Pancreac, Barcelona, Spain) for 10 min and permeabilized with PBS-Triton X-100 
(0.1%) for 10 min. Staining was performed using a rabbit anti-human p65 (Santa Cruz Biotechnology) or KI-67 
(BD Biosciences) antibody, and revealed with a donkey anti-rabbit IgG secondary antibody conjugated with 
Cy-3 (Jackson Immunoresearch, West Grove, PA). Analyses were performed using an LSM 510 Meta Laser Scan-
ning Microscope (Zeiss, Jena, Germany) at the Cytometry and Advanced Microscopy Platform at the Inbiomed 
Foundation.

Statistical analysis. Data are expressed as mean ± standard error of the mean. Student’s t test was used 
for comparison between groups. When the distribution was not normal, the Mann–Whitney U test was used. 
Analysis of variance and the Kruskal–Wallis test were used to compare the means of more than 3 groups. Analy-

http://www.broadinstitute.org/rnai
http://www.addgene.org
http://www.flowjo.com
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ses were conducted with GraphPad Prism 8 software (GraphPad Software Inc., La Jolla, CA). Differences were 
considered statistically significant at p < 0.05 with a 95% confidence interval.

Ethics approval and consent to participate. The use of human cells and the project were approved by 
the Ethical committee of Inbiobank.

Results
IL‑6 is involved in the immuregulatory function of hMSCs. We previously demonstrated that 
TNF-α/NF-κB priming/signaling regulates immunoregulatory profile of hMSCs, which could be inhibited by 
the presence of glucocorticoids such as  dexamethasone11. Intrigued by the mechanisms involved in the modula-
tion of hMSC properties, we focused our attention on IL-6, whose expression is under the control of NF-κB. 
Although hMSC constitutively express IL-6, TNF-αinduced a marked and statistically significant increase in 
IL-6 expression at the level of mRNA (Fig. 1A), protein (Fig. 1B) and secretion (Fig. 1C). Additionally, both 
alpha and beta subunits of IL-6R (CD126 and CD130, respectively) were also expressed in hMSC (Fig. 1D), sug-
gesting that the IL-6 could have an autocrine role in the biology of these cells. Signalling with TNF-α priming 
did not significantly alter the abundance of the receptors in the membrane of hMSCs (Fig. 1D). Dexamethasone 
treatment of hMSCs inhibited both basal and TNF-α-induced IL-6 secretion (Fig. 1E), which correlated with a 
reduced capacity of hMSCs to impact T-cell proliferation (Fig. 1F).

To test whether the effect of dexamethasone on the hMSC immunoregulatory function was mediated by 
the decrease in IL-6 expression, we used a GFP-expressing lentiviral vector to transduce more than 95% of 
hMSCs with an empty vector or a shRNA targeting IL-6 (hereafter referred to as hMSC-emp and hMSC-IL6i, 
respectively) (Supp. Figure 1). Two silencing sequences were evaluated against IL-6 to account for off-target 
effects. As shown in Fig. 2A,B, the tested sequences significantly reduced the quantity of IL-6 mRNA and secre-
tion, respectively. Both sequences were tested in the majority of the experiments, although for brevity only one 
sequence is shown in the figure panels (IL-6ia). We next analyzed whether inhibition of IL-6 expression impacted 
the capacity of hMSCs to regulate T-cell proliferation. As expected, hMSC-emp significantly impaired T-cell 
proliferation in a dose-dependent manner (Fig. 2C). By contrast, activated T-cells cultured with hMSC-IL-6i 
proliferated significantly greater than those cultured with hMSC-emp (Fig. 2C).

We next determined whether these differences were due to changes in the MSC:PBMC ratio. Analysis of 
spontaneous cell death measured by Annexin V revealed no significant differences between hMSC-IL-6i and 
control hMSC-emp, not even in the presence of exogenous IL-6 (20 ng/ml) (Supp. Figure 2).

Loss of IL-6 expression did not modify the adherence capacity of hMSCs, as the number of adhered cells did 
not change 24 h after plating (data not shown). Thus, we excluded differences in basal apoptosis or adherence 
capacity as a cause for the evident differences in the immunoregulatory capacity of hMSC-IL6i.

We next reasoned that the addition of exogenous IL-6 to cell cultures should be able to recover the loss of 
immunoregulatory capacity observed in hMSC-IL6i. Surprisingly, however, the addition of rhIL-6 to the cultures 
failed to reverse the immunosuppressive phenotype of hMSC-IL-6i (Fig. 2D). Moreover, inactivating extracel-
lular IL-6 using a specific neutralizing anti-IL6  antibody26,27 in non-transduced hMSC cultures had no effect on 
the immunosuppressive process, as lymphocyte proliferation was unchanged as compared with cultures in the 
absence of the anti-IL6 antibody (Fig. 2E). Overall, these experiments suggest that IL-6 does not play a canonical 
extracellular autocrine signaling role in this cell model.

Basal prostaglandin E2 secretion is enhanced in hMSC‑IL‑6i. Among the mechanisms proposed to 
mediate the immunosuppressive function of MSCs, cyclooxygenase-2 (COX-2) activity, through PGE2 produc-
tion, is consistently reported as one of the most important  mediators6,28,29. As the production of IL-6 is known 
to be differentially regulated by PGE2 in various cell  types30,31, we next investigated PGE2 synthesis in hMSC-
IL6i cells. As shown in Fig. 3A, basal levels of PGE2 were significantly higher in hMSC-IL6i than in control 
cells, correlating with a significant up-regulation of COX2 expression (Fig.  3B), and suggesting that hMSCs 
have a mechanism to control constitutive IL-6 expression by PGE2. The specificity of the PGE2-secretion was 
confirmed by blocking its production with indomethacin (a non-selective COX inhibitor)32 or etoricoxib (a 
specific COX-2 inhibitor), which induced a decrease of basal PGE2 in hMSC-IL6i, reaching the level of control 
cells (Fig. 3A). These results suggest an increase of basal COX-2 activity in hMSC mediated by the reduction of 
IL-6 levels (hMSC-IL6i). However, when we examined the immunoregulatory capacity of hMSCs after treatment 
with COX-2 inhibitors, we observed that in both control and hMSC-IL6i cells, treatment with COX-2 inhibitors 
induced a similar decrease in immunoregulatory capacity (Fig. 3C). Overall, these data indicate that PGE2 is not 
related to the impairment of the immunosuppressive capacity of hMSC-IL6i.

Importance of IL‑6 in the cell cycle progression. We next evaluated the effect of IL-6 on hMSC pro-
liferation. To do this, 50% of hMSCs were transduced with the empty or IL6i viral vector and then re-plated at 
low density (500 cells/cm2), and cell growth rate was determined by analysis of the ratio of GFP+ to GFP- cells in 
the culture (Fig. 4A). As expected, hMSC-emp maintained the same ratio of GFP expression along the culture 
period of 14 days, indicating that viral integration had no effect on cell proliferation. By contrast, hMSC-IL6i 
failed to increase in number, which resulted in an overgrowth of non-transduced cells at confluence (Fig. 4A). 
This phenotype was unaffected by the presence of different concentrations of rhIL-6 (Fig. 4B). The finding that 
the unmodified hMSCs are able to overgrow hMSC-IL-6i even in the presence of high concentrations of rhIL-6 
suggests that the proliferation of hMSCs is dependent of intracellular rather than extracellular IL-6. To confirm 
this, we analyzed the effect of IL-6 silencing on the cell cycle. Flow cytometry analysis showed that the percent-
age of cells in the active phases of the cell cycle (S/G2/M) was significantly lower for hMSC-IL-6i than for control 
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cells, and the cell cycle was mainly blocked in G0/G1 in the former (Fig. 4C). These results suggest that the loss 
of IL-6 expression in hMSCs not only affects immunosuppression, but also impairs their normal proliferation. 

Figure 1.  IL-6 secretion by hMSCs can be modulated by TNF-α and dexamethasone. (A) Quantification of IL-6 
mRNA by real time qPCR. The expression levels of the target gene were normalized against GAPDH expression. 
(B) Western blot using an anti-IL-6 antibody. (C) IL-6 secretion determined using a CBA kit in hMSCs treated 
or not with TNF-α (15 ng/ml) for 48 h. Columns represent mean values of three independent experiments, and 
error bars represent the mean ± SD of these experiments. *p < 0.05, *** p < 0.001. (D) hMSCs expressed the IL-6 
receptors CD126 and CD130 in absence or presence of TNF-α during 48 h. Quantification of IL-6R (CD126), 
CD130 using flow cytometry. Filled histograms represents isotype antibody, red histogram represents MSC not 
treated with TNF-α and blue histogram represents MSC treated with TNF-α. (E) Inhibition of IL-6 secretion 
in cell culture supernatant of hMSCs treated with or without dexamethasone (1 nM) and TNF-α (15 ng/ml). 
***p < 0.001 (F) Proliferation of T-cells cultured with (w) or without (w/o) hMSC in the presence or absence of 
dexamethasone (1 nM).
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Figure 2.  IL-6 is involved in hMSC-mediated inhibition of activated T-cell proliferation. (A) Quantification 
of IL-6 expression by real time qPCR. Graphs represent mean values of three independent experiments, and 
error bars represent the mean ± SD of the experiments. The expression levels of the target gene were normalized 
against GAPDH expression. **p < 0.01. (B) Quantification of IL-6 secretion using a CBA kit. Graphs represent 
mean values of three independent experiments, and error bars represent the mean ± SD of these experiments. 
**p < 0.01. (C) Proliferation of T-cells cultured in the absence of hMSCs (0), co-cultured with hMSC-emp or 
hMSC-IL6i using different ratios of hMSCs/T-cells. Data are shown as mean ± SD from three independent 
experiments. ***p < 0.001. (D) Proliferation of T-cells cultured in the absence of hMSCs, (w/o), co-cultured with 
hMSC-emp or hMSC-IL6i in the absence (w/o) or presence of recombinant IL-6 (20 ng/ml). Data are shown as 
mean ± SD from three independent experiments. (E) Proliferation of T-cells cultured in the absence of hMSCs 
or co-cultured with hMSC, in presence or absence (w/o) of a blocking anti-IL6 antibody (5 μg/ml). Data are 
shown as mean ± SD from three independent experiments. **p < 0.01.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21853  | https://doi.org/10.1038/s41598-020-78864-4

www.nature.com/scientificreports/

To explore this further, we analyzed KI-67 expression in hMSC-emp and hMSC-IL6i. KI-67 protein is present 
almost exclusively in the G1/S/G2/M phases, and is a very useful marker for recognizing dividing cells. As 
before, 50% of the hMSCs were transduced with the silencing/control vectors and the expression of KI-67 was 
analyzed by immunofluorescence in GFP+ and GFP- cells (Fig. 4D). We failed to observe differences in KI-67 
expression between GFP- cells of hMSC-emp and hMSC-IL6i. However, we observed a significant decrease in 
KI-67 expression in GFP+ hMSC-IL6i cells, confirming the defect in proliferation. These results highlight the 
inability of hMSC-IL6i to progress through the cell cycle and this phenomenon does not involve extracellular 
IL-6, as all cells (both GFP+ and GFP-) were in the presence of the same amount of soluble IL-6 and only hMSC-
IL6i cells showed impaired proliferation. Finally, we stimulated hMSC-IL6i with TNF-α (15  ng/mL) aiming 
to drive IL-6 expression (Fig. 4E). We found that this treatment allowed a significant recovery of hMSC-IL6i 
proliferation (Fig. 4F).

IL‑6 silencing in hMSC‑IL6i cells impedes ERK1/2/cyclin D1 pathway signaling. Cyclin D1 is 
involved in the control of the cell cycle G0/G1/S transition and a defect in its expression in hMSCs alters the nor-
mal process of cell  division33. Given our results, we next analyzed cyclin D1 levels in hMSC-IL6i cells by western 
blotting. As shown in Fig. 5A, the level of cyclin D1 was significantly lower in hMSC-IL6i than in hMSC-emp. 
Remarkably, the addition of rhIL-6 (20 ng/ml) to the culture medium failed to recover cyclin D1 expression 
(Fig. 5A). We previously demonstrated that ERK2 (extracellular signal-regulated kinase 2) was a key transcrip-
tion factor in the proliferation of hMSC, partly through its control of cyclin D1  expression33. To analyze the 
activation state of ERK2, we monitored the levels of ERK1/2 phosphorylation in hMSC-emp and hMSC-IL6i in 
the presence or not of rhIL-6 (20 ng/ml) or TNF-α (15 ng/ml). Results shown in Fig. 5B demonstrate a decrease 

Figure 3.  PGE2 secretion is elevated in hMSC-IL6i cells. (A) Secretion of PGE2 into cell culture supernatants 
of hMSC-emp or hMSC-IL6i, treated or not (NT) with indomethacin (INDO) or etoricoxib (ETO) (5 μM), 
measured by ELISA. (B) Quantification of COX2 mRNA by real time qPCR in hMSC-emp or hMSC-IL6i 
cells. Data are shown as mean ± SD from three independent experiments. (C) Proliferation of T-cells cultured 
in the absence of hMSCs (w/o) or co-cultured with hMSC-emp or hMSC-IL6i cells, in presence or absence 
(NT) of indomethacin (INDO) and etoricoxib (ETO). Data are shown as mean ± SD from three independent 
experiments.
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Figure 4.  IL-6 silencing blocks cell division. (A) Representative flow cytometry analysis of hMSC-emp or hMSC-
IL6i cells. (B) Percentage of GFP+ cells transduced in hMSC-emp or hMSC-IL6i cells, maintained in culture for 1 
or 14 days in presence of different concentrations of recombinant IL-6. The histogram shows the mean and SD of 3 
independent experiments. White bars % of GFP+ cells at day 1; dark grey bars % of GFP+ cells at day 14. ***p < 0.001. 
(C). Representative flow cytometry analysis of DNA quantification and quantification of DNA content of hMSC-emp 
or hMSC-IL6i cells, stained with propidium iodide and analyzed by flow cytometry. ***p < 0.001. (D) Representative 
images of the immunodetection of KI-67 in hMSC-emp or hMSC-IL6i cells. Green: GFP; Red: KI-67; Blue: Hoechst 
33,258. The scale represents 50 μm (left panel). Quantification of % of hMSC KI-67+ in different cell subpopulations 
of hMSC-emp or hMSC-IL6i cultures. Dark grey: hMSC GFP+ . Light Grey: hMSC GFP− . *p < 0.05. (E) Increasing 
the intracellular levels of IL-6 by TNF-α stimulation recovers hMSC-IL6i proliferation. Quantification of IL-6 mRNA 
expression in different hMSC populations treated ( +) or not ( −) with TNF-α (15 ng/ml). The expression levels of 
the target gene were normalized against GAPDH expression. (F) Percentage of GFP+ hMSC-emp or hMSC-IL6i cells 
treated with standard medium ( −) or standard medium supplemented with TNF-α ( +) (15 ng/ml) for 2 weeks. White 
bars: % of GFP+ cells at day 1. Dark grey bars: % of GFP+ cells at day 14. *p < 0.05.
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of ERK2 phosphorylation in hMSC-IL6i, in both conditions. To confirm that intracellular IL-6 plays a critical 
role in hMSC proliferation through cyclin D1, we investigated whether the increase in IL-6 stimulated by TNFα 
in hMSC-IL6i (see Fig. 1) was capable of recovering cyclin D1 levels. We observed a very significant increase in 
cyclin D1 expression in cells stimulated for 48 h with TNF-α (Fig. 5C), which was in sharp contrast to the failure 
of exogenous rhIL-6 to modify cyclin D1 level (Fig. 5A). These data allow us to conclude that IL-6 is related to 
the control of cell cycle progression through ERK1/2 and by an exclusively intracellular signaling pathway.

Discussion
hMSCs possess immunosuppressive capabilities, which endow them potential to treat inflammatory  diseases1. 
hMSCs have capacity to regulate many aspects of T-cell response, such as proliferation, survival and differentia-
tion. Numerous molecules secreted by hMSC and/or T-cells are known to be been involved in the regulation of 
hMSC  immunoregulation1; however, the controlling mechanisms are not fully understood. We recently described 
the importance of the NF-κB pathway in hMSC physiology. Here, we investigated the possible involvement of 
IL-6, a pleiotropic cytokine whose expression is under control of NF-κB transcription factor, in hMSC immu-
noregulation. Using a gene silencing approach, we show that the inhibition of IL-6 expression significantly 
impairs hMSC immunoregulatory functions. Interestingly, the effect of IL-6 is not due to its secretion into the 
extracellular milieu, since the addition of rhIL-6 (even concentrations up to 100 ng/ml) to the cultures could 
not reverse the observed phenotype.

Numerous studies have investigated the involvement of soluble factors in the regulation of hMSC function, 
of which PGE2 is consistently described as one of the most  important34. Accordingly, we were intrigued by the 
unexpected results showing that PGE2 secretion was consistently elevated in hMSC-IL6i cells, particularly since 
it has been described that the immunomodulatory function of hMSCs is partially attributed to IL-6-dependent 
secretion of PGE2, most likely through the positive regulation of COX-2 activity by IL-635. Indeed, PGE2 secre-
tion was significantly reduced in IL-6-deficient MSCs, which translated into a poor immunosuppressive ability 
in a collagen-induced experimental arthritis mouse  model35. The discrepancy between these observations and 
ours is most likely due to the differences in the MSCs used. Moreover, in the aforementioned study by Bouffi 
et al35, C57BL/6 mice deficient for IL-6 were used, whereas in our study the expression of IL-6 was considerably 
reduced but not abolished. Several works have also implicated PGE2 in IL-6  production36,37. Therefore, we can 
hypothesize that the hMSC-IL6i cells, through a mechanism that remains to be determined, attempt to compen-
sate for the loss or reduction in IL-6 expression by increasing COX2 expression and PGE2 secretion. In this line, 
we consistently observed a slight increase in NF-κB activity in hMSC-IL6i cells (data not shown). Nevertheless, 
these compensatory mechanisms do not seem to be sufficient to restore IL-6 expression and recover the immu-
noregulatory function of hMSCs. Further work will be necessary to determine the controlling mechanisms in 
the increase of PGE2 secretion.

Figure 5.  IL-6 silencing blocks cell division through a decrease of cyclin D1 and ERK1/2phosphorylation. (A) 
Cyclin D1 expression was analyzed in hMSC-emp or hMSC-IL6i cells treated ( +) or not ( −) with IL-6 (20 ng/
ml). GAPDH was used as a loading control (B) hMSC-emp or hMSC-IL6i cells were treated for the indicated 
times with TNF-α (15 ng/ml) (upper panel) or IL-6 (20 ng/ml) (lower panel) to analyze the level of phospho-
ERK1/2. Sam68 was used as a loading control. (C) Cyclin D1 expression in hMSC-emp or hMSC-IL-6i cells 
treated ( +) or non-treated ( −) with TNF-α (15 ng/ml) for 48 h. GAPDH was used as a loading control.
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Our experiments demonstrate the involvement of IL-6 in the control of hMSC proliferation through an 
intracellular mechanism. As far as we know, this phenomenon has never been described in primary cell lines 
although other groups have shown similar phenotypes in tumor-derived cell lines including renal  carcinoma38, 
 choriocarcinoma20 and  melanoma39, in which reduced IL-6 expression slows their proliferation, whereas blocking 
IL-6 or gp-130 using specific antibodies do not affect cellular growth. We found that in hMSCs this proliferative 
effect is due to a defect of cell cycle progression that is rescued by partially recovering the levels of intracellular 
IL-6 expression through stimulation with TNF-α. In a previous study, we demonstrated that ERK2 is a key 
transcription factor in the proliferation of hMSCs, in part through its control of cyclin D1 transcription and, 
therefore,  expression33. Cyclin D1 is a positive regulator of the cell cycle and promotes G1 to S phase transition in 
cooperation with CDK4 or 6. Since the protein level of cyclin D1 reflects cell cycle progression, the rates of pro-
tein production and degradation are strictly regulated at the level of the transcription and protein  degradation40. 
Indeed, cyclin D1 is highly labile, with a half-life of 10–30 min, and undergoes polyubiquitination and protea-
somal  degradation40. Here, we demonstrate that in the absence of IL-6, the level of cyclin D1 is significantly 
decreased. This might also be due, at least in part, to inhibition of the MAPK and/or AKT pathways. Further work 
will be necessary to understand how the loss of IL-6 induces a decrease of ERK1/2 phosphorylation in hMSCs.

Overall, our findings reveal that IL-6 is a pivotal factor in the proliferation of hMSCs, but highlight that its 
effects occur at the intracellular and not at the extracellular level. Other studies have suggested that IL-6 could 
act as an autocrine/intracrine growth factor interacting with its specific receptors within the cell and not at the 
cell  surface20,38,41. More work is needed to identify the intracellular receptors for IL-6. In this regard, our pre-
liminary experiments suggest that small quantities of IL-6 receptor are present in the cytoplasm of some cells 
(data not shown). If confirmed, IL-6 may activate different transduction pathways through an interaction with 
its receptor in intracellular compartments. Our results open the door for further research into whether other 
interleukins can signal without the need for secretion, which would be a considerable advance in understanding 
the autocrine mechanisms of cellular regulation.

Conclusions
IL-6 is synthesized and secreted by many cell types including human mesenchymal stromal cells. It is often 
referred to as a pleiotropic cytokine that influences numerous cell types, with multiple biological activities. In 
this study, we have examined the role of this interleukin in the homeostasis of hMSC. Our results show that IL-6 
is essential for the proliferation of stromal cells and their immunosuppression capacity. Nevertheless, our most 
relevant finding relates to a previously undescribed signaling mechanism of IL-6-driven MSC homeostasis. Our 
data show that changes to the extracellular levels of IL-6 do not resemble the phenotype observed when modify-
ing intracellular expression, indicating that IL-6 signals intracellularly in hMSC. Further research is necessary to 
integrate the intracellular signaling described in this study with current knowledge on the role of this interleukin 
in vivo. Incorporating a new signaling mechanism into the understanding of IL-6 (or other interleukins) biology 
will be a huge step forward in unravelling cytokine-mediated intercommunication in human biology.

 Data availability
All data generated and/or analyzed during this study are included in this published article and its Additional files.
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