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COVID‑Net: a tailored deep 
convolutional neural network 
design for detection of COVID‑19 
cases from chest X‑ray images
Linda Wang1,2,3*, Zhong Qiu Lin1,2,3 & Alexander Wong1,2,3

The Coronavirus Disease 2019 (COVID‑19) pandemic continues to have a devastating effect on the 
health and well‑being of the global population. A critical step in the fight against COVID‑19 is effective 
screening of infected patients, with one of the key screening approaches being radiology examination 
using chest radiography. It was found in early studies that patients present abnormalities in chest 
radiography images that are characteristic of those infected with COVID‑19. Motivated by this and 
inspired by the open source efforts of the research community, in this study we introduce COVID‑Net, 
a deep convolutional neural network design tailored for the detection of COVID‑19 cases from chest 
X‑ray (CXR) images that is open source and available to the general public. To the best of the authors’ 
knowledge, COVID‑Net is one of the first open source network designs for COVID‑19 detection from 
CXR images at the time of initial release. We also introduce COVIDx, an open access benchmark 
dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases, 
with the largest number of publicly available COVID‑19 positive cases to the best of the authors’ 
knowledge. Furthermore, we investigate how COVID‑Net makes predictions using an explainability 
method in an attempt to not only gain deeper insights into critical factors associated with COVID 
cases, which can aid clinicians in improved screening, but also audit COVID‑Net in a responsible and 
transparent manner to validate that it is making decisions based on relevant information from the CXR 
images. By no means a production‑ready solution, the hope is that the open access COVID‑Net, along 
with the description on constructing the open source COVIDx dataset, will be leveraged and build 
upon by both researchers and citizen data scientists alike to accelerate the development of highly 
accurate yet practical deep learning solutions for detecting COVID‑19 cases and accelerate treatment 
of those who need it the most.

The Coronavirus Disease 2019 (COVID-19) pandemic continues to have a devastating effect on the health 
and well-being of the global population, caused by the infection of individuals by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). A critical step in the fight against COVID-19 is effective screening of 
infected patients, such that those infected can receive immediate treatment and care, as well as be isolated to 
mitigate the spread of the virus. The main screening method used for detecting COVID-19 cases is reverse tran-
scriptase-polymerase chain reaction (RT-PCR)1 testing, which can detect SARS-CoV-2 ribonucleic acid (RNA) 
from respiratory specimens (collected through a variety of means such as nasopharyngeal or oropharyngeal 
swabs). While RT-PCR testing is the gold standard as it is highly specific, it is a very time-consuming, laborious, 
and complicated manual process that is in short supply. Furthermore, the sensitivity of RT-PCR testing is highly 
variable and have not been reported in a clear and consistent manner to  date2, and initial findings in China show-
ing relatively poor  sensitivity3. Furthermore, subsequent findings showed highly variable positive rate depending 
on how the specimen was collected as well as decreasing positive rate with time after symptom  onset4,5.

An alternative screening method that has also been utilized for COVID-19 screening has been radiography 
examination, where chest radiography imaging (e.g., chest X-ray (CXR) or computed tomography (CT) imag-
ing) is conducted and analyzed by radiologists to look for visual indicators associated with SARS-CoV-2 viral 
infection. It was found in early studies that patients present abnormalities in chest radiography images that are 
characteristic of those infected with COVID-196–8, with some suggesting that radiography examination could be 
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used as a primary tool for COVID-19 screening in epidemic  areas9. For example, Huang et al.7 identified that the 
majority of the COVID-19 positive cases in their study presented bilateral radiographic abnormalities in CXR 
images, and Guan et al.8 identified COVID-19 positive cases in their study presented radiographic abnormalities 
such as ground-glass opacity, bilateral abnormalities, and interstitial abnormalities in CXR and CT images. While 
much of the recent discussion has revolved around CT imaging due to greater image detail in the acquisitions, 
there are several advantages to leveraging CXR imaging for COVID-19 screening amid the global COVID-19 
pandemic, particularly in resource-constrained areas and heavily-affected areas:

• Rapid triaging CXR imaging enables rapid triaging of patients suspected of COVID-19 and can be done in 
parallel of viral testing (which takes time) to help relief the high volumes of patients especially in areas most 
affected where they have ran out of capacity (e.g., New York, Spain, and Italy), or even as standalone when 
viral testing isn’t an option (low supplies). Furthermore, CXR imaging can be quite effective for triaging in 
geographic areas where patients are instructed to stay home until the onset of advanced symptoms (e.g., New 
York City), since abnormalities are often seen at time of presentation when patients suspected of COVID-19 
arrive at clinical  sites10.

• Availability and accessibility CXR imaging is readily available and accessible in many clinical sites and imag-
ing centers as it is considered standard equipment in most healthcare systems. In particular, CXR imaging 
is much more readily available than CT imaging, especially in developing countries where CT scanners are 
cost prohibitive due to high equipment and maintenance costs.

• Portability The existence of portable CXR systems means that imaging can be performed within an isolation 
room, thus significantly reducing the risk of COVID-19 transmission during transport to fixed systems such 
as CT scanners as well as within the rooms housing the fixed imaging  systems10.

As such, radiography examination can be conducted faster and have greater availability given the prevalence 
of chest radiology imaging systems in modern healthcare systems and the availability of portable units, mak-
ing them a good complement to RT-PCR testing particularly since CXR imaging is often performed as part of 
standard procedure for patients with a respiratory  complaint11. It is also suggested that CXR imaging may have 
utility for situations where patients with initial negative RT-PCR testing outcomes return to the emergency 
department with worsening  symptoms12. Furthermore, some have suggested that as the COVID-19 pandemic 
progresses, there will be a greater reliance on portable CXR due to the aforementioned  advantages13, and found 
portable CXR to be highly valuable for critically ill COVID-19  patients14. Hence, CXR are an integral part of 
some screening strategies that have been  proposed15. However, one of the biggest bottlenecks faced is the need 
for expert radiologists to interpret the radiography images, since the visual indicators can be subtle. As such, 
computer-aided diagnostic systems that can aid radiologists to more rapidly and accurately interpret radiography 
images to detect COVID-19 cases is highly desired.

Motivated by the urgent need to develop solutions to aid in the fight against the COVID-19 pandemic, 
inspired by the open source and open access efforts of the research community, and intrigued in exploring the 
efficacy of AI systems leveraging the more readily available and accessible CXR imaging modality, this study 
introduces COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 
cases from CXR images that is open source and available to the general public. The main contributions of this 
study are:

• Introduction of a novel deep neural network architecture that is tailored for the detection of COVID-19 cases 
from CXR images using a human-machine collaborative design strategy. To the best of the authors’ knowl-
edge, COVID-Net is the first neural network architecture designed for COVID-19 detection to introduce a 
lightweight projection-expansion-projection-extension (PEPX) design, which enables enhanced represen-
tational capacity while greatly reducing computational complexity. Furthermore, to the best of the authors’ 
knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR 
images at the time of initial release, which encourages reproducibility.

• Introduction of COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR 
images across 13,870 patient cases, created as a combination and modification of five open access data 
repositories containing chest radiography images (i.e.,16–20), two of which we  introduced17,18. To the best 
of the authors’ knowledge, COVIDx is the largest open access benchmark dataset available in terms of the 
number of publicly available COVID-19 positive cases.

• Introduction of an explainability approach to investigating how COVID-Net makes predictions in an attempt 
to not only gain deeper insights into critical factors associated with COVID cases, which can aid clinicians 
in improved screening, but also audit COVID-Net in a responsible and transparent manner to validate that 
it is making decisions based on relevant information from the CXR images.

The paper is organized as follows. First, “Introduction” discusses the strategy used to create the COVIDx dataset, 
the strategy leveraged to create the proposed COVID-Net, the architecture design of COVID-Net, the imple-
mentation details of COVID-Net, and the strategy leveraged to audit COVID-Net via explainability. “Methods” 
presents and discusses the results of experiments conducted to evaluate the efficacy of the proposed COVID-Net 
in both a quantitative and qualitative manner. Finally, conclusions are drawn and future directions discussed in 
“Experimental results”.
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Related work
Motivated by the need for faster interpretation of radiography images, a number of artificial intelligence (AI) 
systems based on deep  learning21 have been proposed and results have shown to be quite promising in terms of 
accuracy in detecting patients infected with COVID-19 via radiography imaging, with the focus primarily on 
CT  imaging22–25. However, to the best of the authors’ knowledge at the time of the initial release of the proposed 
COVID-Net, most of the developed AI systems proposed in research literature have been closed source and una-
vailable to the research community to build upon for deeper understanding and extension of these systems. Fur-
thermore, most of these systems are unavailable for public access and use. There has been significant recent efforts 
to push for open access and open source AI solutions for radiography-driven COVID-19 case  detection16–18, with 
an exemplary effort being the open source COVID-19 Image Data Collection, an effort by Cohen et al.16 to build 
a dataset consisting of COVID-19 cases (as well as severe acute respiratory syndrome (SARS) and Middle East 
respiratory syndrome (MERS) cases) with annotated CXR and CT images, so that the research community and 
citizen data scientists can leverage the dataset to explore and build AI systems for COVID-19 detection.Since 
the time of the initial public release of the proposed COVIDx dataset and the proposed COVID-Net, a number 
of studies have been conducted in the area of COVID-19 detection using CXR  images26–38, several of which have 
leveraged variants of the COVIDx dataset or COVID-Net to conduct such  studies28–35,37. Based on a comprehen-
sive survey of the studies in research literature, they have focused primarily on the exploration of deep learning, 
in particular deep convolutional neural networks, given the significant successes and state-of-the-art achieved 
in a variety of computer vision tasks. It is important to note that the proposed COVID-Net and corresponding 
COVIDx dataset continues to evolve as new patient cases are continuously added and are made available publicly 
on a regular basis, and thus this study represents a snapshot of the current state of COVID-Net and COVIDx.

Methods
In this study, a human-machine collaborative design strategy is leveraged to create COVID-Net, where human-
driven principled network design prototyping is combined with machine-driven design exploration to produce a 
network architecture tailored for the detection of COVID-19 cases from CXR images. An open access benchmark 
dataset called COVIDx is also created to facilitate for training and evaluating COVID-Net. Here, we will discuss 
in detail the process of creating the COVIDx dataset, the architecture design methodology behind the proposed 
COVID-Net, the resulting network architecture, the implementation details in creating COVID-Net, and the 
strategy for auditing COVID-Net via explainability.

COVIDx dataset. The dataset used to train and evaluate the proposed COVID-Net, which we will refer 
to as COVIDx, is comprised of a total of 13,975 CXR images across 13,870 patient cases. To the best of the 
authors’ knowledge, the proposed COVIDx dataset is the largest open access benchmark dataset in terms of 
the number of COVID-19 positive patient cases. To generate the COVIDx dataset, we combined and modified 
five different publicly available data repositories: (1) COVID-19 Image Data  Collection16, (2) Fig. 1 COVID-19 
Chest X-ray Dataset  Initiative17, established in collaboration with Fig. 1, (3) ActualMed COVID-19 Chest X-ray 
Dataset  Initiative18, established in collaboration with ActualMed, (4) RSNA Pneumonia Detection Challenge 
 dataset20, which used publicly available CXR data  from39, and (5) COVID-19 radiography  database19. Exam-
ple CXR images from the COVIDx dataset are shown in Fig. 2 in illustrate the diversity of patient cases in the 
dataset. The choice of these five datasets from which to create COVIDx is guided by the fact that all five of the 
datasets are open source and fully accessible to the research community and the general public, and as datasets 
grow we will continue to grow COVIDx accordingly.

More specifically, we combined and modified the five data repositories to create the COVIDx dataset by 
leveraging the following types of patient cases from each of the data repositories:

• Non-COVID19 pneumonia patient cases and COVID-19 patient cases from the COVID-19 Image Data 
 Collection16

• COVID-19 patient cases from the Fig. 1 COVID-19 Chest X-ray Dataset  Initiative17,
• COVID-19 patient cases from the ActualMed COVID-19 Chest X-ray Dataset  Initiative18

• Patient cases who have no pneumonia (i.e., normal) and non-COVID19 pneumonia patient cases from RSNA 
Pneumonia Detection Challenge  dataset20

• COVID-19 patient cases from COVID-19 radiography  database19

The distribution of images and patient cases amongst the different infection types shown in Figs. 3 and 4, respec-
tively. The most noticeable trend is the limited amount of COVID-19 infection cases and associated CXR images, 
which reflects the scarcity of COVID-19 case data available in the public domain but also highlights the need 
to obtain more COVID-19 data as more case data becomes available to improve the dataset. More specifically, 
the COVIDx dataset contains 358 CXR images from 266 COVID-19 patient cases. For CXR images with no 
pneumonia and non-COVID19 pneumonia, there are significantly more patient cases and corresponding CXR 
images. More specifically, there are a total of 8,066 patient cases who have no pneumonia (i.e., normal) and 5,538 
patient cases who have non-COVID19 pneumonia. Dataset generation scripts for constructing the COVIDx 
dataset is available publicly for open access at https ://githu b.com/linda wangg /COVID -Net.

Principled network design prototyping. The first stage of the human-machine collaborative design 
strategy employed to create the proposed COVID-Net is a principled network design prototyping stage, where 
an initial network design prototype is constructed based on human-driven design principles and best practices. 

https://github.com/lindawangg/COVID-Net
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More specifically in this study, we leveraged residual architecture design  principles40 as they have been shown 
time and again to enable reliable neural network architectures that are easier to train to high performance, and 
enables deeper architectures to be built successfully.

In this study, we construct the initial network design prototype to make one of the following three predictions: 
(a) no infection (normal), (b) non-COVID19 infection (e.g., viral, bacterial, etc.), and c) COVID-19 viral infec-
tion (see Fig. 1 for example CXR images of non-COVID19 and COVID-19 infections). The rationale for choosing 
these three possible predictions is that it can aid clinicians to better decide not only who should be prioritized 
for RT-PCR testing for COVID-19 case confirmation, but also which treatment strategy to employ depending 
on the cause of infection, since COVID-19 and non-COVID19 infections require different treatment plans.

Machine‑driven design exploration. The second stage of the human-machine collaborative design strat-
egy employed to create the proposed COVID-Net is a machine-driven design exploration stage. More specifi-
cally, at this stage, the initial network design prototype, data, along with human specific design requirements, act 
as a guide to a design exploration strategy to learn and identify the optimal macroarchitecture and microarchi-
tecture designs with which to construct the final tailor-made deep neural network architecture. Such a machine-
driven design exploration stage enables much greater granularity and much greater flexibility than is possible 
through manual human-driven architecture design, while still ensuring that the resulting deep neural network 
architecture satisfies domain-specific operational requirements. This is especially important for the design of 
COVID-Net, where sensitivity to COVID-19 cases is significant to limit the number of missed COVID-19 cases 
as much as possible.

In this study, we leverage generative  synthesis41 as the machine-driven design exploration strategy, which is 
based on an intricate interplay between a generator-inquisitor pair that work in tandem to garner insights and 
learn to generate deep neural network architectures that best satisfies human specified design requirements. 
More specifically, the following human specified design requirements were employed in this study to enable the 
generative synthesis process to learn and identify the optimal macroarchitecture and microarchitecture designs 
for the final COVID-Net network architecture: (1) COVID-19 sensitivity ≥ 80%, and (2) COVID-19 positive 

Figure 1.  Example CXR images of: (A) non-COVID19 infection, and (B) COVID-19 viral infection in the 
COVIDx dataset.
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Figure 2.  Example CXR images from the COVIDx dataset, which comprises of 13,975 CXR images across 13,870 patient 
cases from five open access data repositories: (1) COVID-19 Image Data  Collection16, (2) Figure 1 COVID-19 Chest X-Ray 
Dataset  Initiative17 (established with Fig. 1), (3) RSNA Pneumonia Detection challenge  dataset20, (4) ActualMed COVID-19 
Chest X-Ray Dataset  Initiative18 (established with ActualMed), and (5) COVID-19 radiography  database19.
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Figure 3.  CXR images distribution for each infection type of the COVIDx dataset (normal means no infection). 
(Left bar) number of training images, (right bar) number of test images.

Figure 4.  Number of patient cases for each infection type of the COVIDx dataset (normal means no infection). 
(Left bar) number of patient cases for training, (right bar) number of patient cases for testing.

Figure 5.  COVID-Net architecture. High architectural diversity and selective long-range connectivity can 
be observed as it is tailored for COVID-19 case detection from CXR images. The heavy use of a projection-
expansion-projection design pattern in the COVID-Net architecture can also be observed, which provides 
enhanced representational capacity while maintaining computational efficiency.
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predictive value (PPV) ≥ 80%. By employing the aforementioned human specified design requirements, the 
machine-driven design exploration can be conducted in a way that ensures that the resulting COVID-Net is able 
to detect COVID-19 positive cases while limiting the number of false positive COVID-19 detections to avoid 
overwhelming clinical sites with unnecessary burden.

COVID‑Net network architecture. The proposed COVID-Net network architecture is shown in Fig. 5, 
and available publicly for open access at https ://githu b.com/linda wangg /COVID -Net. A number of interesting 
observations can be made with regards to the COVID-Net network arhchitecture design that was created via a 
human-machine collaborative design strategy.

Lightweight design pattern. It can be observed that the COVID-Net network architecture makes heavy use of a 
lightweight residual projection-expansion-projection-extension (PEPX) design pattern, which consists of:

• First-stage projection 1 × 1 convolutions for projecting input features to a lower dimension,
• Expansion: 1 × 1 convolutions for expanding features to a higher dimension that is different than that of the 

input features,
• Depth-wise representation efficient 3 × 3 depth-wise convolutions for learning spatial characteristics to mini-

mize computational complexity while preserving representational capacity,
• Second-stage projection 1 × 1 convolutions for projecting features back to a lower dimension, and
• Extension: 1 × 1 convolutions that finally extend channel dimensionality to a higher dimension to produce 

the final features.

Such a customized lightweight design pattern, which is discovered by the machine-driven design exploration 
strategy and not previously introduced in literature to the best of the authors’ knowledge, enables enhanced 
representational capacity while maintaining reduced computational complexity.

Selective long‑range connectivity. It can also be observed that the COVID-Net architecture possesses selective 
long-range connectivity at various areas of the network architecture. The use of long-range connectivity has 
been found previously to enable improved representational capacity as well as make it easier to train, with an 
exemplary network architecture leveraging long-range connectivity being densely-connected deep neural net-
work  architectures42. However, a disadvantage of leveraging a large number of long-range connections as done 
in densely-connected deep neural network architectures is a noticeable increase in computational complexity as 
well as memory overhead. To alleviate this, it can be observed that the COVID-Net network architecture only 
leverages long range connections in a sparing manner where necessary, as exhibited by the existence of four 
densely connected 1× 1 convolution layers that act as central hubs of long-range connectivity for earlier layers 
to connected to much later layers in the network architecture. As such, the COVID-Net network architecture is 
able to achieve high representational capacity and improve ease of training while still maintaining computational 
and memory efficiency. This also highlights the advantages of a machine-driven design strategy for identifying 
the optimal connectivity within a deep neural network architecture, tailored in this case specifically for the task 
of COVID-19 detection based on CXR images.

Architectural diversity. Finally, it can be observed that there is considerable architectural diversity in the 
COVID-Net architecture. In particular, the COVID-Net network architecture is comprised of a heterogene-
ous mix of convolution layers with a diversity of kernel sizes (ranging from 7× 7 to 1× 1 ), and grouping con-
figurations (ranging from ungrouped to depth-wise). The considerable architectural diversity exhibited by the 
COVID-Net architecture further reinforces the fact that the machine-driven design exploration strategy has tai-
lored the network architecture at a very fine level of granularity for COVID-19 case detection from CXR images 
to achieve strong representational capacity for a specific task.

Implementation details. The proposed COVID-Net was pretrained on the  ImageNet43 dataset and then 
trained on the COVIDx dataset using the Adam optimizer using a learning rate policy where the learning rate 
decreases when learning stagnates for a period of time (i.e., ’patience’). The following hyperparameters were used 
for training: learning rate = 2e−4, number of epochs = 22, batch size = 64, factor = 0.7, patience = 5. Finally, 
we introduce a batch re-balancing strategy to promote better distribution of each infection type at a batch level. 
The initial COVID-Net prototype was built and evaluated using the Keras deep learning library with a Tensor-
Flow backend. The proposed COVID-Net architecture was built using generative  synthesis41, as described in 
“Machine-driven design exploration”.

COVID‑Net auditing via explainability. Due to the mission-critical nature of clinical applications such 
as COVID-19 detection that can affect the health and well-being of patients, it is important to design deep neu-
ral network architectures such as COVID-Net with responsibility and transparency in mind. Therefore, in this 
study, we perform an explainability-driven audit on COVID-Net to validate that it is making detection decisions 
based on relevant information rather than improper information (e.g., erroneous visual indicators outside of 
the body, embedded markup symbols, imaging artifacts, etc.). More specifically, we audit COVID-Net via an 
qualitative analysis to study the critical factors leveraged by COVID-Net in making detection decisions. Here, 
we leveraged  GSInquire44, an explainability method that is a critical aspect of the generative synthesis  strategy41 

https://github.com/lindawangg/COVID-Net
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leveraged in the machine-driven exploration strategy used to create the proposed COVID-Net network archi-
tecture. A brief summary of the GSInquire is provided as follows.

GSInquire revolves around the notion of an inquisitor I  within a generator-inquisitor pair {G,I} , with G 
denoting a generator, that work in tandem to obtain improved insights about deep neural networks as well 
as learn to generate networks. The insights gained by I  can not only be used to improve G to generate better 
networks, but also be subsequently transformed into an interpretation of decisions made by a network. More 
specifically, a deep neural network is defined as a graph N = {V ,E} , comprising a set V of vertices v ∈ V  and 
a set E of edges e ∈ E that form the network. A generator function is defined as G(s; θG) parameterized by θG 
that, given a seed s ∈ S , generates a deep neural network Ns = {Vs ,Es} (i.e., Ns = G(s) ), where S is the set of 
possible seeds. Finally, an inquisitor function is defined as I(G; θI) parameterized by θI that, given a generator 
G , produces a set of parameter changes �θG (i.e., �θG = I(G)).

In the scenario where the underlying goal is to obtain an interpretation z of a decision made by a reference 
network Nref  (in this case, COVID-Net) for an input signal x (in this case, a CXR image), both θG and θI are 
initialized based on 

{

Vref ,Eref
}

 , a universal performance function U (e.g.,45), and an indicator function 1r(·) s.t. 
{Vs ,Es} =

{

Vref ,Eref
}

 to ensure interpretation consistency for Nref  . Given the generated Ns = G(s) , the inquisi-
tor I  probes {Vs, Es} , where Vs ⊆ Vs and Es ⊆ Es , with the targeted stimulus signal as x and the corresponding 
set YG(s) of reactionary response signals y ∈ YG(s) are observed. The parameters θI are updated based on YG(s) , 
U(G(s)) , and 1r(G(s)) , leading to the inquisitor I  learning from the insights that are derived from YG(s) . Follow-
ing the update of θI , set of parameters �θG = I(G) is generated which can not only be leveraged to update θG 
to improve G , but can also be transformed and projected into same subspace as x via a transformation T (�θG(s)) 
to produce an interpretation z(x;Nref ) . In this study, the produced interpretation indicates the critical factors 
leveraged by COVID-Net in making a detection decision based on a CXR image, and can be visualized spatially 
relative to the CXR image for greater insights into whether COVID-Net is making the right decisions for the 
right reasons and validate its performance.

Ethics approval. The study has received ethics clearance from the University of Waterloo (42235).

Experimental results
To evaluate the efficacy of the proposed COVID-Net, we perform both quantitative and qualitative analysis to 
get a better understanding of its detection performance and decision-making behaviour.

Data pre‑processing details. The COVIDx dataset was used to train all tested deep neural network archi-
tectures. As a pre-processing step, the chest CXR images were cropped (top 8% of the image) prior to training 
in order to mitigate commonly-found embedded textual information in the CXR images. Furthermore, to train 
the tested deep neural network architectures, data augmentation was leveraged with the following augmenta-
tion types: translation (± 10% in x and y directions), rotation (± 10◦ ), horizontal flip, zoom (± 15%), and inten-
sity shift (± 10%). Data pre-processing scripts are available publicly for open access at https ://githu b.com/linda 
wangg /COVID -Net.

Quantitative analysis. To investigate the proposed COVID-Net in a quantitative manner, we computed 
the test accuracy, as well as sensitivity and positive predictive value (PPV) for each infection type, on the afore-
mentioned COVIDx dataset. The test accuracy, along with the architectural complexity (in terms of number of 
parameters) and computational complexity (in terms of number of multiply-accumulation (MAC) operations) 
are shown in Table 1. It can be observed that COVID-Net achieves good accuracy by achieving 93.3% test accu-
racy, thus highlighting the efficacy of leveraging a human-machine collaborative design strategy for creating 

Table 1.  Performance of tested deep neural network architectures on COVIDx test dataset. Best results 
highlighted in bold.

Architecture Params (M) MACs (G) Acc. (%)

VGG-19 20.37 89.63 83.0

ResNet-50 24.97 17.75 90.6

COVID-Net 11.75 7.50 93.3

Table 2.  Sensitivity for each infection type.  Best results highlighted in bold. 

Architecture Normal Non-COVID19 COVID-19

Sensitivity (%)

VGG-19 98.0 90.0 58.7

ResNet-50 97.0 92.0 83.0

COVID-Net 95.0 94.0 91.0

https://github.com/lindawangg/COVID-Net
https://github.com/lindawangg/COVID-Net


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:19549  | https://doi.org/10.1038/s41598-020-76550-z

www.nature.com/scientificreports/

highly-customized deep neural network architectures in an accelerated manner, tailored around task, data, and 
operational requirements. This is especially important for scenarios such as disease detection, where new cases 
and new data are collected continuously and the ability to rapidly generate new deep neural network architec-
tures tailored to the ever-evolving knowledge base over time is highly desired.

Next, we take a deeper exploration into the current limitations of the proposed COVID-Net by studying the 
sensitivity and PPV for each infection type, which is shown in Tables 2 and 3, respectively, and the confusion 
matrix in Fig. 6. A number of interesting observations can be made about how COVID-Net performs under the 
different scenarios. First, it can be observed that COVID-Net can achieve good sensitivity for COVID-19 cases 
(91.0% sensitivity), which is important since we want to limit the number of missed COVID-19 cases as much 
as possible. Second, it can be observed that COVID-Net achieves high PPV for COVID-19 cases (98.9% PPV), 
which indicates very few false positive COVID-19 detections (for example, as seen in Fig. 6, one patient with 
non-COVID19 infection was misidentified as having COVID-19 viral infections). This high PPV is important 
given that too many false positives would increase the burden for the healthcare system due to the need for addi-
tional PCR testing and additional care. Therefore, based on these results, it can be seen that while COVID-Net 
performs well as a whole in detecting COVID-19 cases from CXR images, there are several areas of improvement 
that can benefit from collecting additional data, as well as improving the underlying training methodology to 
generalize better across such scenarios.

Architecture comparisons. We now take a deep exploration into the impact of architectural design 
choices made by generative synthesis during the machine-driven design exploration process on the resulting 
COVID-Net network architecture being able to achieve in terms of balance between computational efficiency 
and performance. It is important to note that, based on a thorough survey of all machine learning methods for 
COVID-19 detection using chest x-rays in research  literature26–37, the machine learning methods leveraged in 
these studies have been deep learning approaches. As such, we have focused this study to quantitatively com-
pare between different deep neural network architectures to study the impact on computational efficiency and 
performance.

In order to perform this analysis, we evaluated the performances of the following deep neural network archi-
tectures for comparative purposes:

Table 3.  Positive predictive value (PPV) for each infection type.  Best results highlighted in bold. 

Architecture Normal Non-COVID19 COVID-19

Positive predictive value (%)

VGG-19 83.1 75.0 98.4

ResNet-50 88.2 86.8 98.8

COVID-Net 90.5 91.3 98.9

Figure 6.  Confusion matrix for COVID-Net on the COVIDx test dataset.
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• VGG-1946 A deep neural network architecture that does not leverage residual design principles, lightweight 
design patterns, and have very low architectural diversity.

• ResNet-5040 A deep neural network architecture that leverages residual design principles and lightweight 
design patterns (e.g., bottleneck design patterns) and have moderate architectural diversity, but does not lev-
erage lightweight PEPX design patterns and selective long-range connectivity. This architecture was leveraged 
in a  study37 on an early variant of COVIDx to good effect. As such, a quantitative performance evaluation of 
this architecture enables a more direct comparison  with37 and highlight the benefits of the uniqueness of the 
COVID-Net architecture.

The choice of these two deep neural network architectures is based on the fact that they do not possess the key 
defining traits of COVID-Net, which are lightweight PEPX design patterns, selective long-range connectivity, 
and high architectural diversity, thus allowing for a better understanding of the benefits of the unique traits of 
COVID-Net.

It can be observed in Table 1 that COVID-Net had noticeably lower architectural complexity and compu-
tational complexity than the VGG-19 and ResNet-50 architectures. For example, the proposed COVID-Net 
requires ∼12× fewer MAC operations than the VGG-19 architecture and ∼2.37× fewer MAC operations than the 
ReNset-50 architecture, respectively. This illustrates the benefits of the lightweight PEPX design patterns within 
the COVID-Net architecture compared to not using lightweight design patterns (e.g., VGG-19) and using other 
types of lightweight design patterns (e.g., bottleneck patterns as used in ResNet-50). It can also be observed in 
Tables 1, 2, and 3 that COVID-Net achieved noticeably higher test accuracy and COVID-19 sensitivity than 
the VGG-19 and ResNet-50 network architectures. For example, COVID-19 sensitivity of COVID-Net is > 32% 
higher than VGG-19 and 8% higher than ResNet-50. These results illustrates the benefits of the selective long 
range connectivity and high architectural diversity found in COVID-Net, which enables strong representational 
capacity that is tailored for the task as well as making it easier to train. Therefore, these results demonstrate the 
benefits of the different design choices made during the machine-driven design exploration stage of the human-
machine collaborative design strategy employed to create COVID-Net.

Qualitative analysis. As mentioned earlier, we performed an audit on the proposed COVID-Net to gain 
better insights into how COVID-Net makes decisions, and validate whether it is making detection decisions 
based on relevant information rather than erroneous information that bias decisions based on irrelevant visual 
indicators. The critical factors identified by  GSInquire44 in several example CXR images of COVID-19 cases 
are shown in Fig. 7. It can be observed that, based on the interpretation produced by GSInquire, the proposed 
COVID-Net primarily leverages areas in the lungs in the CXR images as the main critical factors in determining 
whether a CXR image is of a patient with a SARS-CoV-2 viral infection, as shown in red in Fig. 7. As such, we 
were able to validate that COVID-Net was not relying on improper information to make decisions (e.g., errone-
ous visual indicators outside the body, embedded markup symbols, imaging artifacts, etc.), which could lead to 
scenarios where the right decisions are made for the wrong reasons. Such ‘right decision, wrong reason’ scenarios 
are very difficult to track and identify without the use of such an explainability-driven auditing strategy, and thus 
highlight the value of explainability in improving the reliability of deep neural networks for clinical applications.

We further explored the relationship between the critical factors identified by GSInquire and the experimental 
results, particularly in relationship to clinical visual indicators leveraged for radiography examination of chest 
CXR images for COVID-19. In the cases in the experimental results where the proposed COVID-Net correctly 
detects COVID-19 infections (see Fig. 6), the critical factors that are identified by GSInquire often corresponds 
to clinical visual factors such as ground-glass opacities, bilateral abnormalities, and interstitial abnormalities, 
which have been found to be useful for COVID-19 radiography  examinations6–8. What this illustrates is that 
the proposed COVID-Net can learn to leverage visual indicators in its decision-making process that relate to 
those leveraged by clinicians in their decision-making process. Therefore, these observations are insightful for 

Figure 7.  Example CXR images of COVID-19 cases from several different patients and their associated critical 
factors (highlighted in red) as identified by  GSInquire44.
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establishing a deeper understanding into the overlaps between the decision-making process of deep neural net-
works for clinical applications and the decision-making process of clinicians during radiography examination.

In addition to performance validation for more responsible and transparent design, the ability to interpret and 
gain insights into how the proposed COVID-Net detects COVID-19 infections is also important for a number 
of other reasons:

• Transparency By understanding the critical factors being leveraged in COVID-19 case detection, the predic-
tions made by the proposed COVID-Net become more transparent and trustworthy for clinicians to leverage 
during their screening process to aid them in making faster yet accurate assessments.

• New insight discovery The critical factors leveraged by the proposed COVID-Net could potentially help 
clinicians discover new insights into the key visual indicators associated with SARS-CoV-2 viral infection, 
which they can then leverage to improve screening accuracy.

Conclusion
In this study, we introduced COVID-Net, a deep convolutional neural network design for the detection of 
COVID-19 cases from CXR images that is open source and available to the general public. We also introduce 
COVIDx, an open access benchmark dataset that is comprised of 13,975 CXR images across 13,870 patient 
cases from five open access data repositories. Moreover, we investigated how COVID-Net makes predictions 
using an explainability method in an attempt to gain deeper insights into critical factors associated with COVID 
cases, which can aid clinicians in improved screening as well as improve trust and transparency when leveraging 
COVID-Net for accelerated computer-aided screening.

By no means a production-ready solution, the hope is that the promising results achieved by COVID-Net on 
the COVIDx test dataset, along with the fact that it is available in open source format alongside the description 
on constructing the open source dataset, will lead it to be leveraged and build upon by both researchers and 
citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions 
for detecting COVID-19 cases from CXR images and accelerate treatment of those who need it the most. Future 
directions include continuing to improve sensitivity and PPV to COVID-19 infections as new data is collected, 
as well as extend the proposed COVID-Net to risk stratification for survival analysis, predicting risk status of 
patients, and predicting hospitalization duration which would be useful for triaging, patient population manage-
ment, and individualized care planning.

Data availability
The model, data and scripts are all available at https ://githu b.com/linda wangg /COVID -Net.
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