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Three‑party quantum private 
computation of cardinalities of set 
intersection and union based 
on GHZ states
Cai Zhang1*, Yinxiang Long2, Zhiwei Sun3*, Qin Li4 & Qiong Huang1*

Private Set Intersection Cardinality (PSI-CA) and Private Set Union Cardinality (PSU-CA) are two 
cryptographic primitives whereby two or more parties are able to obtain the cardinalities of the 
intersection and the union of their respective private sets, and the privacy of their sets is preserved. 
In this paper, we propose a three-party protocol to finish these tasks by using quantum resources, 
where every two, as well as three, parties can obtain the cardinalities of the intersection and the union 
of their private sets with the help of a semi-honest third party (TP). In our protocol, GHZ states play a 
role in encoding private information that will be used by TP to compute the cardinalities. We show that 
the presented protocol is secure against well-known quantum attacks. In addition, we analyze the 
influence of six typical kinds of Markovian noise on our protocol.

Quantum key distribution is one kind of important cryptographic protocols based on quantum mechanics, in 
which any outside eavesdropper attempting to obtain the secret key shared by two users will be detected. The 
successful detection comes from Heisenberg’s uncertainty principle: the measurement of a quantum system, 
which is required to obtain information of that system, will generally disturb it. The disturbances provide two 
users with the information that there exists an outside eavesdropper, and they can therefore abort the commu-
nication. Nowadays, most people need to share some of their private information for certain services such as 
products recommendation for online shopping and collaborations between two companies depending on their 
comm interests. Private Set Intersection Cardinality (PSI-CA) and Private Set Union Cardinality (PSU-CA), 
which are two primitives in cryptography, involve two or more users who intend to obtain the cardinalities of 
the intersection and the union of their private sets through the minimum information disclosure of their sets1–3.

The definition of Private Set Intersection (PSI), also called Private Matching (PM), was proposed by 
Freedman4. They employed balanced hashing and homomorphic encryption to design two PSI protocols and 
also investigated some variants of PSI. In 2012, Cristofaro et al.1 developed several PSI-CA and PSU-CA proto-
cols with linear computation and communication complexity based on the Diffie-Hellman key exchange which 
blinds the private information. Their protocols were the most efficient compared with the previous classical 
related ones. There are also other classical PSI-CA or PSU-CA protocols5–8. Nevertheless, the security of these 
protocols relies on the unproven difficulty assumptions, such as discrete logarithm, factoring, and quadratic 
residues assumptions, which will be insecure when quantum computers are available9–11.

For the sake of improving the security of PSI-CA protocols for two parties, Shi et al.3 designed a probabilistic 
protocol where multi-qubit entangled states, complicated oracle operators, and measurements in high N-dimen-
sional Hilbert space were utilized. And the same method in Ref.3 was later used to develop a PSI-CA protocol for 
multiple parties12. For easy implementation of a protocol, Shi et al.13 leveraged Bell states to construct another 
protocol for PSI-CA and PSU-CA problems that was more practical than that in Ref.3. In both protocols Ref.3 and 
Ref.13, only two parties who intend to get the cardinalities of the intersection and the union of their private sets are 
involved. Although Ref.12 works for multiple parties, it only solves the PSI-CA problem and requires multi-qubit 
entangled states, complicated oracle operators, and measurements. It then interests us that how we could design 
a more practical protocol for multiple parties to simultaneously solve PSI-CA and PSU-CA problems. Inspired 
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by Shi et al.’s work, we are thus trying to design a three-party protocol to solve PSI-CA and PSU-CA problems, 
where every two and three parties can obtain the cardinalities of the intersection and the union of their respective 
private sets with the aid of a semi-honest third party (TP). TP is semi-honest means that he loyally executes the 
protocol, makes a note of all the intermediate results, and might desire to take other parties’ private information, 
but he cannot collude with dishonest parties. We then give a detailed analysis of the presented protocol’s security. 
Besides, the influence of six typical kinds of Markovian noise on our protocol is also analyzed.

Preliminaries
First of all, we introduce the properties of GHZ states, and then give a detailed description of our protocol.

The standard GHZ three-qubit state is usually given by

Let U = ZX , where X = |0��1| + |1��0| and Z = |0��0| − |1��1| . Combining U and I = |0��0| + |1��1| , we can 
deduce the following equations:

Note that Eqs. (1)–(2) form a basis (we call it GHZ basis hereafter) for the space of the three-qubit quantum 
system.

Results
The proposed protocol.  Our protocol will satisfy the following requirements: 

(1)	 Correctness The respective cardinalities of the intersection and the union of every two and three parties’ 
sets are correct.

(2)	 Privacy TP and dishonest parties cannot learn about the elements of any party’s set.
(3)	 Fairness All the parties are perfect peer entities and they can get the cardinalities with equal opportunities.

In our protocol, TP is assumed to be semi-honest which means that he honestly follows the protocol, writes down 
all the intermediate results and might attempt to obtain the elements of any party’s private set, but he cannot be 
collusive with any dishonest party.

Suppose that Alice, Bob and Charlie have private sets A = {a1, a2, . . . , al} , B = {b1, b2, . . . , bm} and 
C = {c1, c2, . . . , cn} , respectively, and each element of these sets lies in Zp , where Zp = {0, 1, 2 . . . , p− 1} and p 
is a large prime number. TP helps compute the cardinalities |A ∩ B| ( |A ∪ B| ), |A ∩ C| ( |A ∪ C| ), |B ∩ C| ( |B ∪ C| ), 
and |A ∩ B ∩ C| ( |A ∪ B ∪ C| ). Our protocol works as follows: 

(Step 1) Alice, Bob and Charlie run a Quantum Key Agreement (QKA) protocol14–16 to share a secret non-zero 
binary key k that corresponds to a secret integer over Zp . Then, Alice, Bob and Charlie compute 

 and 

 respectively.
(Step 2) Alice, Bob and Charlie encode their respective sets A∗ , B∗ and C∗ into three private vectors over Z2

p as 
follows: Alice constructs a private vector (x0, x1, . . . , xp−1) ∈ Z

p
2 , where xi = 1 if i ∈ A∗ and xi = 0 , otherwise, 

for i = 0, 1, . . . , p− 1 ; Bob produces a private vector (y0, y1, . . . , yp−1) ∈ Z
p
2 , where yi = 1 if i ∈ B∗ and yi = 0 , 

(1)|ϕ000� =
1
√
2
(|000� + |111�).

(2)

(U ⊗ I ⊗ I)|ϕ000� =
1
√
2
(|011� − |100�) = |ϕ100�,

(I ⊗ U ⊗ I)|ϕ000� =
1
√
2
(|101� − |010�) = |ϕ010�,

(I ⊗ I ⊗ U)|ϕ000� =
1
√
2
(|110� − |001�) = |ϕ001�,

(U ⊗ U ⊗ I)|ϕ000� =
1
√
2
(|001� + |110�) = |ϕ110�,

(U ⊗ I ⊗ U)|ϕ000� =
1
√
2
(|101� + |010�) = |ϕ101�,

(I ⊗ U ⊗ U)|ϕ000� =
1
√
2
(|011� + |100�) = |ϕ011�,

(U ⊗ U ⊗ U)|ϕ000� =
1
√
2
(|000� − |111�) = |ϕ111�.

A∗ =
{

ka1 (mod p), . . . , kal (mod p)
}

,

B∗ =
{

kb1 (mod p), . . . , kbm (mod p)
}

,

C∗ =
{

kc1 (mod p), . . . , kcn (mod p)
}

,
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otherwise, for i = 0, 1, . . . , p− 1 ; Charlie generates a private vector (z0, z1, . . . , zp−1) ∈ Z
p
2 , where zi = 1 if 

i ∈ C∗ and zi = 0 , otherwise, for i = 0, 1, . . . , p− 1.

(Step 3) TP prepares p GHZ states ( GA0,GB0,GC0 ), ( GA1,GB1,GC1 ), . . . , ( GA(p−1),GB(p−1),GC(p−1) ), with each 
GHZ state being in the state |ϕ000� . These GHZ states are referred to as encoding states. Next, TP divides all 
particles into three ordered sequences: (GA0,GA1, . . . , GA(p−1)) , (GB0,GB1, . . . ,GB(p−1)) , and (GC0,GC1, . . . , 
GC(p−1)) , which are denoted as TA , TB , and TC , respectively.

(Step 4) TP generates 3d decoy particles, each of which is randomly chosen from the set {|0�, |1�, |+�, |−�} , 
where |+� = 1√

2
(|0� + |1�) and |−� = 1√

2
(|0� − |1�) . Afterwards, TP randomly inserts d decoy particles into 

TA ( TB , TC ) to form a new sequence T ′
A ( T ′

B , T ′
C ). TP then sends T ′

A ( T ′
B , T ′

C ) to Alice (Bob, Charlie) through a 
quantum channel.

(Step 5) Confirming that Alice (Bob, Charlie) has successfully received T ′
A ( T ′

B , T ′
C ), TP announces the inserted 

positions of all the d decoy particles in T ′
A ( T ′

B , T ′
C ) and their corresponding measurement bases. Then, Alice 

(Bob, Charlie) measures all the decoy particles in the correct bases and announces the measurement results 
to TP. Next, TP compares the measurement results with their corresponding initial states. If the error rate 
is higher than the threshold determined by the channel noise, this protocol will be aborted. Otherwise, the 
protocol will continue to the next step.

(Step 6) Alice (Bob, Charlie) removes all the decoy particles from the sequence T ′
A ( T ′

B , T ′
C ) to obtain the ini-

tial sequence TA ( TB , TC ). For each particle in TA ( TB , TC ), Alice (Bob, Charlie) performs U on GAi ( GBi , GCi ) 
( i = 0, 1, . . . , P − 1 ) if xi = 1 ( yi = 1, zi = 1 ); otherwise, Alice (Bob, Charlie) does nothing on GAi ( GBi , GCi).

(Step 7) Alice (Bob, Charlie) prepares d decoy particles to detect eavesdropping. Each decoy states is randomly 
chosen from the set {|0�, |1�, |+�, |−�} . Later, Alice (Bob, Charlie) randomly inserts these d decoy particles 
into TA ( TB,TC ) to form a new sequence T∗

A ( T∗
B ,T

∗
C ), and writes down the positions and the states of these 

inserted states. At last, Alice (Bob, Charlie) sends T∗
A ( T∗

B ,T
∗
C ) to TP through a quantum channel.

(Step 8) Confirming that TP has successfully received T∗
A ( T∗

B , T∗
C ), Alice (Bob, Charlie) announces the inserted 

positions of all d decoy particles in T∗
A ( T∗

B , T∗
C ) and their corresponding measurement bases. TP measures 

all decoy particles in the correct bases and announces the measurement results. Alice (Bob, Charlie) then 
compares the measurement results with their corresponding initial states. If the error rate is higher than 
the threshold determined by the channel noise, the protocol will be aborted. Otherwise, the protocol will 
continue to the next step.

(Step 9) TP discards all decoy particles from T∗
A ( T∗

B , T∗
C ) to attain TA ( TB , TC ). TP then selects eight variables 

S000 , S100 , S010 , S001 , S110 , S101 , S011 and S111 as the counters and sets them all to zero. Next, TP measures each 
trio ( GAiGBiGCi ) ( i = 0, 1, . . . , p− 1 ) in the GHZ basis. If the measurement result is |ϕr� ( r ∈ {0, 1}3 ), TP 
computes Sr = Sr + 1 . Finally, TP can calculate the cardinalities |A ∩ B| = S110 + S111 , |A ∩ C| = S101 + S111 , 
|B ∩ C| = S011 + S111  ,  |A ∩ B ∩ C| = S111  ,  |A ∪ B| = p− S000 − S001  ,  |A ∪ C| = p− S000 − S010  , 
|B ∪ C| = p− S000 − S100 , and |A ∪ B ∪ C| = p− S000.

Correctness and security analyzes.  In this section, we will analyze the correctness and the security of 
our protocol. Let us first give the analysis of the correctness.

Correctness.  On the one hand, for any x, y ∈ Zp and k ∈ ZP − {0} , x = y if and only if kx = ky (mod p) . It is 
easy to deduce that

On the other hand, by the coding rules in (Step 2) and (Step 6), for any i ∈ Zp , if i /∈ A∗ ∧ i /∈ B∗ ∧ i /∈ C∗ 
( i ∈ A∗ ∪ B∗ ∪ C∗ ), then xi = yi = zi = 0 , and Alice (Bob, Charlie) does nothing on the particle GAi ( GBi,GCi ) 
when she (he, he) receives it. TP will get the measurement result |ϕ000� in step 9. Clearly, S000 is used to count 
the number of GHZ trios whose states are the same as their original states. The cardinality of the union of the 
sets A∗ , B∗ and C∗ therefore equals p− S000 . Namely, |A ∪ B ∪ C| = |A∗ ∪ B∗ ∪ C∗| = p− S000 . Similarly, we 

(3)

|A ∩ B| = |A∗ ∩ B∗|,
|A ∩ C| = |A∗ ∩ C∗|,
|B ∩ C| = |B∗ ∩ C∗|,

|A ∩ B ∩ C| = |A∗ ∩ B∗ ∩ C∗|,
|A ∪ B| = |A∗ ∪ B∗|,
|A ∪ C| = |A∗ ∪ C∗|,
|B ∪ C| = |B∗ ∪ C∗|,

|A ∪ B ∪ C| = |A∗ ∪ B∗ ∪ C∗|.
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can analyze other cases where i belonging to different sets corresponds to three parties’ different operations; see 
Table 1. From step 9, we have

where A∗ = Zp − A∗ , B∗ = Zp − B∗ , and C∗ = Zp − C∗.
Furthermore, the relationships among A∗ , B∗ , C∗ and Zp can be illustrated by a Venn Diagram in Fig. 1, where 

red, blue, and green circles represent the sets A∗ , B∗ and C∗ , respectively, and Zp is the universal set. According 
to the Venn Diagram, we obtain the following equations:

(4)

S100 =|A∗ ∩ B∗ ∩ C∗|,
S010 =|A∗ ∩ B∗ ∩ C∗|,
S001 =|A∗ ∩ B∗ ∩ C∗|,
S110 =|A∗ ∩ B∗ ∩ C∗|,
S101 =|A∗ ∩ B∗ ∩ C∗|,
S011 =|A∗ ∩ B∗ ∩ C∗|,
S111 =|A∗ ∩ B∗ ∩ C∗|,

Table 1.   The relationship between i and three parties’ operations.

i ∈ Zp Alice’s operations Bob’s operations Charlie’s operations TP’s measurment results

i ∈ A∗ ∩ B∗ ∩ C∗ I I I |ϕ000�

i ∈ A
∗ ∩ B∗ ∩ C∗ U I I |ϕ100�

i ∈ A∗ ∩ B
∗ ∩ C∗ I U I |ϕ010�

i ∈ A∗ ∩ B∗ ∩ C
∗ I I U |ϕ001�

i ∈ A
∗ ∩ B

∗ ∩ C∗ U U I |ϕ110�

i ∈ A
∗ ∩ B∗ ∩ C

∗ U I U |ϕ101�

i ∈ A∗ ∩ B
∗ ∩ C

∗ I U U |ϕ011�

i ∈ A
∗ ∩ B

∗ ∩ C
∗ U U U |ϕ111�

Figure 1.   The relationships among Zp , A∗ , B∗ and C∗.
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 According to Eqs. (3)–(5), TP will finally obtain

which are the correct results.

Security.  In this subsection, we move on to the analysis of our protocol’s security. Two kinds of attacks, outside 
and participant attacks, on our protocol will be considered. Outside attacks come from an outside eavesdropper, 
Eve. Participant attacks can be launched by TP or dishonest parties.

Outside attacks In our protocol, TP and three parties employ decoy particles to prevent eavesdropping, 
which is derived from the BB84 QKD protocol17. And it has been proven to be unconditionally secure18. As 
we know, BB84 protocol remains secure even if the quantum channel is noisy, and our protocol can thus work 
on the noisy channels as well. Any eavesdropping will be detected in (Step 5) or (Step 8). Concretely, since the 
decoy state is randomly chosen from the set {|0�, |1�|+�|−�} , it is in the state ρ = I

2 . For any trio ( GAi ,GBi ,GCi ) 
( i = 0, 1, . . . , p− 1 ), we have ρAi = ρBi = ρCi = I

2 = ρ . Eve thus cannot distinguish these two states. Without 
loss of generality, the most general strategy for Eve is that she performs an operation UE which causes the encod-
ing states to interact coherently with an auxiliary quantum system |e� , which can be described as follows:

where |α|2 + |β|2 = 1 and |γ |2 + |δ|2 = 1 . In what follows, we will show that in order to pass the detection, Eve’s 
ancillary state and the encoding state should be product states.

From Eq. (7), if the decoy state is |0� or |1� and Eve introduces no error in the eavesdropping check, the fol-
lowing condition should be satisfied:

If the decoy state is |+� or |−� and Eve introduces no error in the eavesdropping check, we should have

(5)

|A∗ ∩ B∗| = |A∗ ∩ B∗ ∩ C∗| + |A∗ ∩ B∗ ∩ C∗|
= S110 + S111,

|A∗ ∩ C∗| = |A∗ ∩ B∗ ∩ C∗| + |A∗ ∩ B∗ ∩ C∗|
= S101 + S111,

|B∗ ∩ C∗| = |A∗ ∩ B∗ ∩ C∗| + |A∗ ∩ B∗ ∩ C∗|
= S011 + S111,

|A∗ ∪ B∗| = |Zp| − |A∗ ∩ B∗ ∩ C∗| − |A∗ ∩ B∗ ∩ C∗|
= p− S001 − S000,

|A∗ ∪ C∗| = |Zp| − |A∗ ∩ B∗ ∩ C∗| − |A∗ ∩ B∗ ∩ C∗|
= p− S010 − S000,

|B∗ ∪ C∗| = |Zp| − |A∗ ∩ B∗ ∩ C∗| − |A∗ ∩ B∗ ∩ C∗|
= p− S100 − S000,

|A∗ ∪ B∗ ∪ C∗| = |Zp| − |A∗ ∩ B∗ ∩ C∗|
= p− S000.

(6)

|A ∩ B| = S110 + S111,

|A ∩ C| = S101 + S111,

|B ∩ C| = S011 + S111,

|A ∩ B ∩ C| = S111,

|A ∪ B| = p− S001 − S000,

|A ∪ C| = p− S010 − S000,

|B ∪ C| = p− S100 − S000,

|A ∪ B ∪ C| = p− S000,

(7)
UE|0�|e� = α|0�|e00� + β|1�|e01�,
UE|1�|e� = γ |0�|e10� + δ|1�|e11�,

(8)β = γ = 0.

(9)

UE|+�|e�

=
1
√
2
(α|0�|e00� + β|1�|e01� + γ |0�|e10� + δ|1�|e11�)

=
1

2
(|+�(α|e00� + β|e01� + γ |e10� + δ|e11�))

+
1

2
(|−�(α|e00� − β|e01� + γ |e10� − δ|e11�))

=
1

2
(|+�(α|e00� + β|e01� + γ |e10� + δ|e11�)),
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or

Namely, the following equations

should hold, with 0 denoting a column zero vector. Depending on Eqs. (8) and (11), we can deduce that

Finally, we have

That is to say, Eve introduces no error in the eavesdropping only when her ancillary state and the encoding states 
are product states. Eve therefore cannot obtain useful information without being detected.

Note that our protocol involves two-way quantum transmission that may incur Trojan horse attacks19,20. 
We do not even need the photon number splitter and the optical wavelength filter devices21,22 to detect such an 
attack because the attacker knows nothing about three parties’ share key k that are employed to encrypt their 
private information.

Dishonest parties’ attacks Note that TP cannot collude with these dishonest parties. Suppose that Alice and 
Bob are the dishonest parties who intend to learn about Charlie’s set C. After they remove their respective decoy 
particles and do nothing on their particles, they may try to figure out what operations Charlie has perform on 
his particles to obtain (z0, z1, . . . , zp−1) . If Alice and Bob can get (z0, z1, . . . , zp−1) , they can easily steal Charlie’s 
private information because they share the same key k. Let’s consider the i-th trio of GHZ state. If i ∈ C∗ , Charlie 
performs U = ZX  on the part icle  GCi  and then the state of  (GAi ,GBi ,GCi) turns into 
|ϕ001�GAiGBiGCi

= 1√
2
(|110�GAiGBiGCi − |001�GAiGBiGCi ) ; otherwise, the the state of (GAi ,GBi ,GCi) remains 

|ϕ000�GAiGBiGCi
= 1√

2
(|000�GAiGBiGCi + |111�GAiGBiGCi ) . In both case, ρGAiGBi = 1√

2
(|00�GAiGBi �00| + |11�GAiGBi �11|) , 

which means Alice and Bob cannot extract any private information from partial qubits of GHZ states. Thus, this 
attack by Alice and Bob is also invalid to our protocol.

TP’s attacks In our protocol, TP is assumed to be semi-honest, which means he will loyally execute the pro-
tocol, and he may use all the intermediate results to derive the other parties’ private information. However, he 
cannot collude with other dishonest parties.

Clearly, in 3.1, TP is able to derive (x0, x1, . . . , xp−1) , (y0, y1, . . . , yp−1) and (z0, z1, . . . , zp−1) according to the 
original GHZ states and the measurement results in the GHZ basis. Namely, TP knows what operations Alice, Bob 
and Charlie have done on their particles. Even though TP can then deduce whether or not i ∈ A∗ ( i ∈ B∗,i ∈ C∗ ), 
he can still not learn any information about the elements in A (B, C). For example, suppose TP knows that i ∈ A∗ 
(i.e. i = kaj(mod p) ∈ A∗ ), he knows nothing about aj ∈ A because he does not have the secret key k, whose 
security is guaranteed by Quantum Key Agreement. Hence, TP cannot steal three parties’ private information.

Influence of Markovian Noise on the Protocol.  In this section, assuming that the quantum state gen-
erator, quantum memories, and measurement devices in our protocol are perfect, we analyze the influence of six 
typical sorts of Markovian noise on our protocol. The effect of quantum noise on a tripartite quantum state ρ123 
can be characterized as follows:

where {Ki} are Kraus operators characterizing quantum noise23 .

Flip channels.  The flip channels have the following Kraus operators23

(10)

UE|−�|e�

=
1
√
2
(α|0�|e00� + β|1�|e01� − γ |0�|e10� − δ|1�|e11�)

=
1

2
(|+�(α|e00� + β|e01� − γ |e10� − δ|e11�))

+
1

2
(|−�(α|e00� − β|e01� − γ |e10� + δ|e11�))

=
1

2
(|−�(α|e00� − β|e01� − γ |e10� + δ|e11�)).

(11)
α|e00� − β|e01� + γ |e10� − δ|e11� = 0,

α|e00� + β|e01� − γ |e10� − δ|e11� = 0,

(12)
α =δ = 1,

β =γ = 0,

|e00� = |e11�.

(13)

UE|0�|e� = |0�|e00�,
UE|1�|e� = |1�|e00�,
UE|+�|e� = |+�|e00�,
UE|−�|e� = |−�|e00�.

(14)ρ′
123 =

∑

i,j,k

K
(i)
1 ⊗ K

(j)
2 ⊗ K

(k)
3 ρ123K

(i)†
1 ⊗ K

(j)†
2 ⊗ K

(k)†
3 ,
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where i = 1, 2, 3 represents the bit flip ( σ1 = |0��1| + |1��0| ) , bit-phase flip ( σ2 = i(|1��0| − |0��1|) ) and phase 
flip ( σ3 = |0��0| − |1��1| ) channels, respectively, and q ∈ [0, 1] denotes the noise strength.

Suppose that the channel between TP and Alice, the channel between TP and Bob, and the channel between 
TP and Charlie are the same. We first consider the bit flip channel. For a GHZ state ρABC = |ϕ000�ABC�ϕ000| used 
for computation, after three particles arrived at Alice, Bob, and Charlie, respectively, the state of this tripartite 
system ABC becomes

where K (0)
s =

√
1− qI ,K

(1)
s = √

qσ1 ( s ∈ {A,B,C}).
Later, Alice, Bob, and Charlie perform unitary operations UA , UB and UC on particle A, B, C, respectively, as 

described in (Step 6) of the proposed protocol, with UA , UB , UC ∈ {I ,U = ZX} . We denote UABC = UA ⊗ UB ⊗ UC , 
the state after Alice’s, Bob’s, and Charlie’s operations turns into

When TP receives these three particles from Alice, Bob, Charlie, the state of this system ABC is

When TP measures the system ABC in the GHZ basis, he expects to obtain the measure result UABCρABCU
†
ABC , 

through which he can compute the cardinalities of intersections and unions, as described in 3.1 of our protocol. 
In this case, TP succeeds in the computation. We found that for all possible choices of UABC , the success prob-
ability is

Similarly, for bit-phase and phase channels, the success probabilities are

and

respectively.
The variation of these three success probabilities for flip channels are depicted in Fig. 2.

Depolarizing.  The depolarizing channel can be characterized by the following Kraus operators23

(15)K (0) =
√

1− qI ,K (1) = √
qσi ,

(16)ρ′
ABC =

1
∑

i,j,k=0

K
(i)
A ⊗ K

(j)
B ⊗ K

(k)
C ρABCK

(i)†
A ⊗ K

(j)†
B ⊗ K

(k)†
C ,

(17)ρ′′
ABC = UABCρ

′
ABCU

†
ABC .

(18)ρ′′′
ABC =

1
∑

i,j,k=0

K
(i)
A ⊗ K

(j)
B ⊗ K

(k)
C ρ′′

ABCK
(i)†
A ⊗ K

(j)†
B ⊗ K

(k)†
C .

(19)PBFsuc = 1− 6q+ 18q2 − 24q3 + 12q4.

(20)PBPFsuc = (1− 2q+ 2q2)3,

(21)PPFsuc = 1− 6q+ 30q2 − 80q3 + 120q4 − 96q5 + 32q6,
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Figure 2.   The variations of the success probabilities Psuc using three kinds of flip channel with noise strength q.
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where σ1 = |0��1| + |1��0| , σ2 = i(|1��0| − |0��1|) , σ3 = |0��0| − |1��1| , and q ∈ [0, 1] is the noise strength.
Suppose that the channel between TP and Alice, the channel between TP and Bob, and the channel between 

TP and Charlie are the same. Using the similar method in Flip channels analysis, the success probability of TP 
obtaining the correct measurement result is

for all different choices of UABC.

Amplitude damping.  The amplitude damping channel is used for the description of energy dissipation, which 
contains the Kraus operators23 as follows

where q ∈ [0, 1] is the noise strength.
Suppose that the channel between TP and Alice, the channel between TP and Bob and the channel between 

TP and Charlie are the same. Using the similar method in Flip channels analysis, the success probability of TP 
obtaining the correct measurement result is

for the cases where UABC = I ⊗ I ⊗ I and UABC = U ⊗ U ⊗ U . For other cases, the success probability changes 
to

Phase damping.  The phase damping channel is characterized by the Kraus operators23 as follows

where q ∈ [0, 1] is the noise strength.
Suppose that the channel between TP and Alice, the channel between TP and Bob, and the channel between 

TP and Charlie are the same. Using the similar method in Flip channels analysis, the success probability of TP 
obtaining the correct measurement result is

for all sorts of choices of UABC.
The variations of the success probabilities of depolarizing, amplitude damping and phase damping channels 

are depicted in Fig. 3.

Discussion and Conclusions
We presented a three-party protocol to compute the cardinalities of the intersection and the union between 
any two sets and among three sets with the help a semi-honest party TP. The security analysis showed that our 
protocol can resist some well-known quantum attacks. In addition, we analyzed the influence of six typical 
sorts of Markovian noise on the success probabilities of a GHZ state used for computation. The analysis showed 
that among three kinds of flip channels, the bit-phase flip channel affects our protocol most. It is interesting to 
see that on the amplitude damping channel, the success probabilities of the cases where UABC = I ⊗ I ⊗ I and 
UABC = U ⊗ U ⊗ U  are the same, but for other cases, they share another success probabilities.

In practice, quantum error correction codes are usually employed to protect quantum states from errors 
induced by noise. There is also research on designing robust quantum cryptographic protocols based on some 
specific quantum states over special noisy channels (e.g. collective noise channels)16. Note that imperfect devices, 
such as quantum state generators and measurement devices, may also affect the robust of quantum cryptographic 
protocol, we will further conduct research on these topics in the future.

(22)
K (1) =

√

1−
3

4
qI , K (2) =

√
q

2
σ1,

K (3) =
√
q

2
σ2, K (4) =

√
q

2
σ3,

(23)PDepsuc =
1

8
(8− 36q+ 78q2 − 92q3 + 63q4 − 24q5 + 4q6),

(24)K (1) =
[

1 0
0
√
1− q

]

,K (2) =
[

0
√
q

0 0

]

,

(25)
PAD1suc =

1

4
(4− 12q+ 21q2 + (−22+ 8

√

1− q)q3

+ (15− 8
√

1− q)q4 − 6q5 + q6),

(26)PAD2suc = −
1

4
(−1+ q)(4− 8q+ 9q2 + (−5+ 4

√

1− q)q3 + q4).

(27)K (1) =
[

1 0
0
√
1− q

]

,K (2) =
[

0 0
0
√
q

]

,

(28)PPDsuc =
1

2
(2− 3q+ 3q2 − q3),
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