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Propagation of optically tunable 
coherent radiation in a gas of polar 
molecules
Piotr Gładysz*, Piotr Wcisło & Karolina Słowik

Coherent, optically dressed media composed of two-level molecular systems without inversion 
symmetry are considered as all-optically tunable sources of coherent radiation in the microwave 
domain. A theoretical model and a numerical toolbox are developed to confirm the main finding: 
the generation of low-frequency radiation, and the buildup and propagation dynamics of such 
low-frequency signals in a medium of polar molecules in a gas phase. The physical mechanism of 
the signal generation relies on the permanent dipole moment characterizing systems without 
inversion symmetry. The molecules are polarized with a DC electric field yielding a permanent 
electric dipole moment in the laboratory frame; the direction and magnitude of the moment depend 
on the molecular state. As the system is resonantly driven, the dipole moment oscillates at the 
Rabi frequency and, hence, generates microwave radiation. We demonstrate the tuning capability 
of the output signal frequency with the drive amplitude and detuning. We find that even though 
decoherence mechanisms such as spontaneous emission may damp the output field, a scenario based 
on pulsed illumination yields a coherent, pulsed output of tunable temporal width. Finally, we discuss 
experimental scenarios exploiting rotational levels of gaseous ensembles of heteronuclear diatomic 
molecules.

Analysis of the propagation of an electric field in various types of media is a well-known problem in quantum 
optics, especially in the context of coherent phenomena1. Typically, an ensemble of atoms is dressed with a coher-
ent electromagnetic beam modifying the atomic optical properties probed by a weak beam of light. Attractive 
examples include stimulated Raman adiabatic passage2,3, magneto-optical rotation4–6 electromagnetically induced 
transparency7–9, light slowdown10,11 and storage12–14. Coherent atomic systems support quantum interference in 
emission or absorption channels, exploited e.g. in the phenomenon of lasing without inversion15–17. An alternative 
scenario for lasing closely related to this work is based on a resonant amplification of a high-frequency signal 
generated in a superradiant ensemble of atoms coherently driven by a low-frequency beam18,19. Despite the long 
record of investigation, there is still room in the field for fundamental and uncharted research ideas for even the 
simplest possible models. One such example is a one-dimensional medium consisting of two-level systems with 
broken inversion symmetry, coupled to an electromagnetic field.

A two-level system, obeying inversion symmetry, driven by a resonant electromagnetic field is a canoni-
cal example considered in quantum optics. Such a system undergoes Rabi oscillations of populations of the 
two levels as the system subsequently exchanges energy with the driving field. This induces oscillations of a 
transition dipole moment at the transition frequency. This can be understood in terms of AC Stark effect. The 
resulting emission spectrum has the form of a Mollow triplet20, with a central peak at the transition frequency 
of the atomic system and sidebands detuned by the Rabi frequency. If the two-level system is polar, its inversion 
symmetry is broken and radiation is additionally generated at the Rabi frequency, i.e., much below the transition 
frequency between the eigenstates. This can be explained by noting that the permanent electric dipole moment 
characterizing the system can, in general, be different in the excited and ground states (polar molecules have 
to be subjected to an external DC electric field to have the electric dipole moment in the laboratory frame). 
Thus, the population exchange between the eigenstates results in oscillations of the permanent dipole moment 
at the Rabi frequency. Such behaviour was first shown by Kibis et al.21, where the coupling of a single asym-
metric system (a quantum dot) with classical light was considered. The discussion was extended to the cases 
of single-mode22 and bichromatic light23. Nonlinear effects were also considered in terms of polarizabilities of 
asymmetric systems24. Moreover, two-level systems with broken inversion symmetry were suggested for lasing 
or for generation of squeezed light25–27.
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Until now, the analysis neglected field propagation effects. This approach limited the possible physical realiza-
tions to small amounts of relatively large quantum systems and excluded commonly available molecular clouds 
or solids. In this paper, we extend that research to scenarios in which a resonant driving beam illuminates an 
ensemble of two-level systems with broken inversion symmetry, e.g., polar molecules in a gaseous phase. As a 
result, a coherent beam of low-frequency radiation is generated throughout the length of the sample and propa-
gates parallel to the drive.

We investigate the performance of the proposed system as an all-optically-controlled source of coherent 
radiation. Its frequency could be optically tuned within the microwave domain by modulation of the amplitude 
of the drive. In an opposite strategy, modulation of the driving field’s detuning from resonance with the atomic 
transition would provide a knob to suppress the outgoing signal at a fixed frequency. To investigate these effects, 
we develop a method based on the semiclassical Bloch–Maxwell equations derived under a generalized form of 
the rotating wave approximation. The usual slowly varying envelope approximation is not applied because it does 
not hold for low-frequency pulses. The theory is applied to a realistic model of a gaseous medium of molecules, 
which support a permanent dipole moment.

Method
Medium.  We consider a quasi-one-dimensional sample containing a medium of uniformly distributed polar 
molecules. To generate a signal the dipole moments have to be oriented in the laboratory frame which can be 
done by applying an external DC electric field. The simplest examples of molecules well suited for this purpose 
include heteronuclear molecules with large electric dipole moment which can be relatively easily polarized in the 
laboratory frame, such as: methylidyne (CH)28 or carbon fluoride (CF)29 both in a ground state X 2�1/2 , hydrox-
ide (OH)30 in a X 2�3/2 state, or lithium hydride (LiH)31 in a X 1�+ state. For such systems the dipole moment 
operator in the laboratory frame d̂ =

∑

ij dij|i��j| with i, j ∈ {e, g} has nonzero diagonal elements: |dii| �= 0 (for a 
proof, see the “Supplementary Information”). The diagonal elements correspond to permanent dipole moments, 
in contrast to the usually considered off-diagonal elements describing transition dipole moments dij with i  = j . 
A crucial for this work feature is that the permanent dipole moments of the two eigenstates are not equal: 
dee  = dgg . Naturally, the transition dipole moment deg = d

⋆
ge should be nonzero to enable efficient coupling 

with the driving electric field, which we describe in the following subsection. For the purpose of describing how 
the DC electric field polarizes the molecules in the laboratory frame we use the full set of relevant molecular 
levels, see “Supplementary Information”. However, for the purpose of describing the light-molecules interaction 
and light propagation it suffices to focus only on the two levels coupled by light (the drive beam), hence the 
medium is described with 2× 2 density matrix ρ(z, t) dependent on position z and time t, which we describe 
on the basis of excited (e) and ground (g) states {|e�, |g�} . The free Hamiltonian of the system can be written as 
Hmedium = ℏω0|e��e| , where ℏ stands for the reduced Planck constant, ω0 is the transition frequency, and we 
have set the energy of the lower state to zero.

Electromagnetic field.  The electromagnetic field is treated classically. It consists of two components cor-
responding to the driving and signal fields (in this section we skip the DC electric field that is used to polarize 
the molecular medium). Thus, the electric part of the field can be written as

The drive

is a strong coherent laser beam of carrier frequency ω close to resonance with the two-level system’s transition 
frequency ω0 . Depending on the system, it may belong to the optical, near- or even far-infrared regime. Here, 
e indicates the polarization of the driving field, which we assume is constant. The beam propagates along the z 
direction, and on resonance the wavenumber k equals ωc  with c being the speed of light in vacuum. Tuned close to 
the resonance with the two-level systems, the driving field induces coherent Rabi oscillations of their population 
between the ground and excited states. Either due to back-action from the medium or due to external tuning, 
the envelope E can be modulated at timescales comparable to the inverse Rabi frequency. This observation will 
be important in later parts of this work.

Due to coherent oscillations of the population between the eigenstates with unequal permanent dipole 
moments, a coherent signal field Esignal(z, t) may be generated in the medium. Its source is the permanent dipole 
oscillating at the Rabi frequency �R , whose exact form is derived later. It is typically in the microwave regime. 
Formally, we can distinguish the signal field envelope and a harmonic term

where es represents the polarization vector of the signal field, which is constant and parallel to the permanent 
dipole moments of the medium. In realistic scenarios, the timescales of modulations of the signal field envelope 
may be comparable to the inverse Rabi frequency 

∣

∣

∂
∂tEs

∣

∣ � Es�R , which means that the slowly varying enve-
lope approximation may not be valid for this part of the field and will not be applied. We make the reasonable 
assumption that initially the signal field is absent throughout the entire sample 

∣

∣Esignal(z, t = 0)
∣

∣ = 0 for all 
z ∈ [0, L] , where L is the sample length. In the following section, we derive the equations describing the buildup 
and propagation of the signal field.

(1)E(z, t) = Edrive(z, t)+ Esignal(z, t).

(2)Edrive(z, t) = E (z, t)e cos(kz − ωt)

(3)Esignal = Es(z, t)ese
i�R(

z
c−t) + c.c.,
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Medium coupled to the field.  The goal of this subsection is to find the coupled Bloch–Maxwell equations 
that govern the evolution of the density matrix of the medium as well as the propagation of the signal field. In 
many cases, the propagation effects for the drive can be neglected. Here, we will nevertheless allow temporal 
tuning of the drive amplitude at reasonable timescales: 

∣

∣

∂
∂tE

∣

∣ ≪ E ω.
Our starting point is the one-dimensional form of the propagation equation for the total field given by Eq. (1)

where µ0 is the vacuum permeability, and P(z, t) is the polarization of the medium. For this equation to be valid, 
the medium must be nonmagnetic, linear, and isotropic, without free charges and currents. We make these 
assumptions here as they describe a rather wide class of molecular vapors and solids.

The polarization at the right-hand-side of Eq. (4) can be expressed as

where N is the concentration of the two-level systems in the medium, Tr(·) stands for the trace operation, and 
ρij(z, t) are elements of the density matrix of the medium ρ(z, t) . Note that contrary to the usually considered 
symmetric case, all density matrix elements contribute to the polarization, including the diagonal ones that give 
rise to the signal buildup.

To find the explicit form of the source term in Eq. (4), we model the evolution of the density matrix with the 
master equation

where H is the full Hamiltonian

Hmedium was introduced at the end of subsection “Medium”, and the electric dipole approximation has been 
assumed for the interaction term. The relaxation term is given by32,33

where in our system the index p = “se” corresponds to spontaneous emission with Lse = |g��e| , while p = “coll” 
describes collisional relaxation: Lcoll = |e��e| − |g��g| . To simplify the notation, we have omitted the arguments 
of the density matrix on the right-hand side.

From now on, we assume that all matrix elements of the dipole moment operator dij are oriented in the same 
direction, parallel to the polarization direction of the fields. Hence, we can omit the vector notation. Please note, 
however, that the analysis could be equivalently performed for perpendicular orientations of permanent and 
transition dipoles: dii ⊥ dij , j  = i.

To separate slowly varying and rapidly-oscillating components of the coherence ρeg , we adjust the ansatz 
introduced in the previous work21

where the dimensionless parameter κ(z, t) = E (z,t)(dee−dgg )

ℏω
 is a measure of asymmetry. As we will see from the 

Bloch equations, the timescale for variations of the envelope function reg is on the order of �−1
R .

The last exponent in Eq. (9) can be expressed using the identity e−iκ sin x =
∑+∞

n=−∞ Jn(κ)e
−inx , where Jn 

refers to the Bessel function of the first kind. Making use of this form and inserting Eqs. (7–9) into the master 
Eq. (6), with the field in the form given by Eq. (1), we arrive at a set of Bloch equations whose general form and 
detailed derivation are given in the “Supplementary Information”. The rotating wave approximation leads to the 
following form of the Bloch equations: 

 where we have introduced the detuning δ = ω0 − ω ≪ ω0 and derived the explicit form of the Rabi frequency 
�R =

degω

dee−dgg
J1(κ) . This form implies that the signal frequency can be controlled with external parameters, in 

particular the amplitude of the drive, as well as—to a smaller extent—its frequency. Note that if the diagonal and 
off-diagonal terms of the dipole moment are comparable, the order of magnitude for κ corresponds to the ratio 
of the Rabi frequency to the transition frequency in the system. This means that κ is typically small, and the 
Bessel function can be approximated by the linear term J1(κ) ≈ 1

2κ . In this regime, the Rabi frequency reverts 

(4)−
∂2

∂z2
E(z, t)+

1

c2
∂2

∂t2
E(z, t) = −µ0

∂2

∂t2
P(z, t),

(5)P(z, t) = NTr(ρ(z, t)d) = N
∑

i,j∈{e,g}

ρij(z, t)dji ,

(6)iℏ
∂

∂t
ρ(z, t) = [H(z, t), ρ(z, t)] +L [ρ(z, t)],

(7)H(z, t) = Hmedium − d · E(z, t),

(8)L [ρ(z, t)] = 2iℏ
∑

p=se,coll

γp

(

LpρL
†
p −

1

2
ρL†pLp −

1

2
L†pLpρ

)

,

(9)ρeg(z,t) = reg (z, t)e
i(kz−ωt)e−iκ(z,t) sin(kz−ωt),

(10a)
∂

∂t
ρee =2I(�⋆

Rreg )+ 2
Esignal

ℏ
J1(κ)I(d

⋆
eg reg )− 2γseρee ,

(10b)

∂

∂t
reg =i

[

−δ +
∂

∂t
κ +

Esignal

ℏ
(dee − dgg )

]

reg + i

[

�R +
Esignal

ℏ
J1(κ)deg

]

(1− 2ρee)− (γse + γcoll)reg ,
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to the familiar form �R ≈
E (z,t)deg

2ℏ  . It is now clear that the elements ρee , reg of the density matrix vary at time-
scales set by �−1

R  and the inverse decoherence rates γ−1
p  . From Eq. (10b), it follows that the signal field gives rise 

to a time- and space-dependent energy shift of the levels that is proportional to the difference between the 
permanent dipole moments of the eigenstates. In addition, the time dependence of the envelope of the driving 
field is included in the term ∂

∂t κ . This part is negligible for slow changes of the drive’s envelope and vanishes for 
a constant amplitude.

Once we have found the evolution of the density matrix elements, we can specify the form of the medium 
polarization induced by the driving field. Making use of the density matrix normalization ρgg + ρee = 1 , com-
bining Eqs. (9) and (5) yields

We can insert this form into the right-hand side of Eq. (4). To extract the equation for the signal rather than 
the total field, we insert Eq. (1) in the left-hand-side of Eq. (4). Next, we separate contributions on both sides 
of the wave equation that oscillate at different harmonic frequencies. This step is based on the assumption that 
the components of the field oscillating at the Rabi frequency that contribue to the signal have their source in the 
polarization components oscillating at the Rabi frequency, while their coupling with the polarization components 
at the carrier frequency is negligible24. The details of this step are given in the “Supplementary Information”. As 
a result, we obtain the propagation equation of the signal field:

here, J′1(κ) and J′′1(κ) are respectively the first and second derivatives of the Bessel function over the argu-
ment κ . These terms represent the influence of the temporal modulations of the drive envelope. For a contin-
uous-wave drive, all time derivatives of κ disappear, and the equation is significantly simplified. In general, 
J′1(κ) =

1
2 [J0(κ)− J2(κ)] and J′′1(κ) =

1
4 [J3(κ)− 3J1(κ)] . Because κ is typically small, the part proportional to 

J0(κ) is the dominant contribution. Then, the correction arising from the time dependence of the drive envelope 
can be rewritten as J0(κ) ∂

∂t κ
∂
∂t reg.

From Eq. (12), it follows that both the diagonal and the off-diagonal parts of the density matrix contribute 
to the generation of low-frequency radiation. Assuming comparable values of permanent and transition dipole 
moments, we see that the oscillation of the population has a major impact on the signal buildup, in particular 
in the case of the slowly varying drive envelope, i.e., negligible ∂

∂t κ . This observation is one of the key points of 
this work: the physical origin of the generated signal is the permanent dipole moment associated with the eigen-
states of the system and oscillating at the Rabi frequency. This is the carrier frequency of the output signal. The 
Rabi frequency is determined by the drive amplitude E , which provides a knob for spectral tuning of the signal.

In Eq. (12) we assume co-linear orientation of molecules. To include a distribution of the orientation direc-
tions of the molecules, one would need to replace the density N with a distribution function N(θ ,φ) , and integrate 
over the orientations (θ ,φ) . In practice, this would suppress the coherence of the generated signal due to the 
distribution of coupling strengths between the differently oriented molecules and the drive.

Note that in many other works the field propagation equation in the Bloch–Maxwell set is a first-order dif-
ferential equation8,14,34. That simplified form is obtained under the slowly varying envelope approximation in 
which the signal envelope is assumed to vary both in time and space much more slowly than its inverse carrier 
frequency and wave vector, respectively. Here, this approximation may not be justified, because the carrier 
frequency �R is of the same order as the inverse timescales of the system’s dynamics, and therefore we chose to 
retain the more complicated second-order propagation equation.

Results and discussion
In this section, we first perform calculations for parameters that do not describe any specific molecule, but rather 
represent orders of magnitude characterizing standard molecular or atomic ensembles, in order to present the 
typical output provided by the model. To explore the possibilities and limitations, in some investigations we 
even neglected decoherence or consider very large concentrations. Next, we investigate the performance of a 
LiH molecular ensemble as a low-frequency signal source.

Model parameters.  We apply the theory to a model sample of a gaseous molecular medium. We focus on an 
electronic transition at ω0 = 660 THz, with dipole moments set to 1 atomic unit ( dee = deg = 8.5× 10−30 Cm). 
The spontaneous emission rate γse = 3.4 MHz is calculated according to the Weisskopf–Wigner theorem34, and 
the collisional decoherence lifetime γ−1

coll = 65 kHz has been chosen in accordance with experiments on diluted 
atomic vapors35. The sample of length L = 53 cm is illuminated with a driving beam with the envelope

where the arctan function is chosen to model a smooth ramp-up of the beam. The parameter α = 0.019/
cm is a scaling factor controlling the slope and z0 = −5.3 m. The amplitude A = 1550 V/cm corresponds to 

(11)P(z, t) = N

[

dgg + ρee(dee − dgg )+ regdge

∞
∑

n=−∞

Jn(κ)e
−i(n−1)(kz−ωt) + c.c.

]

.

(12)

−
∂2

∂z2
Esignal +

1

c2
∂2

∂t2
Esignal = −µ0N(dee − dgg )

∂2

∂t2
ρee

− 2µ0NR

{

dge

[

J1(κ)
∂2

∂t2
reg + 2J′1(κ)

∂

∂t
κ
∂

∂t
reg +

(

J′′1(κ)

(

∂

∂t
κ

)2

+ J′1(κ)
∂2

∂t2
κ

)

reg

]}

.

(13)E (t, z) = A
1

π

(

arctan (−α(z − z0 − ct))+
π

2

)

,
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continuous-wave laser power of 32 W for a beam area of 1 mm2 . The carrier frequency of the drive will be chosen 
around the medium resonance.

We solve the Bloch–Maxwell equations (10, 12) with a self-developed Python code, which we made avail-
able on a public repository36. The Bloch and the Maxwell equations are alternately iterated in time, so that their 
coupling is fully accounted for, allowing one in particular to observe the effects of back-action of the signal on a 
dense medium, as it is discussed later. First, we discuss the case of a relatively low concentration N = 6.7× 1012 
molecules/cm3 . The time dependence of the generated low-frequency signal at the position fixed at the end of the 
sample z = L is shown with the blue line in Fig. 1a. As the drive enters the medium, the signal builds up. Note that 
the signal frequency �R(z = L, t) varied in time proportionally to the drive envelope E (z = L, t) and reached 
the stable value of 1.97 GHz after approximately 30 ns. The amplitude of the signal is significantly weaker than 
the drive, but well beyond the detection threshold in the microwave domain37,38. Naturally, the weak amplitude 
of the signal is a result of the small medium density we chose and could be improved in denser samples. Note 
that for very large densities at which the mean spatial separation between the molecules would be below the 
transition wavelength, dipole–dipole interactions of molecules may become relevant, but are not included in 
our model. They could be taken into account, e.g., through local-field corrections39.

Figure 1b shows the generated signal at a fixed time E(z, t = 30 ns) . The gray area corresponds to z ∈ [0, L] 
and represents the active medium, where the amplitude of the signal grows steadily. We find the dominant 
component of the signal to propagate toward the positive-z direction, in accordance with the propagation direc-
tion of the drive. This indicates the coherent character of the generated signal. Outside the sample the signal 
amplitude retains its value.

Figure 1c shows the same dependence as Fig. 1b, but for a drive detuned by δ = 460 MHz. Naturally, the 
generated signal field amplitude is decreased in this case and its frequency shifted, as we will discuss below. In 

Figure 1.   (a) Envelope of the driving field E (black) and generated signal Esignal (blue) as functions of time at 
the end of the sample ( z = L ) for γse = 3.4 MHz, γcoll = 65 kHz, and δ = 0 . (b) The signal Esignal in the spatial 
domain at t = 30 ns. The gray rectangle represents the sample with the active medium (between 0 and 0.53 m). 
(c) Spatial behavior of the generated radiation for the same γse and γcoll coefficients but in the presence of 
detuning δ = 460 MHz.
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addition, the detuning induces a beating of the signal field inside the sample, now modulated with a sinusoidal 
envelope of the spatial period corresponding to the detuning. In consequence, the amplitude of the output signal 
outside the sample is suppressed depending on the phase of the envelope of the signal at the end of the sample.

Due to decoherence, the signal decays at timescales determined mostly by γ−1
se  , while γcoll is a relatively less 

important correction (see Fig. 2). The reason is that the relaxation γcoll does not directly affect the population (i.e., 
it does not appear in Eq. (10a), which is the main source of the low-frequency signal. The impact of relaxation 
is through a modification of the coherence term reg . The decay of the signal is a direct consequence of the decay 
of population oscillations. This means that decoherence channels, in particular a strong spontaneous emission, 
might prevent the possibility of low-frequency signal generation in a continuous manner. Instead, the signal 
could be generated pulse-wise, with drive impulses as discussed at the end of this subsection.

A close analysis of Eq. (10b) reveals that an effective detuning δeff(z, t) = δ − ∂
∂t κ −

Esignal
ℏ

(dee − dgg ) can be 
induced by additional effects: a time modulation of the drive and a back-action from the generated signal field. 
While the former is weak for the modulation timescales considered in our examples, we analyze the impact of 
the signal back-action in samples with increased concentration N in Fig. 3. The calculations were performed for 
a weaker drive ( A = 514 V/cm), longer time period, and the same decoherence parameters for better visualisa-
tion. In the case of small concentrations, the back-action is not observed at the investigated time scales (Fig. 3a). 
For larger medium concentrations, we find a clear indication of the back-action from the signal only if we do not 
include the spontaneous emission (gray curves in Fig. 3b,c): the modulations of the signal amplitude originate 
from time- and space-dependent effective frequency fluctuations ( δeff  ) of the atomic transition induced by the 
signal. However, this effect is blurred in the presence of spontaneous emission (blue curves in Fig. 3b,c). The 
back-action of the signal also appears in Eq. (10) next to the Rabi frequency �R , modifying it to the effective value 
�eff = �R +

Esignal
ℏ

J1(κ)deg . Yet, this impact is considerably smaller due to the proportionality of the correction 
applied to the Bessel function J1(κ) ≪ 1.

Figure 2.   Shapes of the signal field (blue) for enhanced values of relaxation parameters. The envelope of the 
driving field is shown in black. (a) Only collisional relaxation present: γcoll = 6.6 MHz, γse = 0 . (b) Only 
spontaneous emission involved: γse = 6.6 MHz, γcoll = 0 . (c) Both mechanisms included: γse = 6.6 MHz, 
γcoll = 6.6 MHz.
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To quantify the impact of the drive detuning on the signal frequency, we evaluate Fourier transforms of the 
stationary parts of the generated signals (the integration of the signal field Esignal(z = L, t) was performed over 
times between 72 and 121 ns). Their normalized values are shown in Fig. 4. We compare the results obtained 
numerically for different values of detuning up to δ = 657 MHz, with the theoretical prediction of the oscillation 
frequency of medium populations40

Figure 3.   Generated signal for different concentrations N in the medium with (blue) and without (gray) 
relaxations. The driving field’s amplitude was set to A = 515 V/cm. (a) Concentration N = 6.7× 1012 
molecules/cm3 . (b) N = 6.7× 1013 molecules/cm3 . (c) N = 6.7× 1014 molecules/cm3.

Figure 4.   Fast Fourier transforms (FFTs) of the generated signals reveal frequencies of the signals for the 
resonant case (blue line) and for several values of detuning (other lines), all for �R = 1.97 GHz. The vertical 
lines indicate frequencies calculated according to Eq. (14).
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The factor of 2 appears because �R corresponds to the frequency of oscillations of probability amplitudes, while 
the population probabilities are modulated at twice the pace. The formula above is valid for the case of vanish-
ing relaxation rates, while in the studied case γse,coll are approximately two orders of magnitude smaller than δ . 
Therefore, the main consequence of relaxation is a spectral broadening of the signal rather than a frequency shift. 
In the above expression, we did not take into consideration the effective parameters �eff  , δeff  because their influ-
ence at the relevant timescale is negligible with respect to the impact of spontaneous emission. The theoretical 
results are in very good agreement with the numerical ones, with offsets at the third significant digit, i.e., exactly 
at the level at which we expect corrections from the relaxations.

The derived Bloch–Maxwell equations allow us to study the generation of low-frequency radiation under 
more complex illumination schemes than a smooth step function. In Fig. 5, we present the temporal shape of 
signals generated under illumination with Gaussian impulses defined as

where α = a2 × 2.3× 10−6/cm2 hence, the full temporal width at half-maximum FWHM(a)=a× 12 ns. The 
signals have Gaussian envelopes. The frequency chirp results from the drive modulation. The shift of the maxi-
mum of the signal with respect to the peak of the drive is due to decoherence and disappears in the absence of 
spontaneous emission and relaxation. Fig. 5c presents fast Fourier transforms (FFTs) of both signals. The main 
frequencies are � = 1.93 GHz and 1.88 GHz for wider and narrower impulses, respectively. We observe that for 
increasing temporal FWHMs of the drive, the main frequency of the signal corresponds to the value of 1.97 GHz, 
which is the continuous-wave limit.

(14)� = 2

√

�2
R + δ2/4.

(15)E (z, t) = Ae−α(z−z0−ct)2 ,

Figure 5.   Results of the simulation for the impulse driving field with amplitude A = 515 V/cm. Blue and green 
lines represent the generated signal while black ones are envelopes of the drive in the form of Gaussians with 
respective FWHMs of (a) 36 ns and (b). 12 ns. (c) Fast Fourier transform performed on signal impulses.
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Note that a pulsed drive brings into perspective a considerable increase in the driving field power, and there-
fore the frequency of the signal. In particular, signals in the terahertz domain could be achieved for the drive 
peak powers from 3.5 MW, assuming the other system parameters as selected above.

LiH molecule.  In this section we discuss an example of a polar molecule of lithium hydride LiH that well 
suits the purpose of this project, i.e., it has a large permanent electric dipole moment that can be relatively eas-
ily oriented in the laboratory frame with an external electric field. We consider two selected rotational states 
|NM� = |00� and |N ′M ′� = |10� of a LiH molecule in its ground vibrational and electronic state X1�+ . N and 
M denote the rotational angular momentum of the molecule and its projection on the quantization axis deter-
mined by the external DC field. The details of the calculations of the dipole moments (in the laboratory frame) 
and energies are as a function of applied DC electric field, EDC , are provided in the “Supplementary Informa-
tion”. At the experimentally achievable electric field EDC = 150  kV/cm the energy gap between the levels is 
�E = 0.642 THz, the difference between the electric dipole moments in the ground and excited levels reads 
dee − dgg = 4.05  D, and the transition electric dipole moment deg = 2.51  D. The concentration and the col-
lisional decoherence rate of the molecules remain the same as before. We deem the concentration realistic with 
the method described in Ref.31. The results of our calculations are depicted in Fig. 6. We find a relatively high 
amplitude of the generated microwave radiation (the signal beam) of approximately  0.45 V/cm. The low energy 
gap between the levels yields low spontaneous emission coefficient and as a result, a relatively long coherence 
time of the signal (the decay is not visible at time scales shown in the figure).

Figure 6.   (a) Envelope of the driving field E (black) and generated signal Esignal (blue) as functions of time at 
the end of the sample ( z = L ) for γse = 0.75 Hz, γcoll = 65 kHz, and δ = 0 . (b) The signal Esignal in the spatial 
domain at t = 30 ns. The gray rectangle represents the sample with the active medium (between 0 and 0.53 m).
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Conclusions
We have shown how coherent radiation at the Rabi frequency is generated and propagates through a one-dimen-
sional medium consisting of two-level systems with broken inversion symmetry. The underlying mechanism 
is associated with the Rabi oscillations of the population between the eigenstates induced as the resonant drive 
illuminates the medium, and of the corresponding permanent dipole moments.

To quantify the effect, we derived Bloch–Maxwell equations governing the dynamics of the system. The 
equations were solved numerically for sets of parameters representing standard molecular media. The results 
confirm that the generation of low-frequency radiation is mostly caused by oscillations of the population in the 
medium, while other contributions can be considered as corrections. The output signal amplitude and frequency 
can be tuned with drive intensity modulation, allowing for an all-optical control of the signal properties. In our 
examples, the signal frequency belongs to the microwave regime, while the amplitude is small but detectable. 
A pulsed illumination scheme allows one to increase both the intensity and frequency of the signal, potentially 
leading to tunable sources of coherent terahertz radiation.
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