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Forecasting the spread 
of COVID‑19 under different 
reopening strategies
Meng Liu1,2, Raphael Thomadsen1,2 & Song Yao1,2*

We combine COVID-19 case data with mobility data to estimate a modified susceptible-infected-
recovered (SIR) model in the United States. In contrast to a standard SIR model, we find that the 
incidence of COVID-19 spread is concave in the number of infectious individuals, as would be expected 
if people have inter-related social networks. This concave shape has a significant impact on forecasted 
COVID-19 cases. In particular, our model forecasts that the number of COVID-19 cases would only 
have an exponential growth for a brief period at the beginning of the contagion event or right after 
a reopening, but would quickly settle into a prolonged period of time with stable, slightly declining 
levels of disease spread. This pattern is consistent with observed levels of COVID-19 cases in the US, 
but inconsistent with standard SIR modeling. We forecast rates of new cases for COVID-19 under 
different social distancing norms and find that if social distancing is eliminated there will be a massive 
increase in the cases of COVID-19.

The COVID-19 pandemic has caused great disruption. Over 43 million people have confirmed diagnoses of 
the disease, and over 1 million people have died from it1. It has also had substantial impacts on daily lives and 
economic activities2,3. Many studies have focused on measuring who are affected the most by COVID-194,5, or 
which therapies are appropriate at each stage of the disease6–8. However, it is also crucial to understand how the 
spread of COVID-19 depends on preventive measures such as social distancing and how the reopening may 
affect the spread.

The most common model used to study the spread of COVID-19 is the susceptible-infected-recovered (SIR) 
model. In such models, there is a susceptible population, which is assumed to be equal to the population of 
whichever region is being examined minus the number of people that have previously had the disease. Some of 
the susceptible individuals get infected in each period, where the rate of infection is a function of the number 
of infectious individuals as well as other factors that shift the rate of transmission. Finally, infectious individuals 
move to a state of recovery. In our analysis, we call anyone who was sick but is no longer infectious to be “recov-
ered,” although some of these people may still actually be sick, hospitalized, or have died. Thus, the recovered 
terminology is actually a shorthand for all post-infectious states. This model, and its variants, have been used 
extensively to study the growth of COVID-19. For example, a recent study estimates a Susceptible-Exposed-
Infected-Confirmed-Removed (SEIQR) model, which appends the standard SIR model with a stage modeling 
susceptible people who become exposed to the virus and a stage modeling infected people which are confirmed 
to have the disease9. The paper then applies this model to estimate COVID-19 transmission in Wuhan, China, 
showing that an earlier lockdown makes the outbreak worse in Wuhan but helps the rest of the world. The SEIQR 
model is also used to show that travel restrictions may have reduced the spread of COVID-19 from Wuhan, 
China, to other Chinese cities10,11. As another variant to the SIR model, the SEIR model (adding an exposure 
stage to the SIR model) is also applied to compute the rate of transmission both from animals to people and 
from people to people12. While it may seem that having more stages in the model would make the SEIR model 
superior to the SIR model, it has been shown that the standard SIR model does a better job at predicting the 
spread of COVID-19, based on data from Wuhan, China13.

In this paper, we use a modified version of the SIR model to measure the extent to which social distancing 
reduces the speed at which COVID-19 spreads. We then run simulations to forecast the rates of COVID-19 
spread under different social distancing levels during the reopening. We find that COVID-19 spreads less than 
proportionately with the number of infectious individuals, a distinct difference from the assumption of stand-
ard models. We demonstrate that this pattern could be explained by the interconnectedness of people’s social 
networks. This pattern suggests that each additional infectious individual has less impact on the disease spread 
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as more people become infected. One key implication of this finding is that the rate of disease growth can be 
slow and steady, rather than either exponential or falling quickly, as would be implied by the most-commonly 
used models. This leads to more accurate predictions of the spread of COVID-19. We also observe that social 
distancing greatly reduces the spread of COVID-19.

Mathematically, we model transmission of COVID-19 as

where yi,t is the number of new infections in county i on date t, Ri,t is the rate at which infectious individuals 
transmit the disease, Si,t is the percentage of the county population that has not yet had COVID-19, and Yi,t is 
the cumulative number of individuals who have been infected by date t. Correspondingly, the Yi,t−2 − Yi,t−8 
term reflects our assumption that infected individuals are infectious from the second day after they catch the 
virus through the seventh day. This implies that the average serial interval is 4.5 days under the assumption that 
the level of infectiousness and the level of contact with susceptible individuals is constant during this time14. 
This treatment of the infectious population is an approximation of the standard SIR model, where the infectious 
population is typically modeled as a stock that has a constant outflow rate. Discretizing the rate of transmission 
enables the estimation of a large number of county and date fixed effects in our model, and as a practical mat-
ter this assumption has little impact on our estimates of the contagion rate. As a robustness check, we obtain 
extremely similar COVID-19 forecasts if we take the time of infectiousness to be 14 days, Yi,t−2 − Yi,t−16 , instead 
of 6 days, as presented in the appendix. The main difference between our model and the standard SIR model 
is the inclusion of the exponent ω on the number of infectious individuals. This ω allows the rate of growth of 
COVID-19 to be less than proportionate with the number of infectious individuals if ω < 1 . Such a result would 
be expected if infectious individuals expose many of the same unexposed individuals, which could occur if 
people have overlapping social connections. We see this directly when, for example, cases are clustered within 
households, nursing homes, or places of work. Thus, we can think of ω as measuring the extent to which people’s 
networks are more interconnected to a tight-knit group of individuals relative to their level of connectedness to 
the population as a whole.

We also allow the transmission rate Ri,t to vary with a number of factors instead of treating it as a constant 
parameter:

We use di,t , mi,t , and hi,t to represent the level of social distancing, temperature, and humidity in county i on 
date t, respectively, and εi,t is the statistical error term. The parameters α and β are vectors of county and date 
fixed effects, where the i-th element of α , αi , represents the fixed effect for county i. Similarly, the t-th element 
of β , βt , represents the fixed effect for date t. These fixed effects measure the baseline transmission rate of each 
county and each date, respectively. The parameters � , µ , and θ measure the impacts of social distancing, tem-
peratures, and humidity on transmission rates, respectively. In short, this specification allows transmission rates 
to differ across counties (through the county fixed effects), dates (through the date fixed effects), levels of social 
distancing, temperatures, and humidity. We note that the impacts of the last two factors have been debated in 
the literature15–17. The county fixed effects account for differences in demographics across counties, such as the 
demographics shown in Table 2 below as well as other unobservable county-specific factors. The date fixed effects 
account for both day-of-the-week differences in the patterns of travel for people (e.g., the time away from the 
house to go to work or to go to the park, which may lead to different exposures to the disease) as well as dif-
ferences in the rate of testing and reporting that occur across time. As a robustness check, we also include the 
state-level testing numbers directly into Eq. (2) during estimation. The results are statistically indistinguishable 
from the main results, as noted in “Results and simulation” below.

The social distancing measure, di,t , is based on cellphone GPS location data that are provided by SafeGraph 
for free to researchers studying COVID-19. We measure social distancing as the first principle component of 
several daily measures of each county: the percentage of residents staying home, the percentage of residents 
working at workplace full-time, the percentage of residents working at workplace part-time, the median duration 
of residents staying home, and the median distance of residents traveled.

As noted earlier, the most crucial difference between our model and a standard SIR model is that a standard 
SIR model constrains the exponent ω = 1 . We instead find that ω = 0.57 . Thus, the marginal impact of one more 
infected person diminishes as more people are infected. Such a result would be expected if infectious individuals 
expose many of the same unexposed individuals within a clustered network of individuals. In the appendix we 
demonstrate that a networking model with contagion can yield ω < 1.

Results and simulation
The estimated model appears in Table 1, with standard errors (s.e.) reported in the parentheses. The estimated 
exponent on the number of infectious people, ω , is 0.57. Thus, the number of new infections is concave with 
respect to the number of infectious individuals. This level of concavity also implies that while initial outbreaks 
of COVID-19 expand exponentially, the daily number of new cases quickly stabilizes to a long-term plateau. 
We also find that social distancing has a large impact on the growth rate of COVID-19, while humidity has a 
smaller effect and temperature is insignificant. (When including daily testing numbers of each state in Eq. (2), 
the estimates of ω and social distancing are 0.568 (s.e. = 0.014) and − 0.816 (s.e. = 0.246), respectively).

All county-level demographic factors remain constant over time in our analysis. While our main regression 
gives many insights, impacts of these demographic factors on the spread of the virus are captured by the county 
fixed effects. In order to better understand how these factors affect the contagion rate, we next regress the county 

(1)yi,t = Ri,tSi,t
(

Yi,t−2 − Yi,t−8

)ω

(2)Ri,t = exp
(

αi + βt + �di,t + µmi,t + θhi,t + εi,t
)

.
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fixed effects α on several demographic variables of each county. The coefficients from this regression should be 
thought of as the impacts of these demographics on the transmission rate. The results from this regression are 
reported in Table 2. We observe that the contagion in the disease is increased with greater population density 
and the percentage of commuters who use public transportation. We also observe that contagion rates are higher 
in areas with a higher fraction of Black and Hispanic residents. Furthermore, the rate of spread is higher for 
seniors than for younger people, but children and non-senior adults do not seem to have statistically significantly 
different rates of contagion.

We next measure the out-of-sample prediction accuracy of our model using a hold-out sample of 75 days 
(May 24–August 6) to see how well our model forecasts new cases. We use the observed county level of daily 
social distancing for our out-of-sample predictions. Nationally, this reflects an approximately 50–60% return-
to-normalcy, but this varies quite a bit across the country. We define the percentage return-to-normalcy as 

SocialDistancingPeaki−SocialDistancingi,t
SocialDistancingPeaki−SocialDistancingBeforeCOVIDi

 , where SocialDistancingPeaki is the social distancing level in county i at 
its peak (April 5–April 11, 2020), SocialDistancingBeforeCOVIDi is the observed lowest level of social distancing in 
February, and SocialDistancingi,t represents social distancing level on date t. For example, a 25% towards normalcy 
represents social distancing at the level of 0.25×(minimum social distancing) + 0.75×(maximum social distancing).

Figure 1 shows the US actual cumulative cases along with out-of-sample forecasts from a model with ω = 0.57 
and a standard model with ω = 1 . The black hashed line represents the actual cumulative cases in the US. The 
green solid line and the red dashed-line show the out-of-sample forecasts with ω = 0.57 and ω = 1 , respectively. 
We readily observe that the model with ω = 0.57 fits the data well while the model with ω = 1 does not. Three 
states that had their Shelter-in-Place orders expire or stuck down early are Florida, Georgia, and Wisconsin. To 
further evaluate our model’s accuracy in prediction, we repeat the same out-of-sample prediction comparisons 
for these three states in Figure 2. The figure again shows that the model with ω = 0.57 has a much better fit than 
the model with ω = 1.

Table 1.   Estimation of a modified SIR model. *** p < 0.01, ** p < 0.05, * p < 0.1.

Dependent variable Log(Infected in County i on Date t)

� : Impact of Social Dist. Level in
County i on Date t

− 0.824***
(0.245)

ω : Impact of Infectious Individuals in
County i on Date t

0.571***
(0.014)

µ : Impact of Avg. Temperature (Celsius) of
County i on Date t

− 0.001
(0.002)

θ : Impact of Avg. Humidity of
County i on Date t

0.005**
(0.002)

α : 2923 county fixed effects (Autauga County, AL is omitted as the baseline) Estimated

β : 101 date fixed effects Estimated

Observations 131,272

R_squared 0.63

Counties 2,924

Table 2.   Analysis of county fixed effects. *** p < 0.01, ** p < 0.05, * p < 0.1.

Dependent variable County fixed effect of each county

Log(Pop. Density of Each County)
(People/Sq. Miles)

0.4410***
(0.0096)

Fraction of Black Residents
in Each County

0.8084***
(0.0979)

Fraction of Hispanic Residents
in Each County

1.3438***
(0.1003)

Percentage of Commuters using Pub.
Transportation in each county

5.0215***
(0.4140)

Log(Median Income of Each County)
(in U.S. dollars)

1.3387***
(0.0579)

Percentage of Senior
Residents of Each County ( ≥ 70 years)

1.8825***
(0.5255)

Percentage of Children
Residents of Each County ( 18 years)

0.6614
(0.4733)

Constant − 16.6781***
(0.6462)

R_squared 0.69

Counties 2,923
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We next simulate daily and cumulative cases from August 7 to October 31, 2020 under different levels of social 
distancing. When forecasting future cases, we use previous 5-year county temperature data and the May 2020 
county average humidity. The top of Figure 3 shows three sets of forecast daily cases after August 6, correspond-
ing to 75%, current, and 25% levels of return-to-normalcy. We observe that social distancing at the current 60% 
return-to-normalcy first leads to a slightly increasing but then slowly decreasing number of cases, going from 
around 55,000 cases per day in early August to 25,000 cases per day in the end of October. If the US practiced 
social distancing at the level reflecting a 25% return-to-normalcy for even a few weeks, new cases would drop to a 
much lower level of around 9,000 per day. On the other hand, a return to a 75% level of the normalcy would cause 
cases to surge for about two months. The pattern of the surge is consistent with recent studies on the relaxation 
of non-pharmaceutical interventions such as shelter-in-place orders18. However, after two months cases would 
again reach a long-term plateau, although this would occur at a level that was almost double of what would be 
experienced under the early-August level of social distancing. The bottom of Figure 3 depicts the corresponding 
cumulative cases for the same time period under 100%, 75%, current, 25%, and 0% levels of return-to-normalcy. 
The figure shows a consistent pattern where the cumulative cases look almost linear after the initial take-offs. 
There would be substantially more cases if we returned to the pre-COVID level of social distancing.

Methods
In this subsection, we detail the assumptions we make and the estimation procedure. The model is laid out in 
Eqs. (1) and (2) above. For simplicity, we rewrite Eq. (2) as Ri,t = exp

(

X ′

i,t�+ εi,t
)

 , where Xi,t includes county 
dummy variables, date dummy variables, the measure of social distancing di,t , and daily average temperature mi,t 
and humidity hi,t . � is the vector containing the parameters α , β , � , µ , and θ , which measures the impact of each 
element in the vector Xi,t on the transmission rate Ri,t . We assume that the errors εi,t are uncorrelated across coun-
ties. We further assume that εi,t is uncorrelated across time, although we cluster the standard errors by county.

We estimate the model by taking logarithm of both sides. After rearranging we get:

Note that sometimes yi.t , the diagnosed case number, is 0 for some counties on some dates. Therefore, we adjust 
this formula slightly by adding 1 to yi,t so the logarithmic values are always well-defined:

In some counties, Yi,t−2 − Yi,t−8 is 0 for some periods. We do not use those observations for estimation. Note that 
because this is a lagged variable, this is a selection based on independent variables and not based on dependent 
variables, and hence it does not bias our estimation.

One concern that can arise in estimating this model is that social distancing levels (and regulations) are not 
determined in a vacuum: Rather, people social distance more in areas that are hit harder by COVID-19. Thus, 
εi,t may be correlated with social distancing, causing a biased measurement of the impact of social distancing 
on the rate of contagion. We thus use an instrumental variables (IV) technique to control for this endogeneity 
bias, where the amount of rain is our instrument for social distancing. Specifically, we assume that rain directly 
shifts the level of social distancing, but is not correlated with εi,t conditional on the temperature and humidity. 
Several other papers have used rain as an instrument for social distancing19–22. The first-stage F-statistic for the 
strength of rain as an instrument is 214.44, which is highly significant, indicating that rain is a strong instrument.

(3)
[

ln
(

yi,t
)

− ln
(

Si,t
)]

= X ′

i,t�+ ω ln
(

Yi,t−2 − Yi,t−8

)

+ εi,t

(4)
[

ln
(

yi,t + 1
)

− ln
(

Si,t
)]

= X ′

i,t�+ ω ln
(

Yi,t−2 − Yi,t−8

)

+ εi,t
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Figure 1.   Out-of-sample fit comparisons of the US between our model and standard SIR model. The vertical 
line on May 23, 2020 indicates the last date used to estimate each model.
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Figure 2.   Out-of-sample fit comparisons of Florida, Georgia, and Wisconsin between our model and 
the standard SIR model. The vertical line on May 23, 2020 indicates the last date used to estimate each model. 
The vertical lines to the left indicate the expiration date of Shelter-in-Place order in each state.
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Data
Our data come from a multitude of sources. We detail the data sources at https​://githu​b.com/songy​ao21/covid​
_data_depot​. There are a few nonstandard issues to note. Our data on COVID-19 cases consists of county-level, 
officially confirmed daily case data of 2,924 US counties from February 1 to August 6 (with the last 75 days used 
as a hold-out sample). COVID-19 also has an incubation period of approximately 5 days23,24. Because of this lag 
from infection to diagnosis, we assume that cases reported on a particular date actually measure the COVID-
19 infections from 5 days earlier. We also assume that the true number of cases is approximately 10 times the 
number of diagnosed cases. We get this number by assuming that the Infection Fatality Rate (IFR) is 0.75%25. 
We also assume that any deaths occur 14 days after the confirmed test results. On May 23, 2020, the last day of 
our estimation case data, there were 92,622 deaths in the US. On May 9, 2020, there were 1,304,726 officially 
diagnosed cases. We hence obtain the factor as (92,622/0.0075)/1,304,726 = 9.5. We round this number up to 10. 
This is consistent with Centers for Disease Control and Prevention (CDC) director Robert Redfield’s estimate 
of the ratio between actual and confirmed cases26. Our estimates are not sensitive to the specific factor we use. 
When we run the simulations, we divide our model’s predicted case numbers by 10, which gives us the predic-
tion of diagnosed cases.

Conclusion
We use a modified SIR model to study the impacts of different factors on the spread of COVID-19. We find 
that the impact of each additional infectious individual decreases as more people become infected. A potential 
mechanism underpinning this finding is that infections are more likely to occur within interconnected networks. 
Understanding the shape of this relationship, and the nonlinear aspects of it, are important for understanding 
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Figure 3.   Daily and cumulative cases forecasting under different reopening strategies. The vertical line indicates 
the last date of case data sample.
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how COVID-19 spreads. Unlike previously-estimated SIR models, our model allows for the possibility that the 
contagion process will grow or shrink at relatively steady levels, whereas traditional SIR models have contagion 
either taking off exponentially (if R > 1 ) or falling quickly (if R < 1).

We further find that social distancing helps to curb the speed of the spread. Consequently, we need to be 
cautious of breakouts in networks and maintain a reasonably high level of social distancing during the reopening 
of the economy. Taking the network effects and social distancing effects together gives more accurate forecasts 
about the timeline of the disease spread, and the ability to analyze and set policies about when to instate shelter-
in-place restrictions or when to allow businesses to be open.
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