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Artificial neural network based 
prediction of postthrombolysis 
intracerebral hemorrhage 
and death
Chen‑Chih Chung2,3,6, Lung Chan2,3, Oluwaseun Adebayo Bamodu4,5, Chien‑Tai Hong2,3 & 
Hung‑Wen Chiu1,6*

Despite the salient benefits of the intravenous tissue plasminogen activator (tPA), symptomatic 
intracerebral hemorrhage (sICH) remains a frequent complication and constitutes a major concern 
when treating acute ischemic stroke (AIS). This study explored the use of artificial neural network 
(ANN)-based models to predict sICH and 3-month mortality for patients with AIS receiving tPA. We 
developed ANN models based on evaluation of the predictive value of pre-treatment parameters 
associated with sICH and mortality in a cohort of 331 patients between 2009 and 2018. The ANN 
models were generated using eight clinical inputs and two outputs. The generalizability of the model 
was validated using fivefold cross-validation. The performance of each model was assessed according 
to the accuracy, precision, sensitivity, specificity, and area under the receiver operating characteristic 
curve (AUC). After adequate training, the ANN predictive model AUC for sICH was 0.941, with 
accuracy, sensitivity, and specificity of 91.0%, 85.7%, and 92.5%, respectively. The predictive model 
AUC for 3-month mortality was 0.976, with accuracy, sensitivity, and specificity of 95.2%, 94.4%, and 
95.5%, respectively. The generated ANN-based models exhibited high predictive performance and 
reliability for predicting sICH and 3-month mortality after thrombolysis; thus, its clinical application to 
assist decision-making when administering tPA is envisaged.

Thrombolysis using intravenously administered recombinant tissue plasminogen activator (tPA) represents the 
standard of care and most effective treatment for acute ischemic stroke (AIS)1,2. However, the intended benefits 
of tPA is dampened by the risk of symptomatic intracerebral hemorrhage (sICH). Post-thrombolysis sICH 
herald poor clinical outcome and account for most early excess deaths1, with a high 3-month mortality rate3. 
This necessitates the development of therapy-decision support tools based on the thrombolysis risk-to-benefit 
ratio, especially as the accurate and early identification of patients with high risk of post-tPA sICH and death 
is increasingly shown to play a crucial role in informing clinicians’ decision-making and therapeutic strategies.

In the last decade, several scoring tools have been introduced to predict sICH or death after tPA4–9, however, 
the related studies only demonstrate moderate prediction accuracy and this has not translated into reduced 
incidence of sICH or increased 3-month clinical outcome. This, in part, forms the basis of the present study 
which explored the use of artificial neural network (ANN)-based predictive models for identifying patients with 
high risk of post-thrombolysis sICH and death, as well as stratification based on likelihood of benefiting from 
tPA therapy.

Evolving medical adaptation of artificial intelligence (AI) proffers the means to investigate nonlinear data 
relationships, enhance data interpretation, and design more efficient diagnostic and predictive tool10. ANN, an 
AI method simulating the structure and functionalities of the human neural architecture, is able to predict exist-
ent complex relationships between input and output variables by repeated learning and validation process, and 
is increasingly applied in various aspects of medical diagnosis and prediction11,12. The present study generated 
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highly reliable ANN computational models to predict the risk of (i) sICH, and (ii) 3-month mortality amongst 
patients with AIS after treatment with intravenous tPA.

Materials and methods
Participants.  Medical records of patients diagnosed with and/or treated for AIS between January 2009 
and December 2018 were retrieved from Taiwan Stroke Registry13 of Shuang Ho Hospital, and retrospectively 
reviewed. The inclusion criteria were as follows: patients with AIS aged 18 or older, who received intravenous tPA 
treatment consistent with the updated American Heart Association/American Stroke Association guidelines2. 
The exclusion criteria were as follows: initial National Institute of Health Stroke Scale (NIHSS) score of < 4 
or > 25, intra-arterial thrombectomy or other endovascular intervention for AIS. All patients underwent non-
contrast head computed tomography (CT) or brain magnetic resonance imaging (MRI) before tPA. The Glasgow 
Coma Scale (GCS) was used to evaluate the baseline consciousness level of the patients. Fasting glucose, glycated 
hemoglobin (HbA1c), triglyceride, and low-density lipoprotein (LDL) levels were measured within 72 h after 
tPA. A repeated head CT or MRI was performed within 72 h of admission. SICH was defined as CT or MRI scan-
documented bleeding from any part of the brain, associated with investigator-adjudged clinical deterioration, 
or presence of adverse events indicating clinical exacerbation within 72 h after tPA14. All CT/MRI results were 
analyzed by two independent neurologists and a radiologist. NIHSS scores, and 3-month modified Rankin Scale 
(mRS) scores were assessed by certified stroke specialists. In-hospital death and 3-month mortality were defined 
by a mRS score of 6 at discharge and during follow-up period of 3 months, respectively.

Ethical approval.  The study was approved by the Joint Institutional Review Board of Taipei Medical Uni-
versity (TMU-JIRB Approval No. N201705044). Waivers of informed consent were approved by the TMU-JIRB 
for this retrospective study involving the secondary analysis of existing data. All methods were performed in 
accordance with the relevant guidelines and regulations.

Statistical analyses.  All statistical analyses were performed using the JMP software, version 11.0.0 (SAS 
Institute Inc., Cary, NC, USA). Variables were summarized using descriptive statistics. Continuous variables 
with normal distribution are presented as mean ± standard deviation, and categorical variables are expressed 
as percentages with corresponding 95% confidence intervals (CIs). One-way ANOVA was used for continuous 
variables, and Fisher’s exact test was used for categorical variables. A p-value of < 0.05 was considered statistically 
significant.

Application of ANN modeling.  All ANN models were developed using STATISTICA 10.0 (StatSoft, 
Tulsa, Oklahoma, USA). The applied computational architecture was multilayer perceptron (MLP), a feed-for-
ward ANN, combined with back-propagation algorithm for training the feed-forward ANNs. To train the ANN, 
supervised learning was performed by providing a series of input and output variables from the training data-
set, such that by iteratively adjusting the connection weights, a desirable input–output mapping function was 
generated12. After appropriate training, optimization of the ANN architecture is initiated until the most satisfac-
tory performance is achieved. The number of neurons in the hidden layer is set empirically. For our models, the 
input layer consisted of 8 neurons and the output layer consisted of 2 neurons (Figs. 1A,B).

Figure 1.   Artificial neural network (ANN) models in the present study. Schema showing the input, hidden, 
and output layers of (A) ANN model 1 to predict sICH, and (B) ANN model 2 to predict the 3-month mortality. 
Af, atrial fibrillation; ANN, artificial neural network; BP, blood pressure; DM, diabetes mellitus; GCS, Glasgow 
Coma Scale; sICH, symptomatic intracranial hemorrhage; LDL, low-density lipoprotein; NIHSS, National 
Institutes of Health Stroke Scale.
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Model development.  The input attributes of the ANN models included clinical features extracted from 
the patients’ medical history that were associated with the output attributes of interest, namely post-tPA sICH 
and 3-month mortality for model 1 and model 2, respectively. The generalizability of the analysis was assessed 
by fivefold cross-validation. Briefly, for cross-validation, the dataset was randomly shuffled and partitioned into 
five subsets (folds), followed by five rounds of training and validation of the ANN models. In each round of the 
analysis, four subsets served as the training subsets, and the remaining 1 subset was retained to validate the ANN 
model. Each of the five subsets was only used once as the validation set in the cross-validation process.

The performance of the ANN models was evaluated using the five independent validation sets. The model 
performance was measured and visualized by the area under the receiver operating characteristic curve (AUC) 
of the training and validation sets, and the mean accuracy, precision, sensitivity, and specificity of the five valida-
tion sets were also reported.

Results
Cohort demographical and baseline clinicopathological characteristics.  During the study 
period, 380 patients received tPA treatment for AIS. Among them, 331 patients (133 women and 198 men, mean 
age 69.2 ± 12.2 years) were eligible and enrolled into this study. Forty-nine patients who received endovascular 
interventions following intravenous tPA were excluded from baseline analyses. The average onset-to-treatment 
time was 122.1 ± 45.3 min. The mean baseline NIHSS score was 12.6 ± 6.3. The stroke subtypes of the cohort 
included large artery atherosclerosis (41.0%), cardioembolism (22.9%), small vessel occlusion (25.0%), and oth-
ers (11.1%). There were 68 patients (20.5%) aged over 80 years. At baseline, older age was associated with lower 
GCS scores (p < 0.0001), higher initial NIHSS scores (p < 0.0001), lower body weight (p < 0.0001) and lower total 
tPA dose (p < 0.0001).

Clinical outcomes after thrombolytic therapy.  Within 72 h of administering tPA, 25 patients (7.6%) 
exhibited sICH (Table  1). Among these, 2 patients (8.0%) died during hospitalization. During the 3-month 
follow-up after tPA, 43 patients (~ 13.0%) from the total cohort were lost to follow-up, and the remaining 288 
patients were enrolled into the ANN analysis for post-tPA 3-month mortality (Table 2). Of these 288 patients, 
31 deaths were recorded (17 in-hospital and 16 after discharge). Compared with the non-sICH group, patients 
who developed sICH after tPA had less favorable outcomes, as demonstrated by higher mRS scores (Fig. 2A), 
and greater risk of 3-month mortality (Fig. 2B) during the first 3 months post-tPA.  

Patients with sICH presented with an exacerbated clinical phenotype compared with the 
non‑sICH group.  The demographics and baseline clinicopathological characteristics of patients with or 
without post-tPA sICH are presented in Table 1. At baseline, patients with sICH exhibited higher diastolic BP, 
lower LDL level, and higher prevalence of atrial fibrillation or any other type of heart disease, lower prevalence of 
hyperlipidemia, when compared with patients who did not develop sICH. The sICH group also differed in their 
stroke subtypes to the non-sICH group. There were more patients with the cardio-embolic subtype and fewer 
small-vessel occlusions in the sICH group.

Attributes associated with mortality within 3  months of thrombolytic therapy.  The demo-
graphics and mortality-related clinicopathological characteristics of our total cohort in the first 3 months after 
tPA are presented in Table 2. We observed that patients who were older, received lower dose of tPA, had lower 
GCS and higher NIHSS score at baseline, co-morbid with diabetes mellitus (DM) and ischemic heart disease, 
and higher fasting glucose level, were more likely to die within the first 3 months after tPA therapy.

Random oversampling.  Understanding the detrimental effect of an imbalance or severely skewed dataset 
on the accuracy and generalizability of any prediction model, we sought to reduce the disproportionate ratio of 
our sICH to non-sICH and the 3-month mortality patients to survivors in the cohort, and performed random 
oversampling of the minority classes, namely the sICH and 3-month mortality subsets. Thus, one hundred sam-
ples were randomly selected from the sICH or 3-month mortality subset to increase the size of the training and 
validation sets and rebalance the class distribution for the ANN model 1 or model 2, respectively. This naïve 
method not only rebalances the class distribution, but also improve overall classification performance15,16. After 
random oversampling, 100 sICH and 306 non-sICH samples were randomly partitioned into 326 training and 
80 validation sets in ANN model 1, and 100 mortality samples and 257 survivals were randomly partitioned into 
285 training and 72 validation sets in ANN model 2, respectively (Table 3).

Predictive performance of our post‑tPA sICH and 3‑month mortality ANN models.  ANN model 
1.  For model 1, the ANN was trained to predict post-tPA sICH. The input attributes, based on results of analy-
ses in Tables 1, included the baseline diastolic BP, level of LDC, history of hyperlipidemia, Af, or any kind of 
heart disease (Table 3); however, while stroke subtype is associated with sICH, it was not included in the model 
because the accurate classification of stroke subtype would usually require a complete evaluation of stroke eti-
ology and this was not obtainable before tPA treatment. The output attribute of this model was sICH. After 
adequate training, the ANN models that contained 8, 11, 15, 16, and 20 neurons in the hidden layer achieved 
the best predictive performance for the five validation sets (validation 1–5), with a mean training accuracy of 
89.2 ± 4.1% and validation accuracy of 91.0 ± 3.5%. The mean precision of the validation sets was 81.0 ± 11.1%, 
sensitivity was 85.7 ± 14.0%, and specificity was 92.5 ± 5.4%. The mean AUC was 0.951 ± 0.02 for the training sets 
and 0.941 ± 0.03 for the validation sets (Figs. 3A,B).
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ANN model 2.  For model 2, the ANN was trained to predict the 3-month mortality following tPA. The input 
attributes include age, dose of tPA, baseline NIHSS score, GCS score, history of DM, and history of ischemic 
heart disease (Table 3). Fasting glucose level was not included in the model because this data was not available 
before the tPA therapy. After adequate training, the ANN models that contained 13, 15, 15, 15, and 20 neurons 
in the hidden layer achieved the best predictive performance for the five validation sets (validation 1–5), with 
a mean training accuracy of 99.3 ± 0.8% and a validation accuracy of 95.2 ± 1.9%. The mean precision of the 
validation sets was 89.2 ± 6.7%, sensitivity was 94.4 ± 7.9%, and specificity was 95.5 ± 3.0%. The mean AUC was 
0.998 ± 0.002 for the training sets and 0.976 ± 0.016 for the validation sets (Figs. 3C,D).

Comparison of the predictive performance of ANN models with other prediction scores.  To 
better understand the predictive performance of ANN models and available outcome prediction scores, we cal-
culated the Stroke Prognostication using Age and NIH Stroke Scale index (SPAN-100)6, Totaled Health Risks in 
Vascular Events (THRIVE)7,17, and Safe Implementation of Treatments in Stroke (SITS)5 scores with the present 
clinical data, and used receiver operating characteristic (ROC) curve analysis to compare our ANN models with 
the scores (Table 4). ANN model 1 and model 2 showed remarkably higher AUC values in ROC analysis than 

Table 1.   Baseline characteristics of patients with and without symptomatic intracranial hemorrhage (sICH) 
after tPA. Continuous variables are presented as mean ± SD. One-way ANOVA was used for continuous 
variables, and Fisher’s exact test was used for categorical variables. BMI, body mass index. BP, blood pressure. 
HbA1c, hemoglobin A1c. sICH, symptomatic intracranial hemorrhage. LDL, low-density lipoprotein. NIHSS, 
National Institutes of Health Stroke Scale. mRS, modified Rankin Scale. TIA, transient ischemic attack. tPA, 
tissue plasminogen activator. *p-value < 0.05.

sICH Non-sICH p-value

n 25 306

Age 68.1 ± 11.0 69.2 ± 12.3 0.62

Female, n (%) 14 (56) 119 (38.9) 0.09

Onset-to-hospital time, minutes 49.8 ± 36.2 61.0 ± 44.9 0.16

Onset-to-treatment time, minutes 118.0 ± 45.9 122.5 ± 45.3 0.64

BMI, kg/m2 24.7 ± 5.0 24.9 ± 4.0 0.87

tPA total dose, mg 54.6 ± 15.2 55.9 ± 13.8 0.71

Glasgow coma scale score 11.6 ± 4.2 11.8 ± 4.5 0.88

Systolic BP (mmHg) 163.9 ± 22.2 160.1 ± 29.9 0.45

Diastolic BP (mmHg) 100.5 ± 14.7 90.4 ± 19.2 0.004*

Baseline NIHSS 14.0 ± 5.7 12.4 ± 6.4 0.20

Stroke subtype, n (%)

Cardioembolism 8 (33.3) 58 (22.0)

0.046*
Large-artery atherosclerosis 10 (41.7) 108 (40.9)

Small-vessel occlusion 1 (4.2) 71 (26.9)

Others 5 (20.8) 27 (10.2)

Risk factors, n (%)

Hypertension 22 (88) 219 (72.8) 0.10

Diabetes mellitus 10 (40) 95 (31.6) 0.39

Hyperlipidemia 3 (12) 92 (30.6) 0.05*

Atrial fibrillation 15 (60) 82 (27.4) 0.001*

Previous stroke or TIA 5 (20) 55 (18.3) 0.83

Heart disease 16 (66.7) 90 (31.4) 0.0005*

Smoking 3 (12) 63 (20.9) 0.29

Laboratory data

Glucose at admission (mg/dL) 155.0 ± 55.5 154.2 ± 65.0 0.95

Glucose, fasting (mg/dL) 149.0 ± 71.1 132.0 ± 46.3 0.27

Creatinine (mg/dL) 1.1 ± 0.7 1.2 ± 1.1 0.54

Cholesterol (mg/dL) 174.0 ± 42.3 187.5 ± 42.9 0.14

Triglyceride (mg/dL) 112.5 ± 65.0 127.0 ± 89.8 0.32

LDL (mg/dL) 100.1 ± 30.2 114.2 ± 36.0 0.035*

HbA1c (%) 6.4 ± 1.3 6.4 ± 1.4 0.93

Outcome measures

In-hospital death n (%) 2 (8) 15 (4.9) 0.53

Death at 3-month, n (%) 6 (25) 25 (9.5) 0.02*

3-month mRS 4.2 ± 1.6 2.4 ± 1.9  < 0.0001*
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the scoring systems in predicting sICH and 3-month mortality, indicating the greater discrimination ability of 
the ANN models for the measured outcome.

Discussion
The present study generated ANN-based predictive models to predict sICH within 72 h of intravenous tPA 
administration (model 1) and the post-tPA 3-month mortality (model 2) of patients with AIS. ANN model 1 and 
ANN model 2 achieved high validation performance, with AUC 0.941 and 0.976, respectively. This is predictive 
relevance, as the AUC measures and portrays the degree of separability; thus, the relatively high AUC values 
indicate that the models are capable of distinguishing the classes of interest, namely, sICH versus non-sICH and 
mortality versus survival of tPA administration. Our result demonstrated that high baseline diastolic BP, lower 
level of LDL, history of hyperlipidemia, Af, and heart disease were associated with sICH, while aging, lower 
dose of tPA, lower baseline GCS score, higher NIHSS score, history of DM and ischemic heart disease, were 
predictors of the post-tPA 3-month mortality. Thus, the rationale for the application of these variables as input 
attributes, and in part informs the demonstrated reliability and accuracy of our ANN-based predictive models.

Stroke is a multi-factorial neurological disorder with broad systemic implications. Individual factors/vari-
ables have been shown to be modestly associated with therapeutic outcome, and accurate prediction of clinical 

Table 2.   Comparison of clinical variables between dead and surviving patients with acute ischemic stroke 
at 3 months post-tPA. Continuous variables are presented as mean ± SD. One-way ANOVA was used for 
continuous variables, and Fisher’s exact test was used for categorical variables. BMI, body mass index. BP, 
blood pressure. HbA1c, hemoglobin A1c. sICH, symptomatic intracranial hemorrhage. LDL, low-density 
lipoprotein. NIHSS, National Institutes of Health Stroke Scale. mRS, modified Rankin Scale. TIA, transient 
ischemic attack. tPA, tissue plasminogen activator. *p-value < 0.05.

Dead Survivors p-value

n 31 257

Age 75.5 ± 12.6 68.7 ± 11.8 0.0067*

Female, n (%) 16 (51.6) 104 (40.5) 0.23

Onset-to-hospital time, minutes 51.6 ± 41.0 61.8 ± 44.7 0.21

Onset-to-treatment time, minutes 110.8 ± 39.4 123.0 ± 45.2 0.12

BMI, kg/m2 24.4 ± 3.9 25.0 ± 4.2 0.41

tPA total dose, mg 49.0 ± 13.2 56.3 ± 14.0 0.008*

Glasgow coma scale score 9.5 ± 5.2 12.1 ± 4.4 0.015*

Systolic BP (mmHg) 156.5 ± 34.4 160.4 ± 29.2 0.59

Diastolic BP (mmHg) 87.1 ± 19.7 91.6 ± 19.7 0.29

Baseline NIHSS 18.4 ± 5.9 11.8 ± 5.9  < 0.0001*

Stroke subtype, n (%)

Cardioembolism 5 (21.7) 55 (23.4)

0.07
Large-artery atherosclerosis 14 (60.9) 95 (40.4)

Small-vessel occlusion 1 (4.4) 65 (27.7)

Others 3 (13.0) 20 (8.5)

Risk factors, n (%)

Hypertension 23 (79.3) 188 (73.2) 0.47

Diabetes mellitus 14 (48.3) 75 (29.2) 0.035*

Hyperlipidemia 5 (17.2) 75 (29.2) 0.17

Atrial fibrillation 7 (24.1) 81 (31.6) 0.41

Previous stroke or TIA 7 (24.1) 43 (16.7) 0.32

Ischemic heart disease 10 (35.7) 30 (12.2) 0.0008*

Smoking 4 (13.6) 52 (20.2) 0.41

Laboratory data

Glucose at admission (mg/dL) 177.8 ± 96.4 150.3 ± 58.9 0.18

Glucose, fasting (mg/dL) 181.0 ± 77.4 128.8 ± 42.0 0.005*

Creatinine (mg/dL) 1.2 ± 1.0 1.8 ± 1.7 0.08

Cholesterol (mg/dL) 179.3 ± 36.6 186.5 ± 43.6 0.37

Triglyceride (mg/dL) 107.1 ± 80.2 126.5 ± 85.2 0.28

LDL (mg/dL) 106.8 ± 28.4 112.8 ± 36.3 0.34

HbA1c (%) 6.6 ± 1.5 6.4 ± 1.4 0.62

Pre-discharge condition, n (%)

sICH 6 (19.4) 18 (7.0) 0.02*

In-hospital death 17 (54.8) 0 (0)  < 0.0001*
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Figure 2.   The 3-month functional outcomes of the patients with and without sICH after tPA treatment. Chart 
showing the differential 3-month mRS of patients with or without sICH of tPA administration (A). The numbers 
in each color-coded bar indicate the number of patients from the sICH or non-sICH group. (B) Graphical 
representation of the mortality outcomes of patients with and without sICH during hospitalization and during 
the 3-month post-tPA follow-up period. Numbers in the color-coded bar represent the percentage of patients in 
each group. sICH, symptomatic intracranial hemorrhage; mRS, modified Rankin Scale; tPA, tissue plasminogen 
activator.

Table 3.   Description of the input attributes within the training and validation datasets of the ANN models. 
Continuous input attributes are presented as the mean values of the attributes and the standard deviation 
within the five training and validation sets. Categorical input attributes are presented as the percentage of the 
mean case numbers and standard deviation within the five training and validation sets. ANN, artificial neural 
network. BP, blood pressure. LDL, low-density lipoprotein. NIHSS, National Institutes of Health Stroke Scale. 
tPA, tissue plasminogen activator.

ANN model 1

Training (n = 326) Validation (n = 80) Total (n = 406)

Diastolic BP (mmHg) 92.7 ± 0.4 92.8 ± 1.5 92.7

LDL (mg/dL) 110.2 ± 1.3 110.2 ± 5.0 110.1

Hyperlipidemia

Yes, % 25.4 ± 1.9 25.5 ± 7.6 25.4

No, % 74.6 ± 1.9 74.5 ± 7.6 74.6

Atrial fibrillation

Yes, % 34.8 ± 0.9 34.8 ± 3.6 34.8

No, % 65.2 ± 0.9 65.2 ± 3.6 65.2

Heart disease

Yes, % 38.9 ± 0.6 38.9 ± 2.3 38.9

No, % 61.1 ± 0.6 61.1 ± 2.3 61.1

ANN model 2

Training (n = 285) Validation (n = 72) Total (n = 357)

Age (years) 70.7 ± 0.3 70.5 ± 0.8 70.5

tPA total dose (mg) 54.7 ± 0.3 54.7 ± 1.3 54.7

Baseline NIHSS 13.6 ± 0.1 13.6 ± 0.5 13.6

Glasgow coma scale 11.3 ± 0.2 11.3 ± 0.7 11.3

Diabetes mellitus

Yes, % 34.5 ± 1.0 34.4 ± 4.1 34.5

No, % 65.5 ± 1.0 65.6 ± 4.1 65.5

Ischemic heart disease

Yes, % 18.4 ± 0.7 18.4 ± 2.8 18.4

No, % 81.6 ± 0.7 81.6 ± 2.8 81.6
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course or prognostication of clinical outcome would be difficult if based on a single clinical factor18. Thus, 
the complexity of AIS limits the conventional prediction models and scoring systems, as well as curtails their 
predictive reliability for the individualization of treatment. Against this background, in an effort to correctly 
predict which patients are at the greatest risk of post-thrombolysis sICH and death, the present study employed 
a composite and integrated prediction model consisting of multiple demographic and clinical factors, with the 
evidence-based predictive or prognostic capability in AIS. The complex synergy between these variables, we 
believe, is crucial for clinical application.

Consistent with contemporary knowledge, we identified several factors related to post-tPA sICH and 3-month 
mortality, and most of these factors are of demonstrable prognostic relevance in AIS. Underscoring the rational-
ity of our selected input attributes, for example, high NIHSS score, and Af have been suggested to increase the 

Figure 3.   Predictive performance of the ANN models. Visualization of the ROC curves and AUC of the five 
(A) training and (B) validation sets used in the ANN model 1 to predict the post-tPA sICH of patients with 
AIS. Visualization of the ROC curves and AUC of the five (C) training and (D) validation sets used in the 
ANN model 2 to predict the post-tPA 3-month mortality of patients with AIS. The AUC value represents the 
mean ± SD of the AUC of the five training and validation sets. ANN, artificial neural network; AUC, area under 
the receiver operating characteristic curve; ROC, receiver operating characteristic; tPA, tissue plasminogen 
activator.

Table 4.   Comparison of the predictive performance of different models. The AUC value of ANN models 
showed the mean AUC of the five validation sets. The AUC value of SPAN-100 index was calculated using a 
univariable regression model with SPAN-100 score (age plus NIHSS). Compared to the SPAN, THRIVE, and 
SITS scores, the predictive performance was remarkably higher in the ANN models. ANN, artifice al neural 
network. AUC, the area under the receiver operating characteristic curve. NIHSS, National Institutes of Health 
Stroke Scale. sICH, symptomatic intracerebral hemorrhage. SITS, Safe Implementation of Treatments in Stroke 
score. SPAN-100, Stroke Prognostication using Age and NIH Stroke Scale index. THRIVE, Totaled Health 
Risks in Vascular Events score. tPA, tissue plasminogen activator.

AUC value Prediction of post-tPA sICH Prediction of 3-month mortality

ANN 0.941 0.976

SPAN-100 0.511 0.754

THRIVE 0.621 0.789

SITS 0.648 0.728
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risk of post-thrombolysis hemorrhagic transformation and poor AIS outcome19,20; in fact, Whiteley WN, et al. 
in a systematic review and meta-analysis of 55 studies showed that a higher stroke severity with an odds ratio 
of ~ 1.1 per NIHSS point is associated with post-tPA sICH, and that the odds double in the presence of Af-related 
cardioembolic stroke subtype18.

In addition, consistent with our finding that AIS patients at high risk for sICH were concurrently morbid 
with heart disease, there is indication that being comorbid with congestive heart failure or ischemic heart dis-
ease increases the risk of sICH after tPA in patients with AIS18. Evidence of brain–heart interactions continues 
to accrue, with cardiac dysfunction being associated with brain injury; concordant with the conclusions of a 
population-based 30-year cohort study, “Heart failure was associated with increased short-term and long-term 
risk of all stroke subtypes”21.

In our model 1, high diastolic BP was an indicator of sICH. This is corroborated by findings indicating that 
elevated BP within the first 24 h following tPA administration in patients with AIS is an independent predictor 
of sICH22, and that extremely high or low systolic and diastolic BP are significantly associated with mortality 
and disability23,24. Thus, guiding medical decision-making, to maintain optimal control of BP during the acute 
phase of AIS would play a therapeutically significant role in lowering the potential risks of sICH and improve 
clinical outcome2,23.

It has been suggested that low LDL level damages the integrity of the smooth muscle cells, impairs the 
endothelial function of cerebral vessels, and consequently increase the risk of hemorrhage25. The actual effect of 
altered serum lipid level on sICH might be confounded by the presence of Af26, as lower blood lipid levels have 
been shown in patients with Af, and hypolipoproteinemia has been touted to increase susceptibility to developing 
Af26. This is corroborated by our finding that LDL and hyperlipidemia were significantly associated with sICH 
in our AIS cohort, and informed their inclusion into the ANN model for predicting sICH before tPA treatment.

Aging has a negative effect on the long-term outcome of AIS, especially as patients aged > 80 years present 
with more severe AIS than their younger counterparts27, and this is consistent with higher NIHSS score being 
strongly linked with AIS-related mortality8,28. This is further corroborated by findings of the SPAN-100 index 
study which demonstrated the prognostic relevance of combining patients’ age (years) and baseline NIHSS 
score in patients with AIS6. In partial concordance, in our present study both patients’ age and NIHSS score 
were shown to be critical indicators, and were applied in the ANN model for predicting the post-tPA 3-month 
mortality for patients with AIS.

Furthermore, it is clinically relevant that in our AIS cohort, the patients who died within 3 months of intra-
venous thrombolysis (i.e. 3-month mortality group) received lower dose of tPA than the survivors. Intuitively, 
older patients had lower body weights and received lower total dose of tPA. In addition, 51.5% of our AIS cohort 
who were patients aged > 80 years received low dose tPA (0.6 mg/kg). This ‘aging’ concept may explain in part 
the strong association between lower tPA dose and the post-tPA 3-month mortality; this is more likely so, con-
sidering cumulative evidence of the safety, efficacy and therapeutic non-inferiority of low dose tPA, compared to 
standard dose29–31. In our model, the predictive value for tPA dose suggests the applicability of our ANN model 
to optimize the tPA dose for individual patients.

In our ANN model 2, DM was considered an essential input to predict mortality after tPA. This derives from 
statistical inference from our clinicopathological analysis, and consistent with published evidence that patients 
comorbid with DM have less favorable clinical outcomes, including higher death rate and more long-term 
morbidity after tPA for AIS32. Similarly, consistent with our observation that survivors had an lower initial GCS 
score in contrast to non-survivors, we considered the initial GCS score as a predictor of mortality after tPA for 
patients with AIS, and included it as one of the attributes of our ANN predictive model for post-tPA 3-month 
mortality. This is congruous with the findings of previous studies indicating that an impaired consciousness level 
is an early and independent indicator of unfavorable therapeutic outcome and mortality in patients with AIS8,33.

As already alluded, there are a number of studies focused on the prediction of sICH4–7 and death7–9 after 
tPA in patients with AIS. It is noteworthy that the SPAN-100 index which touted to be a simple and fast scoring 
system achieved a post-tPA sICH detection rate of only 42% in SPAN-100pos patients, and data on the predictive 
power of this index are inconsistent6,9. Furthermore, the THRIVE score for predicting clinical outcome after 
thrombolysis which exhibited some superiority to other scoring systems, predicted the risk of hemorrhage and 
death with AUC of 0.64 and 0.72, respectively7,34. Similarly, the SITS score to predict the risk of sICH had an 
AUC of 0.705. It is thus clinically-relevant that while these studies predict the sICH and mortality after tPA with 
moderate predictive power, our ANN predictive model AUC for sICH was 0.941, and the ANN predictive model 
AUC for 3-month mortality was 0.976, respectively.

Consistent with contemporary knowledge, our study demonstrates that the training of ANN under super-
vised learning could emulate human expert diagnostic performance and identify relevant predictive markers 
for any diagnostic task12. We herein exploited some of the benefits of neural networks, such as the requirement 
of little (or no) formal statistical training, minor user input, the implicit capacity to detect complex nonlinear 
relationships between dependent and independent variables, and the ability to delineate all possible interactions 
between predictor variables35. The high predictive power of our models is consistent with known application 
of ANN to assist with the diagnosis of stroke and prediction of its outcome35–37. More specifically, the present 
study demonstrated that the application of ANN helped improve the accuracy of predicting sICH within 72 h of 
intravenous tPA and the risk of death after the intravenous administration of tPA. For patients with high risk of 
post-tPA sICH and poor outcome, ANN may facilitate the timely institution of indicated adjunctive therapies, 
such as intra-arterial thrombolysis and mechanical thrombectomy to improve the patients’ quality of life and 
functional outcome. Thus, we demonstrate that ANN has the potential to assist clinicians in patient stratification, 
and to establish individualized treatment plans for optimized AIS management.

As with other studies of this sort, our study has some limitations. First, the sample size is relatively small 
and the study is based on single-center data. A larger cohort of more patients from a multi-center setting with 
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variable characteristics may be needed for accurate representation of the disease population, and for derivation 
of robustly generalizable inferences. Secondly, the present study samples excluded patients who received intra-
arterial thrombectomy or endovascular intervention, thus might have inadvertently excluded a patient bloc with 
poorer response to treatment with intravenous tPA and thereby underestimate the severity and poor outcomes of 
AIS in this cohort. Thirdly, the retrospective design of the present study using past registry data makes it almost 
impractical to rule out investigator bias in control selection. Further studies with a prospective design are there-
fore warranted to develop AI-based diagnostic and/or prognostic tools that can be continuously updated with 
new information and evolve with the improvement of medical knowledge and healthcare management. This will 
help to establish more accurate prediction tools and clinical decision support systems.

Conclusion
Our study demonstrating that ANN techniques can predict sICH and 3-month mortality for patients with AIS 
who were treated with intravenous tPA, with high accuracy, does indicate that novel AI-based models can be 
used to derive new knowledge and improve current healthcare management. Results documented herein are 
potentially applicable in the emergent clinical setting of AIS and can aid decision-making for therapeutic plans.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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