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Effects of MHD and porosity 
on entropy generation in two 
incompressible Newtonian fluids 
over a thin needle in a parallel free 
stream
Farhad Ali1,2, Anees Imtiaz3, Waqar A. Khan4, Ilyas Khan5* & Irfan A. Badruddin6

This article is devoted to studying Magnetohydrodynamic (MHD)’s combined effect and porosity on 
the entropy generation in two incompressible Newtonian fluids over a thin needle moving in a parallel 
stream. Two Newtonian fluids (air and water) are taken into consideration in this study. The viscous 
dissipation term is involved in the energy equation. The assumption is that the free stream velocity is 
in the direction of the positive x-axis—(axial direction). The thin needle moves in the same or opposite 
direction of free stream velocity. The reduced similar governing equations are solved numerically with 
the help of shooting and the fourth-order Runge–Kutta method. The expressions for dimensionless 
volumetric entropy generation rate and Bejan number are obtained through using similarity 
transformations. The effects of the magnetic parameter, porosity parameter, Eckert number, Bejan 
number, irreversibility parameter, Nusselt number, and skin friction are discussed graphically in detail 
for and taken as Newtonian fluids. The results are compared with published work and are found in 
excellent agreement.

The second law of thermodynamics is more consistent and efficient than the first law due to the constraints of 
the first law’s proficiency in thermal systems. The first law is also known as the law of conservation of energy and 
discusses the quantity of energy but not quality. In practical applications such as in engineering and other related 
science, the quality and quantity both matter, so for this reason, the second law is more general and reliable. The 
second law of thermodynamics is employed to reduce the  irreversibilities1,2. The process of degrading the avail-
able systems work is known as Entropy  generation3. The source of entropy generation is heat and mass transfer, 
viscous dissipation, and many more because the entropy generation is applied to improve the  system4. Primarily, 
the entropy generation with the second law has been investigated by  Bejan5 and originate that the temperature 
and velocity gradient are responsible for creating entropy generation in fluid flow. Afterward, this topic attracted 
many researchers, and they have used this idea in different world problems due to its vast  applications6–10.

In the latest times, the magnetic field observation with heat transfer has an essential role in sciences, mainly 
in physics, engineering, and remedies, such as MHD turbines, sand boundary layer control, and pumps, etc. 
Physically, the MHD plays an essential position in regulating the momentum and heat switch in one kind of 
fluid. It is well worth citing that the MHD actively modified the heat transfer’s overall performance within the 
flow to rearrange their consideration within the fluid. The concept of MHD was introduced by  Hannes11, for 
which he got a Nobel prize, and then many researchers used the idea of MHD in various problems and obtained 
tremendous results in Medical sciences and  engineering12,13. The concept of a thin needle with MHD and entropy 
generation is also an important topic and needs to be investigated. The thin needle formed like a paraboloid body 
whose axis in the path of the incident flow. Its diameter is of the same order as of velocity, or thermal boundary 
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layers developed. Hence the axisymmetric type of structure allows a similarity solution to withdrawal and qualify 
to study the problem in detail. Axisymmetric flow and heat transport over a thin transferring needle has been 
investigated by many researchers in the presence of various flow conditions. Wang et al.14 numerically and theo-
retically investigated the pin-2 BEC in an optical lattice. The exact soliton solutions and nonlinear modulation 
instability in spinor Bose–Einstein condensates are obtained by Li et al.15. Ji et al.16 investigated the dynamic 
creation of fractionalized half-quantum vortices in Bose–Einstein condensates of sodium atoms.

The shape of a needle is much like a paraboloid of revolution parallel to go with the flow. Initially, the bound-
ary layer flow by a thin needle has been examined by  Lee17. Ishak et al.18 discussed the thin needle in a parallel 
free stream boundary layer flow and obtained the dual solutions when the needle and free stream move in the 
opposite direction. The boundary layer flow with nanofluid over a thin needle has been investigated by Soid 
et al.19. Hayat et al.20 investigated the thin needle, introducing carbon nanofluid with variable heat flux, and 
used the shooting method for the solution of the problem. The mixed convection flows with heat transfer in a 
moving thin needle with nanofluid for assisting and opposite cases investigated by Salleh et al.21. Ahmad et al.22 
examined the mixed convection boundary layer flow along a thin vertical needle with nanofluid and obtained 
the solution with the help of the Finite difference scheme and Keller box method. The classical model for forced 
convection flow with heat transfer and wall temperature using Copper and Aluminum Oxide Nanoparticles and 
-based fluid is analyzed by Grosan et al.23. Ahmad et al.24 discussed Buongiorno’s Model in axially moving the 
thin needle with nanofluid and two slip velocity mechanism Brownian motion and thermophoresis. The entropy 
generation with heat transfer in the presence of Rosseland radiation for a boundary layer flow over a thin needle 
has been examined by Afridi et al.25. Khan et al.26 recently discussed the entropy generation for two non-New-
tonian fluids with first and second law analysis for a moving thin needle and obtained the solution by similarity 
transformation. From all, the above-discussed problems on thin needle focused on the heat transfer analysis 
and some recent on entropy generation. Still, no devotion has been awarded to the study of boundary layer flow 
with MHD and porosity over a thin needle moving in a parallel stream. Even not a single paper is published on 
entropy generation for thin needle problem with porosity and MHD. Therefore, this study aims to perform such 
an analysis. Suitable transformation is applied to convert basic governing equations to self-similarity equations. 
The shooting technique, along with the Runge–Kutta technique, is used in obtaining numerical solutions. The 
calculated velocity and temperature gradients are used to calculate the entropy generation rate. The impact of 
various physical parameters on velocity, temperature distribution, entropy production, and Bejan number is 
shown through graphs and discussed.

Mathematical formulation. A steady flow of two incompressible non-Newtonian fluids has been con-
sidered over a thin needle moving with velocity uw in a parallel free stream. The transverse magnetic field and 
porosity have also been taken into account. The needle thickness is comparatively less than the momentum and 
thermal boundary layer. The radius of the needle is described by r = R(x)   where r and x represent the radial 
and Cartesian coordinates. The physical configuration of the problem is given in Fig. 1

Under the above assumptions, the boundary layer equations in cylindrical coordinates are given  by18,19,26–29:

The corresponding initial and boundary conditions are:

Equation (1) represents the continuity equation in cylindrical coordinates. The momentum equation for the 
flow behavior of the thin needle is given in Eq. (2). The temperature distribution in cylindrical as well as cartesian 
coordinates is described in Eq. (3), while Eq. (4) represents the entropy generation.

The solution of the model. For the solution of the momentum equation of the thin needle, the similarity 
variables will be used  by18,30:

Using Eq. (6), into the Eq. (1), the continuity equation is identically satisfied and the governing equations of 
velocity with the transformed boundary conditions yield:
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Such that the primes denote the derivatives of f  w.r.t η . r = R(x) =
√

νxa
U , ε = uw

U  shows the dimensionless 
velocity and K = k

νφ
 is the porosity parameter.

Skin friction. The expression for the dimensional skin friction is given  by18

Using Eq. (6), the non-dimensional form of Eq. (9) is written as

where Rex = Ux
ν

 shows the local Reynolds number.

Temperature distribution. For the solution of the energy equation as described in Eq. (3), the similarity 
 solution1 will be used as

From Eq. (11) the transformed form of Eq. (3) along with the boundary conditions are given by;
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  shows the Prandtl and Eckert numbers, respectively.

Nusselt number. The expression for the dimensional Nusselt number is given  by19

Using Eq. (11), the non-dimensional form of Eq. (14) is written as

Entropy generation. The expression for the entropy generation for an incompressible non-Newtonian 
fluid in cylindrical coordinates using the boundary layer approximations is given by
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Figure 1.  Physical configuration of the problem.
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where the first term shows the entropy generation rate due to heat transfer Ṡ′′′h  , the second term shows the entropy 
generation rate due to fluid friction Ṡ′′′f  , the third term shows the entropy generation rate due to the magnetic 
field Ṡ′′′m , and the last term shows the entropy generation rate due to porous medium Ṡ′′′pm.

In dimensionless form, the total entropy generation rate can be written as

where Br = µU2

kf (Tw−T∞)
, 1
K = xν

Uk represents the Brinkman number, modified Brinkman number, and modified 
porosity.

Concerning the entropy generation analysis of convective heat transfer problems,  Bejan1,2 represented the 
expression of irreversibility distribution ratio as follows

It is noteworthy to mention that when Φ > 1, the fluid friction irreversibility Nsf  plays a major role. Otherwise, 
the heat transfer irreversibility Nsh is dominant. When Φ = 1, the improvement secondary to heat transfer ( Nsh ) 
and to fluid friction ( Nsf  ) are equal.

Equation (19) will become

The irreversibility ratio also known as Bejan number is

From the similarity transformation, Eq. (21) becomes

Be = 1 is the limit at which the irreversibility is due to heat transfer only, and Be = 0 is the limit at which the 
irreversibility is due to fluid friction only. Irreversibility due to heat transfer dominates when Be >  > 12 , while 
Be <  < 12 shows that irreversibility due to fluid friction dominates.

Limiting solution. By considering H → 0 in Eq. (7), the solution is reduced to the results obtained by Soid 
et al.19 by ignoring the nanofluid terms and is given by

The expressions for the Nusselt number and skin friction, obtained in Eqs. (10) and (15), are identical to the 
expression obtained by Soid et al.19 by absenting the nanofluid terms. The values of skin friction are compared 
in Table 1, with the available data for a particular case.

Graphical results and discussion
In this problem, the entropy generation with MHD and porosity for two non-Newtonian fluids have been dis-
cussed for a moving thin needle. The comparison of the skin friction along a thin needle for different needle sizes 
has been reported in Table 1. As the needle’s size increases, the area of the needle increases, which increases the 
skin friction. The present results are found in good agreement with the published work.

The physical configuration of the problem is given in Fig. 1. For the physical behavior and interpretations, 
the Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 have been drawn for two Newtonian fluids, air, and 
water, to show the effect of various physical parameters on the dimensionless velocity, temperature, entropy 
generation rate, and Bejan number. The effects of magnetic parameter M and porosity K have been shown for 
dimensionless velocity in Figs. 2 and 3 when the needle is moving opposite to the free stream’s positive x-axis. 
Figure 2a,b present the magnetic field’s effect on the dimensionless velocity for different needle sizes. Due to the 
magnetic field, a resisting force, Lorentz force, is acted on the needle, which reduces the dimensionless velocity 
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(18)Ns =
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of each fluid. Consequently, the velocity boundary layer thickness decreases, which reduces the shear stress. 
The dimensionless velocity, inside the boundary layer increases with decreasing needle size in both cases, as 
shown in Fig. 2a,b. Figure 3a,b display the porosity parameter’s effects on the dimensionless velocity for different 
needle sizes. The porous medium opposes the flow. An increase in the porosity parameter increases the velocity 
boundary layer thickness, which decreases the resistance to the fluid flow. The needle size also helps in reducing 
the dimensionless velocity in both cases.

For the dimensionless temperature, the effects of magnetic parameter M and porosity parameter K are 
depicted in Figs. 4 and 5. From Fig. 4a,b, it has been observed that augmenting M, the fluid temperature increases 
due to reducing the thickness of the boundary layer flow according to the Lorentz theory. Physically, the magnetic 
field reduces the velocity in the boundary layer, which increases the temperature. An increase in the surface area 
due to increased needle size increases the dimensionless temperature in both cases. However, in Figs. 5a,b, the 
fluid temperature decreases by increasing the porosity due to the increase in the boundary layer thickness. These 
two effects have been validated, as discussed by Shah et al.31. In both cases, a decrease in the needle size helps in 
reducing the temperature of both fluids.

The skin friction variation with the porosity parameter is depicted in Fig. 6a for air and in Fig. 6b for water 
when the needle is fixed in a moving fluid. As explained before, the porous medium resists the flow and decreases 
the fluid velocity in both cases. As a result, the skin friction increases in both cases. The impacts of the magnetic 
field and needle size on the skin friction are presented in Fig. 6a,b. An increase in the needle size increases the 
surface area, and as a result, the skin friction increases in both cases. The magnitude of the skin friction decreases 
with an increase in M. Physically; this is due to an increase in the Lorentz force, which decreases the velocity 
boundary layer thickness and the hydraulic resistance to flow. Consequently, the skin friction decreases with an 
increase in the magnetic field. Figure 7a,b also show the variation of skin friction with the porosity and magnetic 
parameters for different needle sizes, but in this case, the needle is not static; it is moving in the opposite direc-
tion. It reveals that by decreasing the needle’s size, the skin friction increases for both fluids due to a rise in the 
momentum boundary layer thickness and fall in the shear stresses. For smaller needle size, the magnetic field’s 
effect on the skin friction is negligible and increases with an increase in the magnetic field in both cases. The 
effects of needle sizes are found to be the same as in Fig. 6.

Table 1.  Comparison of skin friction along a thin needle with the existing data for different values of a.

a
Ishak et al.18

λ = 0 λ = − 1
Soid et al.19

λ = 0 λ = − 1
Present results
λ = 0 λ = − 1

0.01 8.492 26.602 8.491 26.600 8.531 26.628

0.1 1.289 3.716 1.289 3.704 1.315 3.763

0.2 – – 0.752 2.005 0.774 2.075

Figure 2.  Effects of the magnetic parameter on dimensionless velocity for (a) and (b) when the free stream is 
moving in the positive x-axis and the needle is moving in the opposite direction.
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When the needle is fixed in a moving fluid, the variation of Nusselt number with magnetic and porosity 
parameters for different needle sizes is presented in Fig. 8a,b. It is important to note that the Nusselt number 
decreases with a decrease in the needle size. Physically, this is due to a reduction in the surface area with the 
needle size in both cases. For larger needle size, no noticeable effect of the magnetic field on the Nusselt number 
could be found in the case of air. However, this effect becomes visible in the case of water. Also, the porosity 
parameter makes no visible effect on the Nusselt number. On the other side, when the free stream moves along the 
negative x-axis and the needle moves in the opposite direction, the effects of needle size are elaborated in Fig. 9a,b 
for air and water, respectively. Due to increased surface area with needle size, the Nusselt number increases in 
both cases, for smaller values of the magnetic parameter, no appreciable effect on Nusselt number for both fluids. 
However, for water, the Nusselt number increases with both porosity and magnetic field.

Figures 10 and 11 depict the impacts of pertinent parameters on the total entropy generation rate for air 
and water when the needle is fixed in a moving fluid. According to the second law of thermodynamics, entropy 
generates due to several irreversibilities. The total entropy generation rate comprises these irreversibilities, as 
shown in Eq. (16). The variation of the total entropy generation rate with the magnetic and porosity parameters 
is displayed in Fig. 10a,b for the selected needle sizes. An increase in the needle size increases the surface area 
of a thin needle, which reduces velocity and temperature gradients, see Figs. 2, 3, 4 and 5. Accordingly, the total 
entropy generation rate reduces with increasing needle size. Similarly, the magnetic parameter facilitates reducing 

Figure 3.  Effects of porosity parameter on dimensionless velocity for (a) and (b) when the free stream is 
moving in the positive x-axis and the needle is moving in the opposite direction.

Figure 4.  Effects of the magnetic parameter on dimensionless temperature for (a) and (b) when the free stream 
is moving in the positive x-axis and the needle is moving in the opposite direction.
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the total entropy generation rate. However, the porosity parameter tends to resist the fluid flow and increases 
the total entropy generation rate. The effects of the same parameters on the total entropy generation rate are 
described in Fig. 11. In this case, the porosity parameter demonstrates almost negligible effects in both cases. 
However, water indicates higher entropy generation rates. The Bejan number signifies the importance of thermal 
irreversibility in the total irreversibility. The thermal irreversibility leads when Be > 0.5 the irreversibility due to 
viscous dissipation, porous medium, and the magnetic field is influential when Be < 0.5 . In Fig. 12a,b, the Bejan 
number is found to be greater than 0.5, which shows that the thermal irreversibility plays a major role in both 
cases. It is important to note that when the needle is fixed in a moving fluid, the Bejan number increases with 
an increasing magnetic field in both cases. However, Bejan number decreases needle size due to an increase in 
surface area. On the other side, when both needle and fluid move in the same direction, Bejan number decreases 
with an increasing magnetic field in both cases, as shown in Fig. 13a,b for both fluids.

The irreversibility distribution ratio φ compares the viscous dissipation irreversibility with the thermal irre-
versibility. It is important to note that, when the needle is fixed in a moving fluid, the needle size reduces the 
irreversibility distribution ratio, Fig. 14a,b. Whereas, the magnetic field and porosity parameter increases the 
viscous irreversibility, which increases the irreversibility ratio. On the other side, when both needle and fluid 
are moving in the same direction, both needle size and porosity parameter reduce the irreversibility distribution 

Figure 5.  Effects of porosity parameter on dimensionless temperature for (a) air and (b) water, when the free 
stream is moving in the positive x-axis and the needle is moving in the opposite direction.

Figure 6.  Effects of magnetic and porosity parameters on skin friction for (a) air and (b) water, when the 
needle is fixed in a moving fluid.
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ratio due to an increase in the thermal irreversibility, Fig. 15a,b. However, the magnetic field increases the irre-
versibility ratio due to an increase in the viscous irreversibility in both cases. The comparison shows that the 
irreversibility distribution ratios are lower for water than air.

The variation of several components of the total entropy generation rate with the magnetic field is displayed in 
Fig. 16a,b. It can be seen that the thermal irreversibility is higher than any other irreversibility due to an increase 
in temperature with an increasing magnetic field. As expected, other irreversibility increases at different rates in 
both cases. The comparison shows that water offers higher thermal reversibility than air.

Conclusion
This work determines MHD and Porosity’s effects on Entropy Generation over thin needle in a Parallel Free 
Stream for Two Incompressible Newtonian fluids. The following are the concluding remarks of the present study:

1. Skin friction enhances by increasing the size and area of the needle.
2. The magnetic parameter retards the velocity of both the fluids.

Figure 7.  Effects of magnetic and porosity parameters on skin friction for (a) air and (b) water, when the free 
stream is moving along the negative x-axis and the needle is moving in the opposite direction.

Figure 8.  Effects of magnetic and porosity parameters on Nusselt number for (a) air and (b) water, when the 
needle is fixed in a moving fluid.
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3. Increasing the porosity parameter enhances the velocity boundary layer thickness, decreasing the resistance 
to the fluid flow.

4. The fluids temperature decreases by decreasing the needle size and enhancing the M and K
5. For a fixed needle, the heat transfer rate decreases, while for increasing M and K’s value, the heat transfer 

rate increases for the moving needle opposite direction to the free stream.
6. The total entropy generation rate in water is more than the air.

Figure 9.  Effects of magnetic and porosity parameters on Nusselt number for (a) air and (b) water, when the 
free stream is moving along the negative x-axis and the needle is moving in the opposite direction.

Figure 10.  Effects of magnetic and porosity parameters on total entropy generation rate for (a) air and (b) 
water, when the needle is fixed in a moving fluid.
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Figure 11.  Effects of magnetic and porosity parameters on total entropy generation rate for (a) air and (b) 
water, when both needle and fluid are moving in the same direction.

Figure 12.  Effects of magnetic and porosity parameters on Bejan number for (a) air and (b) water, when the 
needle is fixed in a moving fluid.



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22305  | https://doi.org/10.1038/s41598-020-76125-y

www.nature.com/scientificreports/

Figure 13.  Effects of magnetic and porosity parameters on Bejan number for (a) air and (b) water, when both 
needle and fluid are moving in the same direction.

Figure 14.  Effects of magnetic and porosity parameters on irreversibility distribution ratio for (a) air and (b) 
water, when the needle is fixed in a moving fluid.
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