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A non‑field analytical 
method for solving problems 
in aero‑acoustics
Vladimir Kulish*, Jiří Nožička & Jakub Suchý

In 2000, a non‑field analytical method for solving various problems of energy and information 
transport has been developed by Kulish and Lage. Based on the Laplace transform technique, this 
elegant method yields closed‑form solutions written in the form of integral equations, which relate 
local values of an intensive properties such as, for instance, velocity, mass concentration, temperature 
with the corresponding derivative, that is, shear stress, mass flux, temperature gradient. Over 
the past 20 years, applied to solving numerous problems of energy and information transport, the 
method—now known as the method of Kulish—proved to be very efficient. In this paper—for the first 
time—the method is applied to problems in aeroacoustic. As a result, an integral relation between the 
local values of the acoustic pressure and the corresponding velocity perturbation has been derived. 
The said relation is valid for axisymmetric cases of planar, cylindrical and spherical geometries.

List of symbols
An, Bn  Fourier coefficients
an, bn  Fourier coefficients
c (m/s)  Speed of sound
Ιγ, Κγ  Modified Bessel functions of order γ
p (Pa)  Pressure
p0 (Pa)  Reference pressure
p̂ (Pa)  Acoustic pressure
R (m)  Radius of the surface
r (m)  Spatial variable
S (Pa/s2)  Sound source function
s (1/s)  Laplace transform variable
T (s)  Time horizon
t (s)  Time
u (m/s)  Velocity perturbation
x (m)  Spatial variable
z  Auxiliary variable

Greek
α, β  Arbitrary constants
γ  Geometric factor
ζ (s)  Dummy integration variable
Π (Pa)  Laplace transform of the excess acoustic pressure
ρ (kg/m3)  Density
σ (s)  Variance of the velocity pulse
τ (s)  Mean of the velocity pulse
Φ (Pa)  Auxiliary variable
ω (1/s)  Harmonic frequency
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Special symbol
∇  Laplacian

Nowadays the analytical theory of energy transport processes is developing rapidly. A result, presented by means 
of a simple formula, is always more preferable than a solution obtained numerically, especially in the case, 
when the found analytical solution is part of a “larger system”. Moreover, namely analytical methods are one of 
the main sources for the improvement and development of numerical methods, as well as for drawing general 
theoretical conclusions.

In 2000, a non-field analytical method for solving various problems of energy and information transport 
has been developed by Kulish and  Lage1. Based on the Laplace transform technique, this elegant method yields 
closed-form solutions written in the form of integral equations, which relate local values of an intensive proper-
ties such as, for instance, velocity, mass concentration, temperature with the corresponding derivative, that is, 
shear stress, mass flux, temperature gradient.

It is worth noting that solutions, obtained by the said method, are valid everywhere within the domain of 
interest and, which is of extreme importance, remain valid on the domain boundaries.

Over the past 20 years, applied to solving numerous problems of energy and information transport, the 
method—now known as the method of Kulish—proved to be very efficient. In particular, the method was 
employed to solving various problems of transient  diffusion2 and was then generalised by Frankel for tackling 
problems within finite  domains3. The method has been extended even further to render analytical solutions to 
problems in micro- and nano-scale heat transfer based on the dual-phase-lag model proposed by  Tzou4 as well 
as problems in ultra-fast heat transfer described by the hyperbolic heat conduction equation with no heat source/
sink5,6 and moving  boundaries7. Then solutions with the heat source/sink have been presented  in8,9. Finally, the 
same very method has been presented in its most generalised form  in10.

In this paper—for the first time—the method is applied to problems in aeroacoustic. As a result, an integral 
relation between the local values of the acoustic pressure and the corresponding velocity perturbation has been 
derived. The relation is valid for axisymmetric cases of planar, cylindrical, and spherical geometries.

The following section of the paper provides the problem formulation, which is in line with classical acoustic 
 analogies11–21. The detailed solution procedure for the case of a zero sound source acoustic function is presented 
in “Solution procedure: the case of no source”. The sound source function in the form of the Fourier series is 
then incorporated in “Incorporation of the sound source function”. Such a choice of the source function is justi-
fied by the fact that the Fourier series is the most convenient way of presenting periodic functions, which most 
often arise as a result of vibrations. Note also that many other functions, including some functions, which are 
not continuous, can be expressed in the form of the Fourier series. The results of the model validation are shown 
in “Model validation”, in which the choice of examples has been dictated, first, by examples considered within 
known acoustic analogies,and, second, by the need to consider the most representative physical situations, such 
as, for instance, periodic boundary conditions or pulses (here modelled as the Gaussian functions).

Problem formulation
In order to determine the sound pressure level, defined as

where p̂ is the acoustic pressure and the reference sound pressure is usually pref = 20 μPa, one needs to know 
the pressure field p.

In general, the pressure field is modelled by the wave equation

where c is the speed of sound and S denotes the sound source  function11–21.
Depending on how the sound source function is modelled, different aero-acoustic models—known as acoustic 

analogies—exist. Among them are the  Lighthill11,12,  Powel13, Ffowcs Williams-Hawkings14 analogies, and some 
 others15–21.

Solution procedure: the case of no source
The elementary case of the homogeneous wave equation, considered in this section, will be used as a building 
block to obtain more complex solutions with the source function.

Three (and only three) geometries of the boundary allow a reduction from three to one in the number of spa-
tial coordinates needed to describe energy transport through the medium. Three different values of a geometric 
factor γ are used to characterise these simplifying geometries, namely: the infinite plane, γ = 1/2; the infinitely 
long cylinder, γ = 0; and the sphere, γ = − 1/2  (see9 for details).

These geometries simplify the Laplacian operator so that Eq. (2), in which S(x, t) ≡ 0, acquires a simpler form

The medium is initially at equilibrium with the transient response that ensues on perturbing the system. It is 
convenient to define t = 0 as the last instant at which equilibrium exists. Thus, the initial condition is defined as

(1)SPL = 20log10
p̂RMS

pref
dB

(2)∂2p

∂t2
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where r is the spatial coordinate directed normal to the boundary and having its origin at the boundary surface. 
In the cases of cylindrical and spherical geometries, the R in Eq. (3) represents the radius of the surface,R is 
without significance in the planar case.

A final restriction is that only times t are considered, which are short enough that the perturbation, which 
started at t = 0 at the planar, cylindrical, or spherical boundary has not yet reached any other boundary of the 
medium. Alternatively, t can be considered to be unrestricted provided that all other boundaries are located 
infinitely far from the boundary of interest. In that event, the value of the acoustic pressure p at a point infinitely 
remote from r = 0 will remain unaltered after any finite time, so that

Consideration will be restricted to perturbations, which are imposed on the medium through one of its 
boundaries. The condition on the boundary, r = 0, is deliberately not imposed. This will become clear from the 
following solution procedure. It suffices to mention here that the boundary condition may be of the Dirichlet, 
Neumann, Cauchy, or any other  type22.

Upon introducing the excess acoustic pressure p̂(r, t) = p(r, t)− p0, Eq. (3) becomes

with the initial and boundary conditions

It is worth noting that the method, presented here, is based on the Laplace transform technique (see the fol-
lowing solution procedure). When applied to partial differential equations, this technique leads to the appear-
ance of extra terms in the transforms of the time derivatives, unless the relevant initial conditions are zero. In 
the present case, introducing the excess pressure p̂(r) does not change the differential equations involved, but 
eliminates the necessity to carry on extra terms in the Laplace space. Once the solution has been obtained, the 
original variables are restored and the reference pressure p0 is added to the final result. Note also that, as regards 
the physics of the problem in question, a constant reference pressure, added to or subtracted from the entire 
pressure field does not involve any change whatsoever.

Taking the Laplace transform of Eqs. (6) and (7) results into

where Π (r; s) is the Laplace transform of p̂(r, t) and s denotes the Laplace transform variable.
The new variables �(z) ≡ p̂/zγ and z = (r + R)s/c transform Eqs. (8) and (9) into the modified Bessel 

equation

with the boundary condition

The general solution of Eq. (10) is

where α and β are arbitrary constants, while Iγ (z) and Kγ (z) denote modified Bessel functions of order γ. Such 
functions have the asymptotic  expansions23

and

valid for large z. Therefore, in order that (11) be satisfied, α must be zero.
Hence, the solution for Π(z) becomes

(4)p(r)
∣∣
t=0

= p0

(5)p(r)
∣∣
x=∞ = p0
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c2
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(13)Iγ (z) ≈
exp(z)
√
2πz

[
1−

(4γ 2 − 1)

8z
+

(4γ 2 − 1)(4γ 2 − 9)

128z2
− . . .

]

(14)Kγ (z) ≈
√

π

2z
exp(−z)

[
1+

(4γ 2 − 1)

8z
+

(4γ 2 − 1)(4γ 2 − 9)

128z2
+ . . .

]

(15)�(z) = βzγKγ (z)



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19688  | https://doi.org/10.1038/s41598-020-76687-x

www.nature.com/scientificreports/

Differentiation of Eq. (15)  yields23

The Bessel function ratio may be written as

which terminates for γ = ±1/2 but has an infinite number of terms for γ = 0. Provided z > 1, the error introduced 
by the truncation of (17) to

is less than 5% for γ = 023. Equation (18), of course, is exact for γ = ±1/2.

Combining Eqs. (16) and (18) and restoring the original variables leads to

Taking the inverse Laplace transform of Eq. (19) yields

Integration of Eq. (20) with respect to time gives

Finally, recalling that − ∂p
∂r = ρ ∂u

∂t
24,

where ρ is the density of the medium, through which sound waves propagate, and u is the velocity perturbation.
Equation (22) provides a relation between the local values of the acoustic pressure, p (r, t) and the correspond-

ing velocity perturbation, u(r, t). It is valid everywhere within the domain including the boundary (surface), r = 0.
In case of the planar geometry, γ = 1/2, Eq. (22) reduces to a simple algebraic equation, namely:

Incorporation of the sound source function
In the most general case, the sound source function in Eq. (2) can be given in the form of Fourier series as

where ωn = 2πn/T , whereas T is a certain time horizon, such as T ≫ R/c.
The Fourier coefficients are

and

respectively.
Now, because Eq. (22) holds for any r, it is possible to assume that, instead of having the velocity perturbation 

u(r, t) together with the sound source S(r, t), there exist a certain effective velocity perturbation

with
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and

respectively, where S∗(t) =
∫∞
0
S(r, t)dr represents the integrated effect from the sound source.

Substituting Eq. (26) into (22), the latter becomes

Model validation
To validate the model, Eq. (22) has been numerically solved for various sets of parameters. The physical proper-
ties of the domain were set as follows: c = 330 m/s and ρ = 1.2 kg/m3. The reference pressure was set at p0 = 105 Pa. 
Such a choice was made in order to be consistent with the results obtained  in24.

Note that only the case of no sound sources was considered. This was done, in order to see the effects of the 
domain geometry and boundary velocity perturbations clearer. Also, due to the linearity of Eq. (2), the effect 
from the source can be superimposed on the solutions presented in this section.

Figure 1 shows a comparison between the solution given by Eq. (22) and exact solution for the spherical 
sound wave with no surface (R = 0) obtained  in24. The velocity perturbation is given by

for which the exact solution for the acoustic pressure follows as

where ω = 0.8 Hz and A = 1 were chosen, to match the result  of24.
As can be seen from Fig. 1, a very good agreement between the two results is achieved.

(27a)a∗n =
2

T

∫ T

0

S∗(ζ )cos(ωnζ )dζ

(27b)b∗n =
2

T
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0

S∗(ζ )sin(ωnζ )dζ

(28)
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∫ t
0
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(
1+ 1/2−γ

r+R ct
)
+
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∑∞
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(29)u(r, t) =
1

ρc

A

rcosθ
cos(ωt − kr − θ), k = ω/c, θ = arccos

(
kr

√
1+ k2r2

)

(30)p = p0 +
A

r
cos(ωt − kr)

Figure 1.  Comparison between the solution given by Eq. (22) and exact solution for the spherical sound wave 
with no surface (R = 0) obtained  in24 (normalised by pmax = 105 Pa).
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Figure 2 shows a comparison between the solution given by Eq. (22) and exact solution for the spherical sound 
wave with no surface (R = 0) obtained  in24 in the case of different distances from the origin (r = 0) at a fixed time 
moment, t = 10 s. Again, a practically ideal agreement between the two results is observed.

Figure 3 illustrates the transient behaviour of the acoustic pressure on the surface (r = 0, R = 1 m) in the case 
of a periodic velocity perturbation, u0 = umaxsin(ωt), with umax = 1 m/s and ω = 0.8 Hz, for the three different 
geometries.

As can be seen from Fig. 3, the planar geometry has a much more pronounced effect on the acoustic pressure 
than the curved geometries.

Finally, Fig. 4 depicts the transient behaviour of the acoustic pressure on the surface (r = 0, R = 1 m) in the 
case of the velocity perturbation in the form of a single pulse modelled by the Gaussian, u0 = umaxe

−( t−τ
σ )

2

. with 
umax = 1 m/s, τ = 0.1 s, and σ = 0.05 s, for the three different geometries.

As can be seen from Fig. 4, the planar geometry, in the same way as in the case of periodic velocity pertur-
bations, has a much more pronounced effect on the acoustic pressure than the curved geometries. A possible 
reason for this can be that curved surfaces have larger surface areas in comparison with the planar surface of 
the same linear scale. Hence, lesser values of the acoustic pressure can be achieved on surfaces, which are more 
“curved”. Note that the lowest pressure value is always achieved in the case of spherical geometry, which is the 
most “curved”.

Conclusions
It was shown that a non-field analytical method, which was previously used extensively to tackle problems in 
heat and mass transfer, fluid mechanics, and other areas, renders an excellent agreement with known results 
obtained by other, more laborious approaches. At the same time, the method provides a unified view on how 
the domain geometry and boundary conditions influence the transient behaviour of the acoustic pressure field.

Obviously, more studies are necessary, especially, if the method is to be employed to tackle the problems 
modelled by acoustic  analogies11–21, when the sound source term plays a major role in defining the transient 
behaviour of the acoustic pressure field. In “Incorporation of the sound source function” of this paper, it was 
demonstrated that a unified approach of using the method for the acoustic analogies exists, provided the sound 
source functions are given in the form of the corresponding Fourier series.

The next study will be fully devoted to developing the method for tackling problems modelled by the acoustic 
analogies, in which the sound source functions will be represented through their corresponding Fourier series 
or generalised Fourier series.

Figure 2.  Comparison between the solution given by Eq. (22) and exact solution for the spherical sound wave 
with no surface (R = 0) obtained  in24 in the case of different distances from the origin (r = 0) at a fixed time 
moment (normalised by pmax = 105 Pa).
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Figure 3.  γ = 0, ± 0.5 (top); γ = 0, − 0.5 (bottom). Transient behaviour of the acoustic pressure on the surface 
(r = 0, R = 1 m) in the case of a periodic velocity perturbation, u0 = umaxsin(ωt), with umax = 1 m/s and ω = 0.8 Hz, 
for the three different geometries (normalised by pmax = 105 Pa).
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