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A combination of fuzzy Delphi 
method and hybrid ANN‑based 
systems to forecast ground 
vibration resulting from blasting
Jiandong Huang1, Mohammadreza Koopialipoor2* & Danial Jahed Armaghani3*

This study presents a new input parameter selection and modeling procedure in order to control and 
predict peak particle velocity (PPV) values induced by mine blasting. The first part of this study was 
performed through the use of fuzzy Delphi method (FDM) to identify the key input variables with 
the deepest influence on PPV based on the experts’ opinions. Then, in the second part, the most 
effective parameters on PPV were selected to be applied in hybrid artificial neural network (ANN)‑
based models i.e., genetic algorithm (GA)‑ANN, particle swarm optimization (PSO)‑ANN, imperialism 
competitive algorithm (ICA)‑ANN, artificial bee colony (ABC)‑ANN and firefly algorithm (FA)‑ANN 
for the prediction of PPV. Many hybrid ANN‑based models were constructed according to the most 
influential parameters of GA, PSO, ICA, ABC and FA optimization techniques and 5 hybrid ANN‑based 
models were proposed to predict PPVs induced by blasting. Through simple ranking technique, the 
best hybrid model was selected. The obtained results revealed that the FA‑ANN model is able to offer 
higher accuracy level for PPV prediction compared to other implemented hybrid models. Coefficient of 
determination  (R2) results of (0.8831, 0.8995, 0.9043, 0.9095 and 0.9133) and (0.8657, 0.8749, 0.8850, 
0.9094 and 0.9097) were obtained for train and test stages of GA‑ANN, PSO‑ANN, ICA‑ANN, ABC‑
ANN and FA‑ANN, respectively. The results showed that all hybrid models can be used to solve PPV 
problem, however, when the highest prediction performance is needed, the hybrid FA‑ANN model 
would be the best choice.

Nowadays, blasting is recognized as the most cost-effective technique that cane efficiently applied to fragmen-
tation of rock mass in tunneling, surface mine, and construction  operations1. Blasting is mainly conducted to 
achieve a proper fragmentation of rock mass in order to make easier the loading and transportation operations. 
On the other hand, blasting also brings about some unwanted environmental results such as ground vibration, 
flyrock, and air-overpressure2–5. This is why there is a pressing need for designing models that can effectively and 
accurately evaluate and predict such detrimental effects, which can finally result in enhancing the safety level of 
blasting projects. Among the mentioned environmental issues, blast-induced ground vibration (BIGV) is one 
of the most undesirable effects and it can make vibration of the structures; cause instability of mine’s slopes; 
and puzzling for neighboring  communities6,7. Several reports have been released indicating the concerns of 
people living in the vicinity of open-pit mines regarding their safety and health issues. As result, this is of a high 
importance and interest to provide a precise prediction technique of BIGV for controlling and minimizing this 
parameter before blasting  operations8.

BIGV refers to wavy motions starting in the blasting site and travelling away to adjacent  areas7. In each BIGV, 
a certain quantity of energy is spent, which is assumed to be used in fracturing the rock. This phenomenon sig-
nificantly affects the ecology, groundwater, and constructions that exist in the  neighborhood9. After explosion 
within blast hole, high-temperature gas and a high-pressure will be created, which are chemical reactions of the 
explosive materials. Such pressure is able to crush the rock nearby the blast hole. The pressure induced by the 
explosion will rapidly decay or dissipate. A wavy motion is shaped within the ground by the strain waves, which 
reaches the neighboring  rocks10. The gases with high temperature and high pressure spread out the radial cracks, 
fractures, discontinuities, or  joints11. The strain waves spread just like the elastic ones at the time the strength of 
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the stress wave reduces to an extent in which there is not risk of any enduring deformation to take place within 
rock mass (Fig. 1). Such waves are normally known as the ground vibration that is propagate starting from the 
blast hole towards all directions  around11.

In BIGV, there are lots of parameters that have significant effects on this process, e.g., the geological settings, 
the design of blasting, and the distance between monitoring point and free face (blasting face)12. The parameters 
of blasting design need to be optimized in a way to minimize the ground vibrations, and this should be done 
according to rock mass properties such as strength, density, discontinuity conditions, and velocity of the waves 
produced. The values of BIGV are measurable regarding both frequency and the peak particle velocity (PPV). 
The PPV is a vibration index significantly indicating the control of the physical  damages13. Because of the ground 
vibrations that normally take place at the time of surface blasting, PPV can be considered as a great index for 
prediction of such vibrations. Two different parameters have significant impact on PPV, i.e., the distance from 
the free face and the maximum charge per  delay14.

The PPV phenomenon was first studied experimentally by various  researchers9,13,15. However, these experi-
mental equations have two major weaknesses: (1) they receive a low rate of accuracy and (2) they are site 
 specific16. One of the main reasons for these weaknesses is that they used a limited number of influential factors 
on the  PPV17. Numerous studies confirmed that the empirical equations may lose their efficiency when used in 
the other  sites18. In addition to the empirical equations, statistical techniques were also used by the designers. 
As a result, they also have weakness in PPV evaluation due to their low flexibility against new used  parameters19.

To overcome the weaknesses of previous models, it is necessary to use a new system that can solve prob-
lems with different conditions. Artificial intelligence (AI)-based models which consider as new approaches, are 
able to solve non-linear problems. Due to the widespread use of the AI models in the field of mining and civil 
 engineering20–49, various AI models were used for more accurate prediction and evaluation of PPV induced by 
blasting in this research. Many researchers have studied engineering topics using basic AI models such as artificial 
neural network (ANN), fuzzy system and neuro-fuzzy50,51. Others have offered various extensions to implement 
optimization algorithms and combine them with predictive  models52,53.

ANNs networks can be effectively applied to problems related to prediction issues, and at the same time, 
they suffer from a number of limitations like falling into local minima and having a low speed of  learning54. 
 Literature55–57 pointed out that such drawbacks can be overcome through the use of some effective optimiza-
tion algorithms (OAs) such as imperialism competitive algorithm (ICA), genetic algorithm (GA), artificial bee 
colony (ABC), firefly algorithm (FA), and particle swarm optimization (PSO). High competence of global search 
in the above-mentioned OA algorithms helps to determine the biases and weights of the ANN system in a way 
to enhance its efficiency and accuracy level of predictive models.

Aiming at the prediction of PPV, the present study tries to develop five hybrid ANN-based models, i.e., ICA-
ANN, GA-ANN, ABC-ANN, FA-ANN and PSO-ANN. The models were suggested based on the key parameters 
that affected PPV according to experience of several experts in field of blasting. Fuzzy Delphi Method (FDM) 
was applied to the identification of the key variables that have influence on the results obtained from PPV. In 
definition, FDM refers to an approach on that basis of the experts’ opinions; this have been shown as a reliable 

Figure 1.  Ground vibration induced by blasting.
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instrument to obtain valuable knowledge in regard to the significance of the variables. In fact, in this research, 
the model inputs have been selected by FDM and then used in modeling of PPV prediction. In the rest of the 
study, the predictive models considered here are introduced; the established database are elaborated; next, the 
modelling processes of the adopted techniques will be fully described; and finally, the model with the highest 
competency in predicting PPV will be chosen and introduced.

Principles of the predictive models
Artificial neural network (ANN). In general, artificial neural networks (ANNs) make available a bio-
inspired computational model capable of mimicking the mechanisms of human being’s brain in logical reason-
ing. According to the problem, the components (i.e., connection pattern, learning rule and activation function) 
are determined in a way to train the system through the adjustment of its  weights58. Multilayer perceptron 
(MLP), which is a commonly-used feedforward neural network (FFNN), comprises an input layer of source 
nodes, an output layer, as well as a minimum number of 1 as hidden layer. In a FFNN, first, the hidden neurons 
(nodes) process the flowing signals to specify the underlying features of input patterns. After that, the specified 
features are transferred to the output nodes for the purpose of extracting the output  pattern59.

In recent decades, a variety of learning techniques have been introduced to literature for the improvement 
of the learning capacity of the MLP networks. Backpropagation (BP), among all, has shown the highest level 
of attractiveness to the researchers of the field an efficient gradient descent-based  method60–62. In the course of 
each epoch in BP, one output is generated by exchanging the input signals amongst the computational nodes of 
succeeding layers. Equation (1) is used to calculate the net weighted input netj fed to each node:

where n stands for the number of inputs, wi and xi signify weight and input signal for the ith node, respectively, 
and θ represents the threshold applied to the nodes. An activation function (e.g., step, sigmoid, or linear func-
tions) is used to pass this net input. In a technical view, such procedure is termed training procedure. Then, to 
compute the output error, a comparison is made between the predicted output and the actual  one63. At the final 
step (i.e., the backward pass step), through the network, the resulting error is flown back aiming at fine-tuning 
the individual weights.

Particle swarm optimization (PSO). Particle swarm optimization (PSO) was pioneered by Kennedy 
and  Eberhart64 for optimization purposes. PSO, which is consisted of particles, iteratively searches for optimal 
value/goal. In the searching phase, the particles are responsible for adjusting their own positions in accordance 
with their own experiences and those of the other particles in the system. For the purpose of achieving the best 
position, each particle must follow the personal best position (PBEST) and global best position (GBEST). In 
the course of training process, each particle tends to move towards its own PBEST and GBEST, which is on the 
basis of a new velocity term and distance of its best positions in the learning phase. As a result, each particle’s 
new position is dependent upon the new velocity value in following iteration. Figure 2 depicts a PSO flowchart 
and how it works. More detailed explanations concerning PSO and its modeling procedure are available in 
 literature56,65.

(1)netj =
n

∑

i=1

xiw
−θ
i

Figure 2.  A flowchart of PSO algorithm.
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Imperialist competitive algorithm (ICA). Atashpaz-Gargari and  Lucas66 developed the ICA technique 
in order to solve the optimization problems. ICA, which is known as a population-based algorithm for global 
search, begins its operation with a random initial population or candidate solution. In the scenarios performed 
by ICA, the countries of the highest power take the role of imperialist, whereas the rest of the countries are 
referred to as colony owned by imperialists. ICA is essentially designed on the basis of the real socio-politic 
competitions that normally take place amongst imperialists in the real world in order to take the possession of 
colonies. Each ICA involves three operators: assimilation, revolution, and competition. Assimilation leads the 
colonies towards becoming imperialist. The reason of such movement is the colonies’ eagerness for obtaining 
more power, higher cultural level, and stronger economy; an imperialist owns all of them. Revolution refers to 
the impulsive changes that may take place in the position of countries. During the assimilation and revolution 
operators, colonies get a chance to achieve position higher than their respective imperialist; in this condition, 
they may be able to take the empire’s control. On the other hand, the competition operator gives the opportunity 
to the imperialists to make every effort to possess more and more colonies. During this process, all empires use 
force to take the other empires’ colonies. All imperialists are potentially capable of possessing at least a single 
colony already possessed by the weakest empire; it completely depends on their power. This process is reiterated 
until only one empire remains in power and others empires are totally collapsed and shifted into colonies pos-
sessed by that most powerful one. Figure 3 illustrates flowchart of ICA process from start to end. For more infor-
mation regarding ICA and its optimization process, other available studies can be considered and  reviewed66.

Genetic algorithm (GA). One of the most common algorithms that optimizes problems based on natural 
selection is the GA. This algorithm, originally introduced by  Holland67, and it was modified several time by the 
other  researchers68. The optimization of different problem conditions, such as static or dynamic, discrete and 
continuous problems, and a combination of them can be solved by the GA algorithm. Convergence and impact 
on the final results of various problems, due to the dependence on various variables such as coefficients and 
population, makes this algorithm highly sensitive. These conditions make it possible to use this algorithm with 
high  precision69. The chromosomes used in the GA algorithm, with the same length, produce a new genera-
tion. In Fig. 4, a chromosome is shown, which is initially introduced as a measurable property and is selected 
randomly. Choosing the best generation is actually the end of a process that is identified by genetic operators. 
Here, Crossover and mutation operations are performed so that the final selection, which is actually the final and 
optimal answer, can be  reached56.

Artificial bee colony (ABC). The ABC algorithm was developed by  Karaboga70. His optimization algo-
rithm was designed getting inspired by the bees’ social life. In this algorithm, each bee stands for a simple com-

Figure 3.  The flowchart of ICA algorithm structure.
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ponent. In case the bees create together a colony, then some complicated and coherent behaviors will appear, 
which are capable of forming an integrated system through which nectar of flowers can be discovered and 
exploited. Each colony comprises three colonies of bees, which perform a certain duty. The first group includes 
scouts whose responsibility is to explore new sources. The scouts do their searching task in a random way in the 
outlying environment. When they discover a source of food, they will store it in their memory. When each bee 
returns to the hive, it shares the information about the source of food with the other bees performing a waggle 
dance; then, it hires some other bees for the exploitation of the discovered sources. The second group of bees is 
consisted of the employed ones whose task is the exploitation of the predetermined sources of food. The third 
group comprises the onlookers which normally remain in the hive waiting for the other bees; then, following the 
exchange of information with other bees through the process of the waggle dance, they will select one resource 
considering the fitness of the answers for exploitation.

In general, ABC comprises four  steps71: Stage 1: Initially, half of the bees population includes the employed 
bees and the remaining part includes the non-employed ones. Each source of food is allocated with an employed 
bee. In other words, in the scope of the answer, the number of sources of food shapes this algorithm’s initial 
solution. Then, each solution’s value needs to be computed by means of the relationship of the certain problem 
in hand.

Stage 2: A new answer is applied to each of the solutions considering the bellow relationship:

where xi.j stands for the parameter j from answer i, the vi,j represents the parameter j of the new answer, i denotes 
the number of one to the number of solution problems, φ signifies a random number within the interval [− 1,1], 
k shows a random number from one to the number of problem answers, BN represents the number of initial 
answers to the given problem, and P denotes the number of optimization parameters.

Stage 3: This step involves the calculation of the receiving bees probability from each of the sites using the 
equation bellow:

(2)

vi,j = xi.j + ϕi.j
(

xi.j − xk.j
)

i ∈ {1, 2, . . .BN}
j ∈ {1, 2, . . . P}
k ∈ {1, 2, . . .BN}&k �= i

ϕ ∈ [−1.1]

(3)pi =
fiti

∑SN
n=1 fitn

Figure 4.  GA algorithm.
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where fiti shows the source of the fitness of source i, and pi signifies the probability of the selection of source 
i by the onlooker bees. Several bees are allocated based on each item’s fitness. At this time, all of the available 
bees might be allocated to one food site depending on the fitness. When the value of each source is computed by 
means of Eq. (2); then, a new answer is produced for the answers chosen. If it gets a value higher than the former 
answer, the former answer will be replaced by the new one; otherwise, it will be fined.

Stage 4: If the counter of non-improved answer reaches the predefined limit (Cmax), the answer is replaced 
by a random answer. In this step, the termination conditions are also checked. If these conditions are met, the 
operation of the algorithm terminates; otherwise, it returns to the second step. The flowchart of ABC algorithm 
is presented in Fig. 5.

Firefly algorithm (FA). The FA imitates the fireflies’ behaviors in their social settings. These insects con-
spicuously utilize their nature-gifted bioluminescence in order to release light in different flashing patterns. The 
fireflies’ flashing characteristics were found idealized by several  researchers72 in order to develop a mathematical 
form of their behaviors. To be understood more easily, only three recognized rules of FA are presented as follows:

(1) The sex of all fireflies is the same; therefore, a firefly may be attracted to other fireflies irrespective of their 
sex.

(2) The brightness of a firefly is its key property to be attractive. In other words, when brightness of two fireflies 
is not at the same level, the brighter firefly attracts the insect of less brightness.

(3) A firefly’s brightness is related to the analytical shape of the cost function. A direct relationship is needed 
to be set between brightness and the cost function value so that the problem can be maximized. To be brief, Fig. 6 
presents the pseudo code of the most important stages of the FA and the three rules corresponding to these steps.

The FA involves two significant issues: the light intensity variation and formulation of attractiveness. To make 
it simpler, the fireflies’ brightness is assumed to be applicable to the determination of their attractiveness level, 
which is in turn connected to the encoded objective function. On the other hand, attractiveness of the fireflies 
and light intensity are in an indirect relationship; attractiveness reduces with an increase of the distance from 
the source.

Figure 5.  The flowchart of ABC algorithm.
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The following Gaussian  form72 is applied to determine the influence of the inverse square law and absorption 
in most applications.

where the light absorption coefficient, γ , can be assumed as a constant value. A firefly’s attractiveness, β , can be 
measured using the following equation since the attractiveness of a firefly is directly related to the light intensity 
that is observable by the neighboring  fireflies72.

where, β0 shows the attractiveness at r = 0. A characteristic distance Ŵ = 1√
γ

 is defined by Eq. 5 where the attrac-
tiveness is varied considerably between β0 and β0e−γr2.

The Cartesian distance rij =
∥

∥Xi − Xj

∥

∥ here defines the distance between any two fireflies i and j at Xi and 
Xj, respectively.

The first equation here is connected to attraction, while the second equation is actually a randomization 
equation with α. εi signifies a vector of the random numbers that are attained from a Gaussian distribution. The 
value of the step size is randomly achieved as follows:

where, Ŵ
(

q
)

 signifies a Gamma function and q denotes the distribution exponent. Based on the implementation 
viewpoint, the last phrase should be replaced by the phrase of αL(s) to produce the solution by means of Eq. (6). 
In case of most of the problems, a fixed value of α = 0.01 is applicable, whereas for all of the simulations, the 
phrase of q = 1.5 can be employed. An advantage of the FA in doing their activities are not dependent on each 
other, hence being of a high applicability to parallel implementations. Fireflies normally make a closer aggregation 
around each optimum; as a result, this algorithm can have a better performance in comparison with PSO and GA.

Hybrid ANN‑based models. Numerous scholars working in the context of engineering  science57,73,74 have 
attempted to improve the competencies of the ANN models by means of OAs, e.g., PSO, GA, ICA, ABC, and FA. 
BP is normally weak in exploring the global minimum accurately; therefore, it is possible for ANN to attain an 
undesirable  result75. Although ANN has a higher probability of being caught in local minima, the optimization 
algorithms are capable of solving this problem through setting the ANN’s weights and biases. In this condition, 
the search space may be faced with global minimum because of using OAs. In this case, ANN is determinant 
of the most efficient results obtained by the hybrid ANN-based models such as PSO-ANN, GA-ANN, ICA-
ANN, ABC-ANN and FA-ANN. In this study, five hybrid models, namely PSO-ANN, GA-ANN, ICA-ANN, 
ABC-ANN and FA-ANN are selected and developed to predict PPV induced by blasting. Then, the prediction 
performance of these models is compared to choose the best hybrid ANN-based model.

Case study and input parameters
Study area and data collection. The present research was carried out at the quarry site of Hulu Langat 
which is located in the south of Selangor state, Malaysia. More specifically, this is at a latitude of 3′ 7′ 0″ N and 
a longitude of 101′ 49′ 1″ E. The quarry consists of granitic rock and it is capable of producing large amounts of 

(4)I(r) = I0e
−γ r2

(5)β(r) = β0e
−γ r2

(6)�Xi = β0e
−γ r2

(

Xt
j − Xt

i

)

+ αεi ,X
t+1
i = Xt

i +�X

(7)L(s) = A
−1−q
s ,A = qŴ

(

q
)

sin

(πq

2

)

/π

Figure 6.  Flowchart of FA optimization algorithm.
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aggregate (more than 300,000 tons per month). In general, the blasting operations are typically carried out by 
means of blast holes of 89 mm in diameter. For the explosive material, ammonium nitrate and fuel oil (ANFO) 
was used and for initiating the blast, dynamite was employed at predefined spots. Gravels were used in order 
to stem required blast holes. A total of 88 datasets were gathered during 6 months. In the course of gathering 
required data, some important blasting parameters were attained, e.g., the number of holes, depth of the holes, 
length of stemming, maximum charge per delay, spacing, burden, sub-drilling, and powder factor. The Vibra-
ZEB seismograph was applied in each blast in order to record the values of PPV. Recording of all values related 
to PPV was done in front of the quarry bench and almost vertical to that. The location of the workshops and 
crushing plant was around 400 m of the face of quarry, whereas the closest inhabited region was roughly 800 m 
to the west of that. As a result, the values set to be the distance from the monitoring point to the free face were 
300, 600, and 700 m. The data collected from the study area together with their unit and some statistical informa-
tion are shown in Table 1. The average values of 14.4 m, 84.5 kg, 0.8, 2.7 m, 35.3 cm, 0.9 kg/m3, 59.4%, 553.3 m, 
38.1 and 3.5 mm/s were obtained for HD, MC, BS, St, SD, PF, RQD, D, No. H and PPV, respectively. The general 
flowchart of this study is presented in Fig. 7. According to this flowchart, after initial evaluation of the data and 
proposing empirical model, FDM is used to select input parameters from all data. Then, 5 hybrid ANN-based 
models are constructed to predict PPV resulting from blasting. After constructing the hybrid models, they are 
evaluated using performance indices and the best one among them is selected.

Table 1.  The data collected from the study area.

Parameter/Unit Symbol Range

Powder factor/kg/m3 PF 0.4–1.18

Stemming length/m St 1.9–3.6

Rock quality designation/% RQD 41–77

Distance from the free face/m D 300–700

Hole depth/m HD 10–17

Burden to spacing/– BS 0.7–0.92

Number of hole/– No. H 15–63

Charge per delay/kg MC 56.3–101.6

Sub-drilling/cm SD 25–45

Peak particle velocity/mm/s PPV 1.1–9.5

Figure 7.  The general flowchart of this study.
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Input selection by FDM. This section presents the process of input selection by FDM to estimate PPV. It is 
important to mention that the same data has been published in another study of PPV prediction by Hajihassani 
et al.76. In the published paper, the authors used HD, MC, BS, St, SD, PF, RQD, D, and No. H to predict PPV 
developing a hybrid intelligent model. Hajihassani et al.76 used 9 parameters as model inputs to predict PPV and 
as a fact, preparation of these inputs is difficult in practice. Therefore, the present study is aimed to decrease the 
number of inputs in the way to obtain the similar prediction performance. On the other hand, Jahed Armaghani 
et al.77 mentioned that a prediction technique with minimum number of model inputs is of interest and attention 
as it is able to decrease the complexity of the developed model. Hence, to determine the most significant vari-
ables affecting the results of PPV, FDM was used. FDM is an expert-based approach which is a powerful tool to 
acquire the knowledge of experts in terms of the importance of variables. First, the affecting variables were inves-
tigated through reviewing the literature and then, Malaysian experts were asked to give their opinions regarding 
them. Subsequently, based on the results of FDM, the most significant variables were determined.

According to Fig. 7 (research framework), the initial step for developing PPV predictive models is to deter-
mine its most significant variables. To do that, Delphi method was used to acquire the knowledge of experts in 
current research area. Delphi technique was developed in 1963, since then modified by many researchers. The 
modified method consist of FDM, fuzzy with Delphi, enhanced FDM which have been modified and used by 
Ishikawa et al.78,  Yih79, and Mahdiyar et al.80, respectively. The advantages and drawbacks of these methods are 
discussed in the study conducted by Mahdiyar et al.80. To determine the significance of the variables, five stepes 
were carried out as follows:

Step 1. Investigating the variables affecting PPV results through extensive reviewing of the literature.
Step 2. Distributing the questionnaire to the experts. The experts were asked to determine the importance of 

each variable using five-scale questionnaire, “very low,” “low,” “medium,” “high,” and “very high.” Table 2 shows 
the linguistic scales for the variables in this study.

Step 3. Collecting the experts’ feedback and calculating their consensus value. Assume having i of experts 
and j variables, the experts’ opinions are calculated as follows:

where Ãinvj is interval-valued fuzzy weighting of No. j variable, (l2, l1)j and (u1, u1)j are the bottom and top experts’ 
appraisal value, respectively. m2j is the mean of all the experts’ appraisal.

Step 4. Defuzzifying the fuzzy weight of each variable using following equation:

Step 5. Determine the significant variables. A threshold value was defined as the mean of all defuzzified 
values. Then, the variables with defuzzified value of less than threshold were not considered as significant factor.

As mentioned before, the experts were selected from Malaysian professionals those have vast experience in 
field of blasting. The online questionnaire was prepared and distributed among the experts according to the col-
lected data of this study and analyzed. Table 3 shows the results of the analysis. The higher the value of defuzzified 
weight, the more important the variable. As a result, MC. D, PF, SD, BS, HD, RQD, No. H, and St are the most 
significant variables affecting PPV results in a descent order. The threshold value was calculated based on the 
average value of all variables’ defuzzified values. As it can be seen in Fig. 8, four parameters (MC, D, PF, and SD) 
out of nine variables are out of the threshold boundary and then perceived as significant variables. The other 
five variables are decided to be rejected for the next step of analysis in this research. It is worth mentioning that 
MC and D are the most important parameters in well-established previous empirical  equations9,13,15. Based on 
results of this section, MC, D, PF and SD were selected as the most influential parameters on PPV and they were 
used as model inputs in modeling of PPV in this research.

Ãinvj =
[

(l2, l1)j ,m2j , (u1, u2)j
]

i = 1, 2, 3, . . . , n, and j = 1, 2, 3, . . . ,m.

(l2, l1)j = min
{

(l2, l1)ij
}

m2j =
1

n

n
∑

i=1

m2ij

(u1, u1)j = max
{

(u1, u1)ij
}

(8)Sj =
l2j + l1j +m2j + u1j + u2j

5
, for j = 1, 2, . . . ,m

Table 2.  Linguistic scales relative used in this study.

Linguistic variables Scales

Very low [(0.1, 0.1); 0.1; (0.2, 0.25)]

Low [(0.15, 0.2); 0.3; (0.4, 0.45)]

Medium [(0.35, 0.4); 0.5; (0.6, 0.65)]

High [(0.55, 0.6); 0.7; (0.8, 0.85)]

Very high [(0.75, 0.8); 0.9; (0.9, 0.90)]
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Proposing empirical equation
As mentioned earlier, many researcher tried to develop empirical formulas for prediction of PPV. Their formulas 
have been developed based on 2 parameters; maximum charge per delay (kg) and distance from free face of blast 
(m). According to the most popular empirical PPV formula proposed by Duvall and  Petkof10, prediction of PPV 
should be done through the use of scaled distance (SD) which is presented as follows:

where, MC and D are the maximum charge per delay (kg) and the distance from the free face (m), respectively. 
Then, the values of PPV can be estimated using the following equation  type10:

where, B and K are site constants.
In this study, through the calculation of SD values, a PPV formula has been developed empirically as follows:

The coefficient of determination  (R2) value equal to 0.581 for the proposed PPV formula shows that the 
obtained results are suitable and meaningful. Figure 9 displays the relationship between SD values and meas-
ured PPV values and also the proposed PPV formula. In order to show ability of this formula, the most popular 
published PPV formulas were considered and applied on the data of this study (Table 4). The PPV values were 
obtained for all equations presented in Table 4 using 88 datsets of this study and their  R2 results are tabulated in 
Table 5. As it can be seen,  R2 values of 0.124, 0.125, 0.124, 0.127, 0.121, 0.125, and 0.581, were obtained for PPV 
equations of Duvall and Petkof, Langefors–Kihlstrom, Davies et al., Indian Standard, Ghosh–Pal Roy, and this 
study, respectively. The results show that the proposed formula in this study is able to predict PPV values better 

(9)SD =
(

D√
MC

)

(10)PPV = K(SD)B

(11)PPV = 638.41(SD)−1.346

Table 3.  The results obtained from FDM technique.

Variable Defuzzified weight based on all expert’s feedbacks Decision

HD 0.52 Reject

MC 0.62 Select

BS 0.53 Reject

St 0.42 Reject

SD 0.59 Select

PF 0.60 Select

RQD 0.49 Reject

D 0.62 Select

No. H 0.47 Reject

Threshold 0.54

Figure 8.  Variables’ defuzzified weights and the threshold value.
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than the most popular published PPV equations. Therefore, it can be concluded that the equation proposed 
in this study can predict with suitable level of accuracy, however, in order to get higher performance capacity 
for PPV estimation, there is a need to apply and develop new computational techniques using not only 2 input 
parameters but also more than that (MC, D, PF and SD). Hence, in this study, 5 hybrid ANN-based models are 
used and developed to predict PPV induced by blasting.

Developing hybrid ANN‑based models
The present section describes the implementation process of the hybrid ANN models, i.e., ICA-ANN, PSO-ANN, 
ABC-ANN, FA-ANN and GA-ANN for the prediction of PPV induced by blasting. In fact, the effects of ICA, 
GA, ABC, FA and PSO on optimizing weights and biases of ANN are investigated for prediction of PPV. We 
attempted to find out the parameters that can affect ICA, GA, ABC, FA and PSO, so that we can achieve a higher 
level of accurateness in terms of predicting PPV.

ICA‑ANN. It is clear that for the achievement of an ICA-ANN model with the highest quality of perfor-
mance, we need to examine the key parameters that have impact on the ICA. Therefore, it is necessary to deter-
mine the architecture of ANN before starting any experiment on the ICA parameters. It was done through a 
trial-and-error process and the architecture of 4 × 8 × 1 (or a model with 8 hidden nodes) obtained superior 
results, hence being applied to all hybrid models considered in this research. The key parameters affecting on 
ICA, as noted before, are the three parameters i.e., number of decade  (Ndecade), number of country  (Ncountry), and 

Figure 9.  The relationship between SD values and measured PPV values.

Table 4.  The most popular previously proposed PPV equations. K, B, A, α and n are site constants.

Equation Equation Site constant for granite

USBM by Duvall and  Petkof10
PPV = K

[

D/
√
MC

]−B K: 179.31, B: 1.09

Langefors–Kihlstrom81
PPV = K

[√(

MC/D2/3
)]B K: 44.43, B: − 1.18

General predictor by Davies et al.82
PPV = KD

−B(MC)A K: 212.27, B: 1.09, A: 0.52

Bureau of Indian  Standard13
PPV = K

[(

MC/D2/3
)]B K: 6.33, B: 0.22

Ghosh–Daemen  predictor83
PPV = K

[

D/
√
MC

]−B
e
−αR K: 780.36, B: 1.26, α: 0.0004

CMRI by Pal  Roy15
PPV = n+ K

[

D/
√
MC

]−1 K: 168.91, n: 1.57

Table 5.  Comparison of  R2 results in predicting PPV.

Empirical PPV equation R2

USBM by Duvall and  Petkof10 0.124

Langefors–Kihlstrom81 0.125

General predictor by Davies et al.82 0.124

Bureau of Indian  Standard13 0.127

Ghosh–Daemen  predictor83 0.121

CMRI by Pal  Roy15 0.125

This study 0.581
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number of imperialism  (Nimp). For the determination of a proper value of the  Nimp parameter, numerous models 
were constructed setting values ranging from 5 to 40, with incremental step 5 and  Ndecade and  Ncountry were fixed 
at 100 and 400, respectively. The obtained results confirmed that when  Nimp was set to 5, the model could have its 
highest efficiency. In another experiment aiming at finding the most appropriate value for the  Ndecade parameter 
(see Fig. 10), a number of models with different  Ndecade values i.e., 50, 100, 150, 200, 250, 300, 350, and 400 were 
formed; then the models were evaluated considering their root mean square error (RMSE). The RMSE results 
were not changed after the  Ndecade = 500. In the final step, we set  Nimp to 5 and  Ndecade to 500; then several ICA-
ANN models were constructed and their efficiencies based on  R2 and RMSE performance indices (PIs) were 
calculated (see Table 6). 

For the selection of the hybrid models with the highest quality performance, the ranking method proposed 
by Zorlu et al.84 was employed. In their study, a comprehensive version of this method was accessible, according 
to an allocated rank to each PI result. For instance, amounts of 0.8508, 0.8719, 0.8888, 0.9043, 0.8831, 0.9087, 
0.9025 and 0.8963 were obtained for  R2 of train stage of model numbers 1 to 8, respectively. Then, amounts of 1, 
2, 4, 7, 3, 8, 6, and 5 were assigned for their rankings, respectively. In case of the RMSE results, the same process 
was done. According to the results, model 4 (Ncountry = 200) with value of 27 (i.e., a total rank), was selected. In 
next sections, we will evaluate the results obtained from the selected ICA-ANN.

Here, each row of the models is colored exclusively; the higher intensity of the red color, the higher score it 
gets in comparison with the other scores within that column. On the contrary, when the intensity of the color 
lowers (lighter color), the parameter is assumed lower than the other parameters of the column. As a result, for 
training set, the model No. 4 provides a high intensity of red color in the  R2 column (see Table 6). This way, in 
each of the columns, the best items are determined, while in the last column, an item that is shown collectively 
better (regarding the red color intensity) is chosen. Accordingly, the best models are selected by means of the new 
method. In this process, we made use of the coding technique for the determination of the colors intensity level.

Figure 10.  Simulation results of the impact of two  Ncountry and iteration parameters on the developed models.

Table 6.  The results of ICA-ANN for estimating PPV.

Model 
No. countryN

Network Result (Stage) gniknaR Total 
RankTrain  Test Train tseT

2R RMSE 2R RMS
E

2R RMSE 2R RMSE

1 50 0.8508 0.3769 0.8513 0.3891 1 1 1 1 4

2 100 0.8719 0.3509 0.8689 0.3544 2 2 3 3 10

3 150 0.8888 0.3226 0.8524 0.3663 4 4 2 2 12

4 200 0.9043 0.299 0.885 0.3438 7 7 7 6 27

5 250 0.8831 0.3369 0.8957 0.3231 3 3 8 8 22

6 300 0.9087 0.2912 0.8747 0.3504 8 8 4 4 24

7 350 0.9025 0.3039 0.8849 0.3363 6 6 6 7 25

8 400 0.8963 0.3191 0.8766 0.3478 5 5 5 5 20
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PSO‑ANN. As explained earlier, the PSO algorithm is significantly under the influence of a number of 
parameters such as inertia weight. Literature consists of numerous  studies85,86 indicating that when the inertia 
weight is set at 0.25 and the coefficients of velocity equations are fixed at 2, desirable results can be obtained in 
other implemented PSO works. As a result, in all of the PSO-ANN models, the same values were applied. For 
the purpose of determining the most appropriate value of the number of iterations (see Fig. 11), different models 
configured using various amounts of swarm size in a range of 50 to 400, with incremental step 50. The models 
performances were examined considering their RMSE. Therefore, any change was not subjected to the RMSE 
results after the swarm size of 500. To determine the most proper value for the swarm size parameter, totally 
eight PSO-ANN models were configured for the prediction of PPV (see Table 7). Parallel to the former section, 
the simple ranking system was applied in this stage. According to the total rank values listed in Table 7, model 
No. 7 demonstrated the best results of the system. In this model,  R2 of 0.8995 and 0.8749 were acquired in case 
of train and test data samples, respectively. In next sections, we will discuss the evaluations carried out on the 
selected PSO-ANN model. 

GA‑ANN. GA, as noted before, affects the performance of ANN through optimizing its weights and biases. 
For the formation of a hybrid GA-ANN model, first, those parameters of GA that have the highest influence 
need to be identified. The recombination percentage and mutation probability values were fixed at 9% and 25%, 
respectively. A single point possibility of 70% was used as a cross-over operation. After that, it is turn to deter-
mine and make use of the maximum number of generation  (Gmax). A parametric research was carried out in 
order to examine the impacts of  Gmax upon the performance of the network. In an attempt made to optimize the 
number of generations, as depicted in Fig. 12, we defined the value of 600 generation as the termination criteria, 
and the attained values of RMSE were considered. When the number of generations was fixed at 500, no change 

Figure 11.  Simulation results of the impact of two swarm sizes and iteration parameters on the developed 
models.

Table 7.  The results of PSO-ANN for estimating PPV.

Model 
No.

Swarm 
Size

Network Result (Stage) gniknaR Total 
RankTrain  Test Train Test

2R RMSE 2R RMSE 2R RMSE 2R RMSE

1 50 0.876 0.3569 0.8413 0.3999 6 5 2 2 15

2 100 0.8603 0.3709 0.8589 0.3831 2 2 5 4 13

3 150 0.8552 0.3926 0.8324 0.4246 1 1 1 1 4

4 200 0.8689 0.359 0.8502 0.3839 4 4 3 3 14

5 250 0.8631 0.3693 0.8757 0.3511 3 3 8 7 21

6 300 0.8737 0.3512 0.8678 0.3554 5 6 6 6 23

7 350 0.8995 0.3239 0.8749 0.3501 8 8 7 8 31

8 400 0.8864 0.3391 0.8566 0.3682 7 7 4 5 23
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occurred to performance of the network; thus, this value was set as the optimum number of generations in the 
design process of the GA-ANN models. The final step involved the formation of several hybrid GA-ANN models 
(see Table 8) aiming at the determination of the most appropriate size of the population, which could be selected 
from a range of values from 50 to 400, with incremental step 50. The obtained results confirmed that if the value 
of population size is set to 250 with total rank of 27, a higher quality performance can be achieved regarding 
the  R2 and RMSE indices. Later, a detailed explanation will be presented in case of the model number 5 (i.e., the 
selected model). 

ABC‑ANN. The ANN’s performance quality was attempted to be enhanced with the help of the ABC algo-
rithm. In this part of the study, ABC is used aiming at the exploration of the appropriate weights and optimizing 
them. It is important to mention that an increase in the bees No. lead to rising their capability of detecting addi-
tional ranges. Like the previous sections, the ABC-ANN models were constructed to predict PPV values. As can 
be seen in Fig. 13, 50–400 bees were distributed in the network in order to examine the effects of the bees on the 
performance of the model. It was expected to get better results with rising the number of bees; though, after 600 
iteration, approximately all answers approach together. This is due to the fact that bees normally come together 
around the spots wherein the best answer is laid. This is why ABC enjoys a higher speed compared to other 
algorithms; in addition, the answer explored is typically of a higher performance quality. The values that were 
attained from the ABC-ANN models to predict PPV are presented in Table 9. Based on the ranking method, 
the model No. 7 that contained totally 35 bees was selected as the most suitable one in regard to the total  R2 and 
RMSE scores. The values of  R2 and RMSE for train and test stages of model No.7 were 0.9095, 0.2839, 0.9094 and 
0.2905, respectively. The best ABC-ANN model will be discussed with more details later. 

Figure 12.  Simulation results of the impact of two population sizes and iteration parameters on the developed 
models.

Table 8.  The results of GA-ANN for estimating PPV.

Model 
No.

Populat
ion  
Size

Network Result (Stage) Ranking Total 
RankTrain Test Train Test

2R RMSE 2R RMSE 2R RMSE 2R RMSE

1 50 0.8408 0.4769 0.8213 0.5991 1 1 1 1 4

2 100 0.8719 0.3709 0.8389 0.5331 6 6 2 2 16

3 150 0.8428 0.4726 0.8524 0.4164 2 2 3 3 10

4 200 0.8543 0.4091 0.8550 0.4039 4 4 4 4 16

5 250 0.8831 0.3369 0.8657 0.3711 7 8 6 6 27

6 300 0.8537 0.4112 0.8678 0.3654 3 3 7 7 20

7 350 0.8695 0.3839 0.8749 0.3561 5 5 8 8 26

8 400 0.8864 0.3491 0.8566 0.3927 8 7 5 5 25
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FA‑ANN. When working with FA, users need to determine a number of internal parameters significantly 
affecting the convergence behaviors at various degrees. A variety of ranges needed to be taken into account in 
the production process of the initial solution so that we can make it certain that the optimized solution does 
not have any sensitivity to it. This study adopted two approaches for the achievement of this objective: (a) the 
uniform distribution of the initial solutions sampling in a way to avoid biasing any region of search space; (b) 
production of each firefly in a way that it can have the farthest distance with the other fireflies so that they can 
discover the search space more effectively. To each initial population, the optimization process was applied and it 
was iterated for 100 times. The conclusion was that the initial guess considerably affects the optimization result, 
and the results were established through statistical measures, e.g., the corresponding standard deviation and the 
mean value of cost function. This approach was shown more efficient compared to those method depending only 
upon a number of optimization. To obtain the results of a higher precision, rigorous sensitivity analysis was uses 
in the examination of the impacts of two parameters, attractiveness and population. The analysis confirmed that 
if the population size is set to a value ranging between 5 and 50, we can achieve desirable results in case of com-
mon applications; however, in case of the problems with a higher complexity level, it needs to be risen to some 
extent. A total of 50 fireflies is sufficient in virtually all problems; greater numbers may lead to a significant rise 
the computation time. In the different FA-ANN models considered in the present study, 600 iteration and vari-
ous numbers of fireflies (in the range of 5–40) were taken into account (Fig. 14). When the number of fireflies 
was set to 30 with minimum differences, the most appropriate pattern was obtained and used. In this condition, 
the optimum number of bees was also applied to the minimization of the computation time of analysis. The best 
model is model No. 6 with values  R2 = 0.9133 and 0.9097 for training and testing respectively (see Table 10). This 
selected FA-ANN model will be described with more details in the next section. 

Figure 13.  Simulation results of the impact of two Number of Bee and iteration parameters on the developed 
models.

Table 9.  The results of ABC-ANN for estimating PPV.

Model 
No.

Bees 
No.

Network Result (Stage) gniknaR
Total 
RankTrain  Test Train Test

2R RMSE 2R RMSE 2R RMSE 2R RMSE

1 5 0.878 0.3469 0.8613 0.3691 4 4 1 1 10

2 10 0.8557 0.3789 0.8689 0.3513 1 1 2 2 6

3 15 0.8668 0.3726 0.8752 0.3409 2 2 3 3 10

4 20 0.8672 0.369 0.8854 0.3381 3 3 4 4 14

5 25 0.8991 0.3069 0.8957 0.3204 6 6 5 5 22

6 30 0.8893 0.3212 0.8978 0.3069 5 5 7 7 24

7 35 0.9095 0.2839 0.9094 0.2905 8 8 8 8 32

8 40 0.9063 0.2991 0.8966 0.3142 7 7 6 6 26
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Ethical approval. The authors confirm that all methods were carried out in accordance with relevant guide-
lines and regulations.

Results and discussion
This study was mainly aimed to prediction PPV resulting from blasting in an almost accurate way. To this end, 
parameters with the highest influence upon the BIGV were determined. Five ANN-based models i.e., ICA-ANN, 
GA-ANN, ABC-ANN, FA-ANN and PSO-ANN, were taken into account to choose the best among for the pre-
diction of PPV. For each of the predictive techniques, lots of hybrid models were configured among which the 
best one was selected. Figure 15 presents the results obtained from the chosen models of ICA-ANN, PSO-ANN, 
GA-ANN, ABC-ANN and FA-ANN on the basis of the  R2 and RMSE indices for train and test phases. The great 
efficiency of the training datasets shows the success of the learning processes of the predictive models in cases 
where those of the testing datasets reflect the acceptable generalizability of the models. Therefore, the predictive 
model of FA-ANN was found capable of offering the capacity of a superior performance in regard to both  R2 and 
RMSE values of both training and testing phases.  R2 results of (0.8831, 0.8995, 0.9043, 0.9095 and 0.9133) and 
(0.8657, 0.8749, 0.885, 0.9094 and 0.9097) were obtained for train and test stages of GA-ANN, PSO-ANN, ICA-
ANN, ABC-ANN and FA-ANN models, respectively. Moreover, RMSE values of (0.3369, 0.3239, 0.299, 0.2839 
and 0.2712), (0.3711, 0.3501, 0.3438, 0.2905 and 0.2884) were obtained for train and test stages of GA-ANN, 
PSO-ANN, ICA-ANN, ABC-ANN and FA-ANN models, respectively. Among all, the FA-ANN model showed 
a higher level of prediction performance and lower level of system error. Although all hybrid models are able 
to predict PPV with acceptable performance prediction, FA-ANN is the best one among them and can provide 
higher prediction performance using only 4 input parameters.

Figure 14.  Simulation results of the impact of two number of firefly and iteration parameters on the developed 
models.

Table 10.  The results of FA-ANN for estimating PPV.

Model 
No.

Firefly 
No.

Network Result (Stage) gniknaR
Total 
RankTrain  Test Train Test

2R RMSE 2R RMSE 2R RMSE 2R RMSE

1 5 0.8542 0.3569 0.8613 0.3578 2 2 1 1 6

2 10 0.8502 0.3609 0.8689 0.3419 1 1 2 2 6

3 15 0.8981 0.3126 0.8852 0.3379 4 5 3 3 15

4 20 0.893 0.3171 0.9051 0.2995 5 4 7 7 23

5 25 0.8786 0.3469 0.8957 0.3081 3 3 4 4 14

6 30 0.9133 0.2712 0.9097 0.2884 8 8 8 8 32

7 35 0.8999 0.3039 0.9049 0.2941 6 6 6 6 24

8 40 0.9046 0.2891 0.8966 0.3037 7 7 5 5 24
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As mentioned before, Hajihassani et al.76 used the same datasets with 9 model inputs i.e., HD, MC, BS, St, 
SD, PF, RQD, D, and No. H and developed a PSO-ANN model. They obtained  R2 results of 0.89 for the best 
PSO-ANN model (both training and testing) with 9 model inputs. The aim of this study is to reduce number of 
model inputs to 4 (out of 9) and receive higher prediction performance compared to the previously published 
study. Results of this study according to  R2 are 0.9133 and 0.9097 for training and testing datasets (see Figs. 16 
and 17), respectively. It should be mentioned that a model with minimum No. of model inputs is always of 
interest and advantage. On the other hand, in case of utilize this model by other researchers and engineers, they 
need to collect only 4 parameters as inputs instead of 9 input parameters in the study conducted by Hajihassani 
et al.76. Therefore, the authors believe that the proposed FA-ANN model of this study is superior compared to 
previously PSO-ANN hybrid model.

Conclusions
The results obtained from a total of 88 blasting events were considered to construct five hybrid intelligent models, 
i.e., ICA-ANN, PSO-ANN, GA-ANN, ABC-ANN and FA-ANN to predict PPV. Due to the importance of this 
issue for the environment, detailed operations were carried out during 6 months to prepare the database. For this 
purpose, 4 parameters (MC, D, PF, SD) out of 9 parameters (HD, MC, BS, St, SD, PF, RQD, D, and No. H) were 
selected as model inputs in a way to effectively predict the PPV values. This process was made through the use of 
FDM as one of the decision making techniques. It can be said that the first academic contribution of this study is 

Figure 15.  RMSE and  R2 results of the selected hybrid models for prediction of PPV.

Figure 16.  Training results of FA-ANN model in estimating PPV.
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referred to the use of expert’s opinions to reduce the total number of input parameters and determine the most 
effective ones on the ground vibration. The second academic contribution of this paper is related to a combina-
tion of different optimization algorithms with the ANN model aiming to optimize its weighs and biases to get 
the higher performance for PPV prediction. We attempted in this study to identify the parameters of the highest 
significance in the optimization algorithms i.e., ABC, ICA, GA, FA and PSO considering their backgrounds as 
well as existing literature. After that, the identified parameters were examined through conducting a number of 
parametric studies. The results were assessed by means of the simple ranking technique, which confirmed the 
high capability and accuracy of all hybrid models in the estimation of the PPV.

According to the obtained results, among all developed ANN-based models, the use of the FA-ANN model 
showed a marginally higher quality of performance in the predictive tasks (which was associated with the lower 
frequency of errors and a superior determination coefficient). RMSE values of (0.3369, 0.3239, 0.299, 0.2839 
and 0.2712) and (0.3711, 0.3501, 0.3438, 0.2905 and 0.2884) were obtained in case of training and testing of the 
GA-ANN, PSO-ANN, ICA-ANN, ABC-ANN and FA-ANN predictive models, respectively. Findings confirmed 
that the FA-ANN model outperformed the other models considered in this study. In addition, a comparable 
trend was achieved in case of  R2. Therefore, we came to the conclusion that where there is a need for a predictive 
model with the lowest level of error, the FA-ANN model can be applied efficiently to accurate prediction of the 
PPV resulting from blasting. The proposed models can be used in the other mines with granite rock type where 
the same input parameters with their ranges must be considered.

The main limitation of this study is the lack of a general model incorporating a wide range of input and output 
parameters. Further studies with the same model inputs and output and a larger number of data samples can be 
conducted proposing the same ANN-based models. In addition, since the accuracy of the ANN-based techniques 
is greatly affected by the use of different OAs, the performance capacity of these models can be improved by 
replacing some other newer optimization algorithms such as cat swarm, artificial fish swarm and gray wolf instead 
of the used OAs. They may then compare with the proposed models in this study for comparison purposes.
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