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Assessment of metastatic lymph 
nodes in head and neck squamous 
cell carcinomas using simultaneous 
18F‑FDG‑PET and MRI
Jenny Chen1, Mari Hagiwara1, Babak Givi2, Brian Schmidt3, Cheng Liu4, Qi Chen1, 
Jean Logan1, Artem Mikheev1, Henry Rusinek1 & Sungheon Gene Kim1,5*

In this study, we investigate the feasibility of using dynamic contrast enhanced magnetic resonance 
imaging (DCE‑MRI), diffusion weighted imaging (DWI), and dynamic positron emission tomography 
(PET) for detection of metastatic lymph nodes in head and neck squamous cell carcinoma (HNSCC) 
cases. Twenty HNSCC patients scheduled for lymph node dissection underwent DCE‑MRI, dynamic 
PET, and DWI using a PET‑MR scanner within one week prior to their planned surgery. During surgery, 
resected nodes were labeled to identify their nodal levels and sent for routine clinical pathology 
evaluation. Quantitative parameters of metastatic and normal nodes were calculated from DCE‑MRI 
 (ve,  vp, PS,  Fp,  Ktrans), DWI (ADC) and PET  (Ki,  K1,  k2,  k3) to assess if an individual or a combination of 
parameters can classify normal and metastatic lymph nodes accurately. There were 38 normal and 
11 metastatic nodes covered by all three imaging methods and confirmed by pathology. 34% of all 
normal nodes had volumes greater than or equal to the smallest metastatic node while 4 normal nodes 
had SUV > 4.5. Among the MRI parameters, the median  vp,  Fp, PS, and  Ktrans values of the metastatic 
lymph nodes were significantly lower (p = <0.05) than those of normal nodes.  ve and ADC did not show 
any statistical significance. For the dynamic PET parameters, the metastatic nodes had significantly 
higher  k3 (p value = 8.8 × 10−8) and  Ki (p value = 5.3 × 10−8) than normal nodes.  K1 and  k2 did not show 
any statistically significant difference.  Ki had the best separation with accuracy = 0.96 (sensitivity = 1, 
specificity = 0.95) using a cutoff of  Ki = 5.3 × 10−3 mL/cm3/min, while  k3 and volume had accuracy of 
0.94 (sensitivity = 0.82, specificity = 0.97) and 0.90 (sensitivity = 0.64, specificity = 0.97) respectively. 
100% accuracy can be achieved using a multivariate logistic regression model of MRI parameters after 
thresholding the data with  Ki < 5.3 × 10−3 mL/cm3/min. The results of this preliminary study suggest 
that quantitative MRI may provide additional value in distinguishing metastatic nodes, particularly 
among small nodes, when used together with FDG‑PET.

Head and neck cancer (HNC) represents approximately 4% of invasive cancers diagnosed annually in the United 
 States1. Approximately 65,000 Americans develop HNC each year and nearly 14,500 patients with HNC die from 
it each year. Worldwide, more than 500,000 individuals will develop HNC each year, ranking it as the sixth most 
common cancer. These cancers predominately originate from mutations in the squamous cells and approximately 
two thirds of patients will present with locally advanced disease with either large disease at the primary site 
and/or spread to regional lymph nodes. Approximately 50% of patients presenting with these advanced diseases 
survive for more than 5 years.

Accurate identification and characterization of lymph node metastasis by non-invasive imaging has important 
therapeutic and prognostic significance in patients with newly diagnosed HNC as well as in evaluating treatment 
 response2–5. It is crucial to be informed about the absence or presence of nodal metastasis before commencing any 
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therapy. Accurate information about the presence and location of nodal metastases can prove useful in planning 
the appropriate nodal dissection to address all involved sites; and avoid unnecessary extensive operations with 
their side effects on quality of life and increasing the risk of lymphedema. While the need for a highly accurate 
imaging method for assessment of lymph nodes is paramount, such need is not adequately met by currently 
available diagnostic imaging  methods6–8.

Cross-sectional imaging modalities rely on size and morphologic criteria which have limited sensitivity 
and specificity and thus lack the desired accuracy for characterizing lymph nodes in HNSCC. Identification of 
metastatic lymph nodes with magnetic resonance imaging (MRI) based on nodal size is limited as demonstrated 
by variable sensitivity and specificity reported depending on the size criteria used. The limitations of this size-
based characterization system are well known: metastases can be present in non-enlarged lymph nodes and not 
all enlarged nodes are  malignant9. Identification of lymph node necrosis on conventional imaging is a reliable 
sign for nodal metastasis, but demonstrates a limited negative predictive value, particularly with smaller nodes. 
Thus, detection of lymph node metastasis based on nodal size and the presence of necrosis remains difficult.

Currently, advanced functional MRI methods, such as  diffusion10–12 and  perfusion13 imaging methods, have 
been used to detect metastatic lymph nodes. Metastasis in the lymph nodes may be associated with increased cell 
density leading to alterations in water diffusivity which can be measured as apparent diffusion coefficient (ADC) 
using diffusion weighted MRI (DWI). Sumi et al.10 reported that the metastatic lymph nodes could have a wide 
range of ADC in HNC and interestingly, the ADC values in the nodes with metastases from poorly differentiated 
HNC was significantly lower than that from moderately to highly differentiated HNC. However, the accuracy 
of ADC measurements may be limited by relatively large voxel size and low signal-to-noise ratio (SNR)10,12. 
Dynamic contrast enhanced (DCE)-MRI has been widely used to assess tumor vascularity. A meta-analysis of 43 
papers on application of DCE-MRI for lymph node assessment found that the overall accuracy of gadolinium-
based DCE-MRI for the detection of nodal metastases is moderate (72% sensitivity and 87% specificity)13.

In contrast, positron emission tomography (PET) imaging using 18F-fluorodeoxyglucose (18F-FDG) has been 
found to have high sensitivity (92–100%) in detecting nodal metastases with mixed specificity (77–93%)14,15. 
Investigators in previous studies have evaluated the role of FDG-PET for the detection of lymph node metastasis 
in patients with HNC mainly by comparing imaging findings with surgical or clinical follow-up findings. Histo-
pathologic correlation has been available in only a few  studies16. Previous studies investigating fusion techniques 
of PET and MR imaging found that using these two modalities could improve both sensitivity and specificity for 
detecting metastatic lymph nodes in  HNC17,18. However, there is a limited number of studies using the hybrid 
PET/MRI scanners for assessment of lymph nodes in HNSCC, combined with quantitative data analysis methods 
for individual modalities.

Therefore, the purpose of this study is to investigate the feasibility of using dynamic FDG-PET with DCE-MRI 
and DWI in synergy to assess the metastatic status of lymph nodes in HNSCC patients by obtaining quantita-
tive DCE-MRI and FDG-PET kinetic parameters. In this study, we take advantage of using a PET/MR scanner 
to acquire DCE-MRI, DWI, and dynamic FDG-PET data simultaneously. The hypothesis of this study is that 
quantitative parameters from all three imaging methods can accurately classify metastatic lymph nodes from 
normal ones.

Methods
Participants. Patients with biopsy-proven head and neck squamous cell carcinoma (HNSCC) (n = 20, mean 
age 62 ± 16 years ; 15 males and 5 females; Table 1) who were scheduled for cervical lymph node dissection as 
part of their standard treatment at NYU Langone Medical Center or Bellevue hospital were recruited for this 
HIPAA-compliant institutional review board-approved study. This research was performed in accordance with 
relevant guidelines and regulations and written informed consent was obtained from each subject. The primary 
cancers were squamous cell carcinomas of the oral cavity (n = 14), oropharynx (n = 2), nose (n = 1), larynx (n = 1), 
and unknown primary (n = 2). Each patient had one research scan using a whole body 3T PET-MR scanner (Bio-
graph mMR, Siemens Healthcare) at the Center for Biomedical Imaging, Department of Radiology, New York 
University Langone Medical Center, within one week prior to their planned surgery.

Identification of nodes. During the surgery, the resected lymph nodes were labeled to identify their nodal 
levels and served as a guide to locate the corresponding nodes on  images19. In summary, level I nodes include 
submental and submandibular nodes, level II nodes are the upper jugular nodes, level III nodes are the middle 
jugular nodes, level IV nodes are the lower jugular nodes, level V nodes are the posterior triangle nodes, and 
level VI nodes are the anterior compartment and pretracheal nodes. Surgical specimens were labelled for each 
nodal level by the operating surgeon and sent for clinical pathology evaluation. Then, on post-contrast MRI, an 
experienced neuroradiologist (MH with 12 years of experience) manually selected 3D regions of interest (ROI) 
for internal carotid artery, normal/negative (n = 38) and metastatic/positive (n = 11) nodes that were included 
in the fields of view of three imaging modalities (DCE-MRI, DWI, and PET) and also specified by the operative 
note from the neck dissection and pathology reports. The ROIs were drawn so the central necrotic region was 
included and in every slice where the node was visible. The number of slices per ROI varies from 6 to 25 slices 
for metastatic nodes and 2 to 25 slices for normal nodes.

PET data acquisition. Subjects were instructed to fast for at least 6 h before their scans. The PET scan 
started 1 min before injection of 10 mCi 18F-FDG into an antecubital vein and was acquired dynamically for 
60 min (38 timeframes; 5 frames of 10 s, 20 s, 30 s, 60 s, and 100 s each, 12 frames of 200 s, and 1 frame of 40 s). 
Attenuation correction maps were estimated using water and fat images generated from T1-weighted gradient-
echo images. PET images were reconstructed using 3D ordinary Poisson ordered subset expectation maximiza-
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tion (OP-OSEM) (127 axial slices, 344 × 344 matrix; 2 × 2 × 2  mm3 voxel dimensions)20. A post-reconstruction 
smoothing with a Gaussian filter and kernel width of 2 mm full width at half maximum was applied.

MRI data acquisition. MRI data were acquired simultaneously during the PET data acquisition. The 
research imaging sequences described below took a total of 20 min.

DWI was conducted using a twice-refocused spin echo sequence with echo planar readout (TR = 6000 ms, 
TE 64 ms, flip angle (FA) 180°, matrix 128 × 128 × 27, resolution 2 × 2 × 4.4  mm3) with four b-values: 0, 200, 500, 
and 800 s/mm2. The data acquisition with a non-zero b-value was repeated three times with three orthogonal 
diffusion weighting directions.

T1 mapping was conducted with either MP2RAGE  sequence21 for five subjects and the variable flip angle 
(VFA)  method22 for ten subjects. T1 maps were not available for the remaining five patients, so the average value 
from 15 subjects was used for the data analysis. MP2RAGE is a variation of standard 3D magnetization-prepared 
rapid gradient-echo (MPRAGE) sequence, with two inversion times (700 and 2500 ms) with FA of 4° and 5° 
respectively (TR 5000 ms, TE 2.88 ms, 176 sagittal slices, matrix 256 × 240, resolution 1 × 1 × 1.2  mm3). The VFA 
method used five flip angles using 3D fat suppressed T1-weighted volumetric interpolated breath-hold examina-
tion (VIBE) sequence (flip angles = 2°, 4°, 6°, 10°, 15°, TR 10 ms, TE 1.6 ms, 128 axial slices, matrix 256 × 256; 
resolution 1 × 1 × 2  mm3).

DCE-MRI scans were acquired using a golden-angle radial 3D gradient echo sequence (TR = 4.38 ms, TE 
2.11 ms, FA 9°, matrix 256 × 256 × 128, resolution 1 × 1 × 2  mm3). The baseline images were acquired for 1 min 
before contrast injection, followed by injection of gadobutrol (Gadavist, Bayer Healthcare Pharmaceuticals) with 
a concentration of 0.1 mM/kg body weight at the rate of 1 mL/s into the same antecubital vein used for the 18F-
FDG injection and a saline flush. The scan continued for another 7 min. The dynamic images (76 timeframes, 
temporal resolution of 5.5 s) were reconstructed using the golden angle radial spare parallel (GRASP)  method23.

Image registration. Images from the neck are subject to voluntary and involuntary motion such as swal-
lowing and breathing. In order to minimize such motion artifact, image coregistration across and within modal-
ities was conducted for each subject. In DCE-MRI, the 3D image in the middle timeframe of the scan was 
empirically selected as the reference image to which individual 3D images of other timeframes were co-reg-
istered individually. Co-registration was performed using SimpleElastix software (https//simpleelastix.github.
io). We used a multi-resolution registration (2 resolutions) approach with b-spline interpolation (1st order in 
each resolution, 3rd order in final deformation), advanced Mattes mutual information similarity metric (32 
histogram bins), advanced stochastic gradient descent optimizer (4000 max iterations), and b-spline transform 
(10 mm minimum grid spacing)24,25.  T1 maps were registered to the reference DCE-MRI frame using SimpleITK 
 software26–28 with a rigid transform model to match image matrix, voxel dimensions, and orientation. DWI 
images were first processed using FSL’s TopUp tool to correct susceptibility induced  distortions29,30 and the Eddy 
correction  tool31. After that, DWI volumes were registered to the reference DCE-MRI frame using SimpleITK 
with mutual information similarity metric, regular step gradient descent optimization, and b-spline transform 

Table 1.  Summary of n = 20 patients’ age, gender, and tumor type, primary location, and stage. All patients 
had biopsy-proven HNSCC.

Patient Age Gender Tumor primary location Stage

1 50 M Mandible T2N2aM0

2 80 M Base of tongue T1N0M0

3 70 M Base of tongue T1N1M0

4 80 M Nose T0N2cM0

5 70 M Tongue T1N0M0

6 50 M Buccal mucosa T1N0M0

7 35 M Tongue T2N2bM0

8 93 M Mandible T2N0M0

9 65 M Tongue T1N0M0

10 73 F Tongue T2N2cM0

11 45 M Tongue T1N2M0

12 55 M Floor of mouth T1N0M0

13 64 F Gingiva T4N1M0

14 27 F Tongue T1N0M0

15 72 F Floor of mouth T1N0M0

16 62 M Unknown primary TxN2aM0

17 60 M Mandible T4aN2bM0

18 73 F Mandible T2N2bM0

19 52 M Larynx T4aN1M0

20 57 M Unknown primary TxN2bM0
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and interpolation. PET images were resampled to match the DCE-MRI reference frame using FireVoxel (https 
://wp.nyu.edu/firev oxel).

Data analysis. After image registration, the dynamic PET, DCE-MRI and DWI data were analyzed using 
FireVoxel to estimate quantitative parameters related to glucose metabolic rate, vascularity, and cellularity of the 
selected ROIs.

For DCE-MRI, contrast kinetic model analysis was conducted with the population-based arterial input func-
tion (AIF) model proposed by Parker et al.32. This was done in view of well-known limitations of individual 
image-based  AIFs33. The AIF model was assumed to be the contrast concentration in blood,  Cb(t).  Cb(t) was 
shifted to match the arrival time of the signal enhancement measured in one of the internal carotid arteries by 
matching the population AIF peak to the internal carotid artery averaged time activity curve peak.  Cb(t) was con-
verted to the contrast concentration in plasma,  Cp = Cb/(1-Hct), where Hct is hematocrit assumed to be 0.4234. The 
mean signal intensity data of a node, S(t), was converted to concentration values  Ct(t) using a linear  conversion35,

where S(0) is the baseline signal, and  r1 is the contrast agent relaxivity that was assumed to be 4.5 mM−1 s−1 here. 
The linear conversion was used to minimize the uncertainty that could be influenced by the five cases with an 
assumed T1  value36. The two-compartment exchange model (2CXM) was used to estimate mean plasma volume 
fraction  (vp), interstitial volume fraction  (ve), permeability-surface area product (PS), and plasma flow  (Fp)37. 
Volume transfer constant  (Ktrans) was then calculated from the estimated  Fp and PS values;  Ktrans = Fp(1 − exp(− PS/
Fp)).

The DWI data were used to estimate ADC parametric maps by a monoexponential fit to the signal intensi-
ties: ln(S) = ln(S0) − b*ADC, where S is the voxel signal, b is the b-value, and  S0 is the corresponding voxel signal 
without vascular contribution at b = 0. DWI data with b = 0 was used for the image registration, but not included 
in the calculation of ADC such that only the data with b ≥ 200 s/mm2 were used to minimize the intravoxel 
incoherent motion effect. We calculated the mean ADC of each lymph node ROI from the estimated ADC maps. 
DWI field-of-view does not cover every lymph nodes observed in other imaging modalities. Since this paper is 
investigating assessment of lymph nodes using a combination of DCE-MRI, DWI, and PET parameters, lymph 
nodes not in DWI field-of-view were excluded because these nodes would be missing diffusion parameter.

The dynamic PET data were analyzed using the irreversible two-compartment model with three parameters; 
18F-FDG transport rate constant from blood to tissue  (K1), transport rate constant from tissue to blood  (k2), and 
phosphorylation rate constant  (k3)38. This model was the basis of the Sokoloff method used for the estimation of 
metabolic rate. An image-based AIF was generated for each subject using the previously mentioned neuroradi-
ologist manually created 3D ROIs of the internal carotid artery. A principal component analysis (PCA)  method39 
was used to minimize the partial volume and noise effect in many voxels within the selected ROI for the AIF. As 
for the input to the PCA analysis, 100 voxels from the ROI with the greatest initial area under the curve (IAUC) 
for the first 3 min of its dynamic curve were selected. Then, AIF was estimated using the major principal compo-
nents that make up equal to or more than 95% of the total variance. FireVoxel, our inhouse software was used for 
parameter estimation of mean  K1,  k2,  k3 and the influx constant  Ki  (Ki = K1k3/(k2 + k3) related to the metabolic rate.

Statistical data analysis. We measured mean values of the parameters in each ROI. Once quantitative 
parameters were estimated, comparisons between normal and metastatic lymph nodes, in terms of DCE-MRI, 
PET, and DWI parameters, were performed by comparing the median values of the mean ROI parameters 
between the groups, mainly due to a small number of samples in each group, using the Mann–Whitney U test. 
This test was computed using SciPy, a free and open-source Python library (https ://scipy .org/scipy lib). The two-
sided 5% significance level was used on all statistical tests. Parameter values reported below are median values 
with the inter-quartile ranges (IQR) in parentheses unless specified otherwise.

Using logistic regression model from Scikit-learn (C = 1e5, penalty = L2, solver = liblinear), a machine learn-
ing library in Python (https ://sciki t-learn .org/stabl e/index .html), the PET, DCE-MRI, and DWI parameters 
along with lymph node volume were fitted to the model individually. The predicted output accuracy was used 
to rank the parameter or parameters by which yield the highest accuracy. The logistic function was defined as 
p(x) = 1

1+e−f (x) , where f(x) is the linear function, f (x) = b0 + b1x + · · · + brxr with variables b0, b1, . . . , br as 
coefficients (predicted weights) and x, x1, . . . , xr as parameters, The threshold value for the logistic function 
output was selected by finding the maximum accuracy using the fitted model.

As an exploratory study, data were classified using two steps; an initial step to use a single parameter with a 
threshold for 100% specificity to exclude as many normal nodes as possible, followed by a second using a multi-
variate logistic model of 2 parameters to correctly classify the remaining normal nodes from metastatic nodes.

Receiver operating characteristic (ROC) analysis was used to assess the diagnostic characteristics of three 
individual parameters and three parameter pairs that best separate normal and metastatic nodes. This analysis 
was used to show the performance measurement of the logistic regression model at varying thresholds. The ROC 
curves illustrate trade-off between sensitivity and specificity at different thresholds by plotting sensitivity/true 
positive rate (TPR) against false positive rate (FPR).

(1)Ct(t) =
1

r1T1

(

S(t)

S(0)
− 1

)

https://wp.nyu.edu/firevoxel
https://wp.nyu.edu/firevoxel
https://scipy.org/scipylib
https://scikit-learn.org/stable/index.html
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Results
There were 20 HNSCC patients in this study (Table 1). On average, each patient had 3–4 levels dissected, such 
that there were 79 levels included in this study. All positive nodes were included for the analysis, along with one 
representative normal node per level. Excluding the nodes not covered in the diffusion imaging protocol with 
a limited number of slices, a total of 49 nodes (38 normal nodes and 11 metastatic nodes) were included in the 
quantitative analyses. Figure 1 shows a large metastatic lymph node that can be observed in post-contrast DCE-
MR, FDG-PET, and DW images. It demonstrates simultaneous visualization of different measures in the same 
location (Fig. 1C, E) after the image co-registration and using the same ROI for data analysis of the three modali-
ties. Figure 1 also shows the mean data from a metastatic lesion ROI for three modalities, which demonstrates 
that the signal models used in these modalities are appropriate. The contrast kinetic model fit to the DCE-MRI 

Figure 1.  An example of a 50-year-old male patient with HNSCC in the floor of the mouth. A left level-1 
metastatic lymph node can be detected in co-registered DCE-MRI (SimpleElastix v0.10.0; https ://githu b.com/
Super Elast ix/Simpl eElas tix) (A), co-registered 18F-FDG-PET image (B), PET activity map overlaid on DCE-
MRI (C), co-registered DWI b0 image (D) and DWI b0 image overlaid on DCE-MRI (E). The average data (blue 
dots) of the left level 1 metastatic lymph node (arrows) are shown for DCE-MRI (F), DWI (G), and PET (H) 
with their corresponding model fits (solid black lines).

https://github.com/SuperElastix/SimpleElastix
https://github.com/SuperElastix/SimpleElastix
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data was excellent as shown in Fig. 1F for both the fast wash-in and wash-out phases  (Fp = 1.49 × 10−1 min−1, 
PS = 2.64 × 10−2 min−1,  Ktrans = 2.42 × 10−2 min−1,  vp = 0.06, and  ve = 0.39). In DWI data’s monoexponential fit 
(Fig. 1G), the log signal decreases linearly within the range of b-values used in this study (ADC = 0.92 µm2/ms). 
The PET data (Fig. 1H) shows an initial vascular phase with a sharp peak followed by a slow irreversible uptake 
of tracer  (K1 = 1.43 mL/cm3/min,  k2 = 1.68 min−1,  k3 = 2.16 × 10−2 min−1, and  Ki = 1.81 × 10−2 mL/cm3/min).

Nodal size and SUV. Conventional clinical measures, nodal size and specific uptake value (SUV), are 
shown in Fig. 2. Node size was measured by volume  (mm3) of ROIs drawn in DCE-MRI. 34% of normal nodes 
demonstrated volumes greater or equal to the smallest metastatic node. In addition, FDG-avid nodes, consid-
ered suspicious for metastasis in clinical reports, were plotted in Fig. 2B. Among the suspicious nodes, four of 
them were found non-cancerous in pathological evaluation and shown as normal nodes in the plot. Note that 
the four normal nodes have higher SUV (5.05, IQR = 2.08) than the minimum SUV (2.8) of the metastatic nodes. 
This shows the shortcomings of only using these clinical measures to determine the metastatic status of suspi-
cious lymph nodes.

Quantitative MRI measures. The estimated DCE-MRI and DWI parameters are summarized in Fig. 3 
and Table 2. The DCE-MRI contrast kinetic analysis results show the metastatic lymph nodes had significantly 
lower median  vp (median = 0.06 (IQR = 0.03), p < 0.01),  Fp (7.35 × 10−2 (1.03 × 10−1)  min−1, p = 0.03), PS (2.64 × 10−2 
(1.54 × 10−2)  min−1, p = 0.03), and  Ktrans (2.42 × 10−2 (1.50 × 10−2)  min−1, p = 0.02) than those of the normal nodes 
 (vp = 0.08 (0.01),  Fp = 1.42 × 10−1 (7.07 × 10−2)  min−1, PS = 4.24 × 10−2 (4.93 × 10−2)  min−1,  Ktrans = 3.79 × 10−2 
(3.98 × 10−2)  min−1). Of the 11 metastatic nodes, compared to median  vp and  Ktrans of normal nodes, 10 had lower 
 vp and 8 had lower  Ktrans, of which 8 had lower  vp and  Ktrans. The median  ve of the metastatic nodes (0.67 (0.06)) 
was greater than that of normal nodes (0.39 (0.05)) but did not reach a statistical significance. The pre-contrast 
T1 values for DCE-MRI data analysis were measured using either MP2RAGE or VFA method. For the cases with 
MP2RAGE, the median T1 values for normal and metastatic nodes were 1.30 s and 1.44 s, respectively. For the 
cases with VFA, they were 1.40 s and 1.55 s, which were not significantly different that those from MP2RAGE. 
There was no significant difference in ADC between the metastatic nodes (0.96 (0.46) µm2) and the normal 
nodes (0.91 (0.36) µm2/ms).

Dynamic PET measures. Comparisons of the estimated PET pharmacokinetic parameters between meta-
static and normal lymph nodes are provided in Fig. 4 and Table 2. Metastatic nodes had significantly higher  k3 
(1.82 × 10−2 (1.29 × 10−2)  min−1, p = 8.8 × 10−8) and  Ki (1.23 × 10−2 (1.11 × 10−2) mL/cm3/min, p = 5.3 × 10−8) com-
pared to those of normal nodes  (k3 = 3.02 × 10−3 (5.57 × 10−3)  min−1,  Ki = 1.81 × 10−3 3.33 × 10−1) 5.57 × 10−3 mL/
cm3/min). The  K1 (1.20 (1.77) mL/cm3/min) and  k2 (1.5 (1.31)  min−1) of the metastatic nodes were also higher 
in metastatic nodes than they were in normal nodes  (K1 = 0.82 (1.00) mL/cm3/min,  k2 = 1.32 (1.15)  min−1), 
although there was no statistical significance.

Figure 4E shows a comparison between quantitative parameter,  Ki, and semi-quantitative parameter, SUV, of 
FDG-avid and enlarged nodes that were considered suspicious for metastasis in clinical PET evaluation. There 
is a strong correlation (r = 0.70, p = 0.008) between  Ki and SUV.

Classification of metastatic nodes. We investigated whether quantitative PET and MRI measures, indi-
vidually or combined, can be used for classification of metastatic lymph nodes from normal ones. Using a single 
parameter model,  Ki had the highest accuracy of 96%, followed by  k3 for 94% and volume for 90% (Table 3). The 
ROC curves of these three parameters are shown in Fig. 5A. There were 10 different pairs of parameters for a 
logistic regression model that can achieve an accuracy of 96% or higher (Table 3). All 10 pairs included at least 
one PET parameter. Representative ROC curves of three pairs are shown in Fig. 5B.

Figure 2.  Box–Whisker plots of metastatic and normal lymph node volume in 100  mm3 (A) and SUV (FDG-
avid nodes only) (B). Red dots are for individual nodes. *Represents a statistical significance where p < 0.05 from 
Mann–Whitney U test.
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We also investigated a two-step approach to improve the accuracy further. As described in the statistical data 
analysis, the first step was to use a single parameter to exclude as many normal nodes as possible. The second 
step was to generate a logistic regression model to classify metastatic lymph nodes from the remaining nodes. 
The analysis found that the best first step was to use  Ki with cutoff value of 5.3 × 10−3 mL/cm3/min (Fig. 6A) to 
remove 36 normal nodes. After this, there were only two normal nodes remaining in the pool with all metastatic 
nodes. There were 12 pairs of imaging parameters that were able to classify two remaining normal nodes success-
fully (Table 4). This second step is illustrated by two examples in Fig. 6B, C. Of the 12 two parameter combina-
tions, volume, ADC, and  Fp were the three most common parameters included and 75% of the 12 combinations 
included DCE-MRI parameters.

Figure 3.  Comparison of DCE-MRI and DWI data between metastatic and normal nodes. Box–Whisker plots 
show the median and inter-quartile range of  ve,  vp,  Fp, PS,  Ktrans, and ADC values of normal or metastatic nodes. 
*Represents a statistical significance where p < 0.05 from Mann–Whitney U test.

Table 2.  Summary of the median, first quartile (Q1), and third quartile (Q3) of metastatic and normal ROI 
kinetic parameters. *A statistical significance where p < 0.05 from Mann–Whitney test.

Normal Metastatic

Median Q1 Q3 Median Q1 Q3

ADC (µm2/ms) 0.911 0.717 1.08 0.962 0.839 1.29

vp 7.95 × 10−2 6.08 × 10−2 0.104 5.57 × 10−2* 3.77 × 10−2 6.41 × 10−2

ve 0.385 0.154 0.663 0.673 0.295 0.921

PS  (min−1) 4.24 × 10−2 2.65 × 10−2 7.58 × 10−2 2.64 × 10−2* 1.90 × 10−2 3.44 × 10−2

Fp  (min−1) 0.142 0.120 0.191 7.35 × 10−2* 5.24 × 10−2 0.156

Ktrans  (min−1) 3.79E−02 2.34 × 10−2 6.32 × 10−2 2.42 × 10−2* 1.58 × 10−2 3.08 × 10−2

K1 (mL/cm3/min) 0.816 0.517 1.52 1.20 0.657 2.42

k2  (min−1) 1.32 0.943 2.10 1.50 1.03 2.34

k3  (min−1) 3.02 × 10−3 1.00 × 10−4 6.04 × 10−3 1.82 × 10−2* 1.05 × 10−2 2.34 × 10−2

Ki (mL/cm3/min) 1.81 × 10−3 8.93 × 10−5 3.42 × 10−3 1.23 × 10−2* 7.10 × 10−3 1.82 × 10−2
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Figure 4.  Comparison of dynamic PET data between metastatic and normal nodes. Box–Whisker plots show 
the median and inter-quartile range of  K1,  k2,  k3, and  Ki values of normal or metastatic nodes. (E) Scatter plot of 
 Ki and SUV in metastatic and normal nodes. Included in the scatter plot are the nodes that were noted as FDG-
avid in clinical assessment. These nodes have volumes > 574  mm3. *Represents a statistical significance where 
p < 0.05 from Mann–Whitney U test.

Table 3.  Summary of parameters yielding the most accurate logistic regression prediction from all lymph 
nodes that overlap in DWI, DCE-MRI, and PET image field-of-view. The table includes the threshold used to 
achieve the highest accuracy.

Parameters Threshold Accuracy Sensitivity Specificity AUC 

Ki 0.18 0.96 1 0.95 0.98

k3 0.43 0.94 0.82 0.97 0.97

Volume 0.32 0.90 0.64 0.97 0.89

k3,  k1 0.45 0.98 0.91 1 0.99

K3,  k2 0.36 0.98 0.91 1 0.98

ADC,  Ki 0.18 0.96 1 0.95 0.98

Ktrans,  Ki 0.18 0.96 1 0.95 0.98

ve,  Ki 0.13 0.96 1 0.95 0.98

ve,  k3 0.15 0.96 1 0.95 0.99

Fp,  Ki 0.18 0.96 1 0.95 0.98

Ki,  k3 0.68 0.96 0.82 1 0.98

Ki,  k2 0.18 0.96 1 0.95 0.99

k3, Volume 0.54 0.96 0.82 1 0.96
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FDG‑avid non‑cancerous nodes. Among the four normal nodes suspected for metastasis (Fig. 4E), two 
of them had SUV = 5.9 and  Ki ~ 0.01 mL/cm3/min. These two nodes were in level 1 and 2 of one patient as shown 
in Fig. 7. The subsequent surgical pathology found that these nodes had lymphoid follicular hyperplasia with 
numerous tingible body macrophages (Fig. 7C, D). The other two normal nodes had SUV of 3.7 and 4.2 without 
any particular feature to note in pathology.

Figure 5.  (A) ROC curves in single and (B) two parameter logistic regression using all 49 lymph nodes.

Figure 6.  (A) Boxplot of  Ki values of lymph nodes categorized by metastatic and normal nodes showing 
5.3 × 10−3 mL/cm3/min threshold separating metastatic from normal nodes. (B) Scatter plot of PS vs volume and 
(C) ADC vs  Ktrans after removing lymph nodes under the 5.3 × 10−3 mL/cm3/min  Ki threshold with boundary 
separating the remaining two normal lymph nodes from metastatic lymph nodes.

Table 4.  Pairs of parameters for logistic regression models with prediction accuracy of 100% in classifying the 
nodes with  Ki > 5.3 × 10−3 mL/cm3/min which was the threshold value with 100% negative predictive value to 
determine normal nodes. The table includes the model coefficients and intercept.

Parameters x1, x2 b1 b2 Intercept

ADC, PS 28.547 315.060  − 29.648

ADC,  Ktrans 28.812 319.573  − 29.314

ADC,  Fp 70.305  − 319.704  − 4.216

ADC, Volume 119.802 16.013  − 208.298

PS,  Fp 384.887  − 49.744  − 0.103

PS, Volume 346.428 0.406  − 10.796

Ktrans,  Fp 392.030  − 51.756 0.687

Ktrans, Volume 352.125 0.440  − 10.587

vp, Volume 194.826 0.727  − 16.023

Fp,  k2  − 274.030 41.038  − 10.704

k1, Volume 18.254 26.594  − 209.330

k2, Volume 14.005 10.635  − 95.187
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Discussion
Quantitative parameters of DCE-MRI, FDG-PET, and DWI may have complementary diagnostic value in detect-
ing metastatic cervical lymph nodes, in addition to using conventional clinical measures, such as volume and 
SUV. The results from our proof-of-concept study show the feasibility of using multiple parameters such as  Ki, 
ADC, volume, and  Fp to improve diagnostic accuracy in identifying metastatic lymph nodes.

Detection of metastatic lymph nodes using FDG‑PET. The results of this study point to significantly 
higher  Ki value in metastatic nodes, which indicates abnormally higher metabolism compared to normal nodes. 
The  Ki values of the metastatic lymph nodes in our study (0.016 ± 0.014 mL/cm3/min) were in good agreement 
with the values reported from a previous study with HNC patients (0.023 ± 0.004 mL/cm3/min)40 and another 
study with a subcutaneous mouse model for non-small cell lung carcinoma (0.024  mL/cm3/min)41. It was 
noted that four metastatic nodes in our study had low  Ki values near the threshold and two normal nodes had 
 Ki > 5.3 × 10−3 mL/cm3/min. This brings up the concern of possible false positives and negatives using FDG-PET 
biomarkers. Previous FDG-PET studies have reported false positive findings due to inflammation in  nodes14,42. 
Schoder et al.42 investigated radiographically negative necks (N0) using FDG-PET/CT and noted a relatively 
high number of false positive nodes probably from high FDG uptake due to low-level lymphadenitis caused 
by alcohol and tobacco smoking. Similar to our FDG-avid nodes, Schoder et al. found lymphoid follicular and 
parafollicular hyperplasia in their false positive  cases42. False positive nodes using PET-CT were also emphasized 
by Monteil et al.14, where they reported 4 of the 5 false positives were inflamed and concluded FDG-PET should 
be used as a guide in surgery for higher cancer stages, but not a replacement for surgery.

In addition to false positives with difficulty distinguishing inflammation from metastasis, there can also be 
false negative cases in smaller nodes. Yamazaki et al.43 found higher accuracy and less false positives in nodes 
≥ 10 mm using FDG-PET compared to CT. True positive nodes had a mean diameter of 13.4 mm while false 

Figure 7.  93-year-old male with left mandible SCC PET activity map overlaid on co-registered DCE-MRI 
(SimpleElastix v0.10.0; https ://githu b.com/Super Elast ix/Simpl eElas tix) (top). Sagittal (A) and axial (B) slices 
show 2 regions with SUV = 5.9 and mean  Ki = 0.01 mL/cm3/min, discordant with negative pathology report. 
Low power view image showing lymphoid follicular hyperplasia (C) in lymph node with elevated SUV and high 
power view image showing tingible body microphages (D).

https://github.com/SuperElastix/SimpleElastix
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negative nodes had a mean diameter of 3.1 mm, of which 80% were ≤ 5 mm43. Schoder et al. also pointed out 
that since nodes < 10 mm make up more than half of lymph node metastasis, PET’s low spatial resolution is a 
 limitation42. Inaccurate measures in small nodes due to low spatial resolution mentioned in these studies would 
lead to inaccurate parameter estimations, such as  Ki estimation. Thus, while FDG-PET shows good separation 
of metastatic and normal nodes, FDG-PET alone may not be able to differentiate these challenging cases often 
seen as false positives with inflammation or false negatives of small nodes. The present study results suggest that 
MRI measures with a higher spatial resolution can be helpful in detecting these small nodes. Further study is 
warranted to investigate whether there is any inherent difference among imaging modalities in terms of detecting 
metastatic nodes relatively smaller than their spatial resolutions.

DCE‑MRI for lymph node assessment. Our data shows that metastatic nodes have significantly lower  vp, 
 Fp, PS and  Ktrans than the normal nodes. This observation would not be expected in highly proliferative tumors 
that actively induces angiogenesis, leading to new vessel formation, and increased permeability and surface 
area for blood and tissue exchanges. On the other hand, such low level of vascular-related parameters could be 
explained by necrosis, hypoxia, and elevated interstitial fluid pressure contributing to poor perfusion, commonly 
observed in aggressive tumors. Previous studies have shown mixed results; significantly lower  Ktrans44 as well as 
higher  Ktrans45 in hypoxic nodes can be observed. Hence, it remains unclear how  Ktrans and other vascular-related 
parameters can be interpreted in terms of angiogenesis and hypoxia. Imaging hypoxia using fluoromisonidazole 
(FMISO) could potentially provide useful information in this regard. Further studies are warranted to improve 
our understanding on how these imaging parameters reflect the tumor physiological status.

The  Ktrans values (0.0026 ± 0.0017 min−1) of metastatic and normal nodes observed in our study were relatively 
lower than those reported in other DCE-MRI studies of HNC that ranged from 0.189 min−1 to 0.37 min−146–49. 
This large discrepancy may be from using different AIF measurement methods. Our study used the population-
based AIF proposed by Parker et al.32 to avoid the influence of the variability in individual AIF measurements 
from partial volume effect and motion. Since this AIF was based on the measurement in the aorta and iliac 
arteries, its shape could have higher peak and rising rate than the measurement in a smaller peripheral vessel, 
resulting in lower  Ktrans50. Hence, caution should be taken when comparing our DCE-MRI parameters with other 
studies. However, the comparison of these parameters between metastatic and normal nodes within our study 
would not be affected by the choice of AIF.

DWI for lymph node assessment. There are multiple studies that have reported significantly lower ADC 
in metastatic lymph nodes than that of normal  nodes11,12,51–54. In the present study, however, we observed that 
the mean ADC in metastatic nodes was slightly greater than in normal nodes, but no significant difference was 
found. A similar trend was also observed by Sumi and colleagues that ADC was higher in metastatic nodes than 
in normal  nodes10. Interestingly, the studies that reported ADC values lower in metastatic nodes than in normal 
nodes estimated ADC with low b-values including b = 011,12,51–54. In contrary, our study and the one by Sumi 
et al.10 did not include any b value lower than 200 s/mm2 in order to minimize the effect of intravoxel incoher-
ent motion (IVIM) effect and found that the metastatic nodes do not have ADC lower than the normal nodes. 
Estimation of ADC can be influenced by many factors including IVIM, b-values, signal-to-noise ratio, and how 
the spatial heterogeneity of the lesions, including necrotic regions, are handled. In order to be able to combine 
the data from studies from multiple sites, it is imperative to have consensus on the adequate data acquisition and 
analysis methods specific for cancer  imaging55. Future studies with such approach would enable us to establish 
ADC as a robust biomarker to assess the metastatic status of cervical lymph nodes.

Combining volume, PET, DCE‑MRI, and DWI parameters for lymph node assessment. The 
results of our study suggest the feasibility of reducing the false-positives of FDG-PET and potentially classify 
lymph nodes with 100% accuracy by supplementing with MRI parameters including the nodal volume measured 
on MRI. Among individual parameters,  Ki was the best parameter to discriminate metastatic and normal nodes 
with 96% accuracy. However, improved accuracy could not be achieved unless a multivariate logistic regression 
parameter model using volume, PET, and MRI parameters was used as a second step classifier in addition to 
using  Ki. Future studies with a larger cohort are required to further assess and establish this type of a multivari-
ate diagnostic model to combine PET and MRI parameters for accurate classification of normal and metastatic.

Overall, the present study demonstrates potential value in using FDG-PET and additional MRI quantitative 
parameters to distinguish metastatic and normal nodes as a proof of concept study. However, there are several 
limitations to note. Our study took the advantage of a relatively new PET/MR scanner that can acquire both 
FDG-PET and MRI data simultaneously. It remains to be investigated whether similar results can be achieved 
using separate PET and MRI scans, despite a bigger challenge of image registration for two separate scans and 
the time interval between two scans with possibly different physiological conditions. Another limitation was the 
small cohort of patients included in this study. The result of this study suggests that the additional value of using 
quantitative MRI can be found with the cases with relatively low FDG uptakes. This was observed with only a 
handful of cases in this study. Hence, it would be crucial to recruit a larger cohort of patients for future studies. 
The current study was also limited to assessing the average values of the PET and MRI parameters, rather than the 
histogram or textual measures. There are many small nodes, particularly normal ones, which are not appropriate 
for histogram or textual analysis. On the other hand, there are relatively large nodes which could benefit from 
analyzing the spatial distribution of quantitative parameters. This histogram analysis may distinguish voxels 
with necrosis from other voxels in the ROI. However, it was beyond the scope of our study to investigate how to 
assess spatial distributions appropriately when nodes have a wide range of sizes.
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Conclusion
In this study, we assessed the feasibility of using simultaneous PET-MR imaging for assessment of metastatic sta-
tus of cervical lymph nodes in HNSCC patients prior to surgery. We were able to co-register the multi-modality 
images and extract quantitative parameters that represent the status of nodes in terms of glucose metabolic rate, 
perfusion and diffusion. These parameters were successfully used to classify metastatic and normal nodes, albeit 
a small cohort for this proof-of-concept study. Our results suggest that quantitative MRI parameters provide 
additional value in distinguishing metastatic nodes, particularly among small nodes, when used together with 
FDG-PET. Future studies with a large cohort are warranted to further investigate the synergistic role of FDG-PET 
and MRI for accurate assessment of metastatic lymph nodes in head and neck cancer.
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