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Floquet‑engineered quantum walks
Haruna Katayama1,3, Noriyuki Hatakenaka1,3* & Toshiyuki Fujii2,3

The quantum walk is the quantum-mechanical analogue of the classical random walk, which offers an 
advanced tool for both simulating highly complex quantum systems and building quantum algorithms 
in a wide range of research areas. One prominent application is in computational models capable of 
performing any quantum computation, in which precisely controlled state transfer is required. It is, 
however, generally difficult to control the behavior of quantum walks due to stochastic processes. 
Here we unveil the walking mechanism based on its particle-wave duality and then present tailoring 
quantum walks using the walking mechanism (Floquet oscillations) under designed time-dependent 
coins, to manipulate the desired state on demand, as in universal quantum computation primitives. 
Our results open the path towards control of quantum walks.

The random walk1 is a fundamental concept that has been used to describe a variety of systems with inevitable 
stochastic processes2,3. A classical walker moves one step to the left or one step to the right depending on the 
outcome of a coin toss. After many coin tosses, the walker’s position is random, but is most likely to be close to 
the start point. In contrast, a walker in a quantum world4,5 simultaneously travels in both directions, behaving 
as a quantum wave, forming a coherent superposition of left and right that occupies more than one location at 
any given time. In addition, quantum interference effects between the possible trajectories of the walker also 
contribute to modify the resulting dynamics substantially such as delocalization over many steps. Thus, the wave 
nature of the walker in the particle-wave duality is important for its walking behavior.

The unique features emerging from the wave nature of the quantum walk (e.g., fast spreading6,7) have been 
predominantly applied to quantum search algorithms8–10 in quantum information sciences. Recently, quantum 
walks have been shown to be universal computational primitives in quantum computation, i.e., any quantum 
algorithm can be reconstructed as a quantum walk algorithm11,12. Therefore, precise control of quantum state 
transfer between arbitrary distant sites is critical for quantum information processing13–16. It is, however, not easy 
to manipulate quantum states using quantum walks due to their essentially random nature17–19. In addition, the 
walking mechanism in the wave picture is less obvious than that in the particle picture, where the walker shifts 
its position depending on the coin.

One possible approach to find the walking mechanism in the wave picture for controlling quantum walks 
might be to manipulate the coin transformation which would then allow us to drive walk evolution in a desired 
manner. Initially, a space-dependent coin was introduced in the quantum walk20. Later, a quantum walk with 
time-dependent coins was studied21–25. The resulting probability distribution for the quantum walk changed 
significantly. This implies that coin transformation is certainly involved in the walking mechanism and explicitly 
designing the sequence of coin transformations could lead to a desired state transfer.

Results
The time‑dependent coined quantum walk.  Suppose a walker on a line with a coin living in the Hil-
bert space of the whole system H = Hp ⊗Hc , where Hp and Hc are the Hilbert space of walker’s position 
with basic vectors {|m�,m ∈ Z} and of the coin with basic vectors {|L�, |R�} , respectively. The behavior of the 
walker in the quantum-mechanical domain is described by two operators. One is the shift operator Ŝ defined as

which shifts walker’s position. Another is the coin operator which transforms the internal state of the coin. Here, 
we employ the time-dependent coin,
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where 0 ≤ ρ(t) ≤ 1 . In each step, the walker shifts based on the new internal state of the coin after the transfor-
mation from the previous state of the coin. Therefore, the state of the whole system after n steps starting from 
the initial state |ψ�0 is given by

where the probability amplitudes Lm,n and Rm,n are given as

Here I is the unit matrix and T is the time between steps. Finally, the probability distribution of finding the 
walker in the position m after n steps, Pm(n) , is given as Pm(n) = PLm(n)+ PRm(n) with PLm(n) = |Lm,n|2 and 
PRm(n) = |Rm,n|2.

The numerical simulation of the time‑dependent coined quantum walk.  Applying the above def-
initions, we performed numerical simulations on the quantum walk with the time-dependent coin. We employ 
ρ(t) = cos2(θ0 + ωt) as an example of the time-dependent coin characterized by the coin flipping frequencies ω 
and the initial phases θ0 . We discovered numerically for the first time that the probability distributions of finding 
a particle (walker) on a line as a function of both ω and θ0 parameters exhibit a wide variety of walker’s trajecto-
ries representing high probability portions such as loops connected by lines (referred to as loop-line chains, see 
Fig. 1c) and adjacent loops (loop-loop chains, Fig. 1e,f) as shown in Fig. 1.

With the time-independent coins (ω = 0) , as shown in Fig. 1a, a trajectory with linear spreading in space 
peculiar to the quantum walk is reproduced, supporting our numerical simulations. With the time-dependent 
coins with finite frequencies (ω  = 0) , the trajectory forms closed loops. Interestingly, the resulting closed trajecto-
ries are not just sequential loops, as expected naturally, but also occur as connected structures of loops alternating 
with lines (loop-line chains). In addition, loop size tends to decrease as the coin’s frequency increases. Eventually, 
a linear trajectory with almost no spatial spread can be observed. Moreover, trajectories are also influenced by 
the initial phase θ0 . The trajectories in Fig. 1c,e,f with different initial phase values differ from each other even 
though they have the same ω value. Note that the trajectories in Fig. 1e,f are categorized as loop-loop chains, but 
the origin of the loops is completely different as discussed later.

It was found that these features can be reproduced with a simple formula in a numerical analysis, i.e., the 
trajectory xc is well fitted by the sinusoidal function expressed as xc = a sin(φ0 +�t)+ b where a, b, φ0 and � 
are the amplitude, the bias, the initial phase and the frequency, respectively. Figure 2 shows the fitting param-
eters a, φ0 , � , and b as a function of both the initial phase θ0 with fixed frequency ω = π/60 (top row) and the 
frequency ω with an initial phase of θ0 = π/4 (middle row). From each pair of the θ0 and ω rows, the physical 
origin of the fitting parameters can be inferred as shown in the bottom row. These fitting parameters provide an 
excellent clue to elucidating the walking mechanism.

The analytic solution of the time‑dependent coined quantum walk.  Here we derive the ana-
lytic solution to a quantum walk with a time-dependent coin based on the seminal work by Knight et  al.26 
together with its extended work to time-dependent coins by Banũls et  al.21, in order to explore the walking 
mechanism of its trajectories. From the time evolution of the probability amplitudes in Eqs. (4) and (5) by setting 
ρ(nT) = cos2 θn with θn = θ0 + nωT , we obtain the difference equation,

where A = L,R . By introducing a continuum field of space and time A±(x, t) to take the wave propagation in both 
positive and negative directions into account26, we obtain the differential equation within the long-wavelength 
approximation,

where ξ and τ are normalized coordinate and time, respectively. The analytic solution is expressed by

with
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where Ai(x) stands for the Airy function and 2w is the standard deviation of the Gaussian function introduced 
to describe spreading waves. A detailed solution to Eq. (7) is provided in the Method. The probability distribu-
tion P(ξ , τ) is then obtained by P(ξ , τ) = PL(ξ , τ)+ PR(ξ , τ) where PA(ξ , τ) = |A+(ξ , τ)+ (−1)nA−(ξ , τ)|2 
with A = L,R . These results are essentially the same as Bañuls’s except for the difference in the coin operators.

Figure 3 shows the probability distributions of finding the walker on a line, based on the numerical simulation 
and the analytical solution. It can be seen that the analytical solutions agree well with the numerical solutions, 
showing that the long-wavelength approximation analysis works very well. However, there is one missing link 
between the two solutions. In the analytical solution, the linear spreading inherent in the quantum walk is not 
reproduced and remains unsolved.

Walking mechanism.  Now let us discuss walking mechanism that has not been clarified so far by consider-
ing the walker’s trajectories. The essentials of the probability distribution are described by A±(ξ , τ) expressed in 
the Fourier form as
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∫ τ

0
cos θ(τ ′)dτ ′,

Figure 1.   A wide variety of the walker’s trajectories. The phase diagram (center) with insets indicating 
probability distributions of walker’s position (upper) and trajectory (lower) over 300 steps at typical parameters 
for coin with initial phase θ0 and frequency ω , by numerical simulations starting with the initial state of 
|ψ�0 = |0,R�/

√
2+ i|0, L�/

√
2 . (a) linear spreading θ0 = π/4 and ω = 0 , (b) curved spreading θ0 = π/4 and 

ω = π/1000 , (c) a loop-line chain θ0 = π/4 and ω = π/60 , (d) a localized line θ0 = π/4 and ω = π/10 , (e) a 
crossing loop-loop chain θ0 = 0 and ω = π/60 , (f) a touching loop-loop chain θ0 = 3π/2 and ω = π/60 , (g) 
walker’s trajectories in a crossing loop-loop chain predicted by the analytic solution, (h) walker’s trajectories in 
a touching loop-loop chain predicted by the analytic solution. Loop-loop chains appear as crossing chains only 
at θ0 = nπ (red lines) and as touching chains only at θ0 = (2n+ 1)π/2 (blue lines) in the phase diagram (where 
n =integer).
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by using the shifted probability amplitude B±(ξ , τ)

Equation (13) means that the entire distribution A±(ξ , τ) shifts with ∓
∫ τ

0 cos θ(τ ′)dτ ′ over time. Therefore the 
trajectory is given by a simple sinusoidal function

(13)A±(ξ , τ) =
∫ ∞

−∞
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(
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,
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−∞
eikξ

(

e±
1
6 ik

3
∫ τ
0 cos θ(τ ′)dτ ′A±(k, 0)

)

dk.

Figure 2.   Fitting parameters. The fitting parameters of a trajectory in the form of xc = a sin (φ0 +�t)+ b are 
represented by blue points (the numerical simulation results) and a red line (the analytical result) in each graph. 
The parameters (the amplitude a, initial phase φ0 , frequency � , and bias b) are shown as a function of both the 
initial phase θ0 with fixed frequency ω = π/60 (top row) and the frequency ω with an initial phase of θ0 = π/4 
(bottom row). (a) and (A) for the amplitude, (b) and (B) for the initial phase, (c) and (C) for the frequency, and 
(d) and (D) for the bias.

Figure 3.   The numerical simulation and the corresponding analytical solution. Probability distributions and 
their trajectories for the quantum walk with initial state |ψ�0 = |0,R�/

√
2+ i|0, L�/

√
2 ( R0,0 = 1/

√
2 and 

L0,0 = i/
√
2 ), coin initial phase θ0 = π/4 , and frequency ω = π/60 over 300 steps. The graph on the left shows 

the result of the numerical simulation, and the graph on the right shows the result of the analytic solution 
with w = 0.4 . Note that the linear spatial spreading is shown in the probability distribution of the numerical 
simulation only.
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This analytical result shows complete agreement with the results obtained by numerical analysis.
This agreement allows us to interpret the various trajectories seen in Fig. 1 using the analytical solution. Sur-

prisingly, all the trajectories can be described by two sinusoidal functions in Eq. (15). The bias b = − sin θ0/ω 
determines the relative overlap between two sinusoidal functions, leading to various types of chain structures. 
The crossing loop-loop chains with loops of the same size as shown in Fig. 1g appear when the overlaps occur 
at θ0 = nπ (n = integer) depicted by the red lines in the middle panel of Fig. 1. In addition, at θ0 = (n+ 1)π/2 
(the blue lines in the middle panel of Fig. 1), a second type of chain is created by adjacent rather than intersect-
ing sinusoidal functions as shown in Fig. 1h, otherwise the loop-line chains appear instead. Actually, the linear 
part that seems to be a straight line is the area where the sinusoidal functions overlap. Therefore, the loop-line 
structure can be described as a chain of loops of two sizes that alternate. On the other hand, frequency ω deter-
mines the size of the loop that depends on ω in time and 1/ω in space. Thus, the loop becomes smaller when the 
frequency increases, resulting in narrower trajectories. In this way, through the analytical solution, we obtain a 
unified view of the probability distribution trajectory shown in Fig. 1.

Now let us discuss the physical origin of trajectories obtained above. Based on Eq. (7), the quantum walk 
eventually behaves like a quantum-mechanical wave. According to wave theory, there is a well-known disper-
sion relation, ω = vk , between the wave number k and frequency ω . From Eq. (7), the component of the coin 
operator, ∓ cos θ(τ ) , appears in the place corresponding to the velocity of this wave. This shows that the coin 
in the wave picture of the quantum walk plays the role of the speed of the quantum wave that determines the 
walking trajectory. This is the walking mechanism of the quantum walk hidden behind the wave picture. This is 
one of our central results of this paper.

This correspondence can also be confirmed in the particle picuture. We reconsider the walking mechanism 
based on the Hamiltonian formalism from the viewpoint of the particle nature in the particle-wave duality. The 
Hamiltonian for generating one-dimensional discrete time quantum walk can be derived from the walker’s time 
evolution operator W ≡ SC = exp[−iHτ ] for each step of the walk on the discrete position space and is given as 
H(k) = h(k) · σ in the two-component Dirac-like Hamiltonian form where h(k) and σ are a three-dimensional 
wavenumber k-dependent vector and the vector of the Pauli spin matrices, respectively. Specific expressions for 
the coin operators we have adopted are given in the reference27 creating cat states in one-dimensional quantum 
walks using delocalized initial states.

Since the vector h(k) contains information on the coin operator depending on the periodic function in time, 
the Hamiltonian naturally has the translational invariant under a discrete time translation H(τ ) = H(τ + T) . 
This allow us to use the Floquet formalism. According to the Floquet theorem, the Floquet state solution �α(x, t) 
for the quasienergy ǫα is given by the solution of the eigenvalue equation HF(x, t)�α(x, t) = ǫα�α(x, t) with 
the Floquet Hamiltonian HF = H(x, t)− i∂/∂t.

For our system, the quasienergy ǫ± for the 1st Floquet zone27 is given in the same approximation as the long 
wavelength approximation adopted above:

Since the velocity operator is given by the Heisenberg equation v̂ = ˙̂x = [HF , x̂] , the diagonal terms of the veloc-
ity representing the left and right propagating waves read �v̂α� = vα = dǫα/dk . From these, we reconfirm that the 
velocity of the particle coincides with the wave velocity ∓ cos θ obtained in the wave picture. Therefore, quantum 
walk with time-dependent coins can be regarded as a quantum particle oscillating in the Floquet band. This is the 
counterpart of quantum walks with space-dependent coins causing Bloch oscillations in periodic band structures.

The general time‑dependent coined quantum walk.  So far we have discussed the dynamics of 
quantum walks with specific time-dependent coins and clarified the physical origin behind the quantum walk. 
Finally, we formulate the quantum walk for an arbitrary time-dependent coin, and discuss the controllability of 
the quantum walk. We employ the coin with general time dependence in a unitary form ρ(t) = cos2(�(t)) with

where ql is the Fourier coefficient. The time-dependent phase �(t) can express an arbitrary function. Through 
procedures parallel to those described above, we obtain the trajectory expressed as

where
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with K = k1 + 2k2 + ·· · +jkj . Eq. (18) is nothing but a Fourier series expansion and is the central result of this 
paper. The implication of Eq. (18) is that walker’s trajectory can take any path. Therefore, we can obtain the 
desired trajectory through designing the coin operator. This is another significant result of this paper. Figure 4 
shows one such example with a coin depending on �(t) = 1

4 sin (ωt)+
1
3 sin (2ωt)+

1
2 sin (3ωt)+ sin (4ωt) . 

The the analytic solutions replicates the numerical simulations.

Discussion
In summary, quantum walks with arbitrary time-dependent coins have been studied both numerically and 
analytically. The numerical simulations have been reproduced almost perfectly by the analytical solutions, and 
together have revealed the walking mechanism hidden in the quantum walks in the wave picture, i.e., that the coin 
flipping rate plays the role of the wave speed of the quantum walk governing the walker’s trajectories. This wave 
behavior can also be interpreted as Floquet oscillations in periodic energy bands in the particle picture. Based 
on this walking mechanism, the walker’s trajectory has been proved to be represented by the Fourier series of 
coins. Therefore, the walking mechanism enables us to tailor quantum walks as we desire through manipulating 
the coin flipping rate. Our results open the path towards the control of quantum walks.

Methods
Analytical solutions.  In the supplement, we show our analytic solution for predicting the probability dis-
tribution of the walker’s location for quantum walks with a time-dependent coin. According to Bañuls’s extended 
theory21 which is based on the seminal work of Knight et al.26, the time evolution of the probability amplitudes 
is given by

We derive recurrence formulas of Rm,n and Lm,n by using Eqs. (21) and (22),

where Sn ≡ sin θn and Cn ≡ cos θn . These (for Am,n = Rm,n or Lm,n ) can be rewritten as

by using the following relations,
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∑
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Kω

(21)Rm,n+1 = cos θnRm−1,n + sin θnLm−1,n,

(22)Lm,n+1 = sin θnRm+1,n − cos θnLm+1,n.

(23)Sn−1Rm,n+1 − SnRm,n−1 = CnSn−1Rm−1,n + SnCn−1Rm+1,n,

(24)Sn−1Lm,n+1 − SnLm,n−1 = SnCn−1Lm−1,n + CnSn−1Lm+1,n,

(25)
S+n C

−
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−
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Figure 4.   Probability distributions of quantum walks with a general time-dependent coin. Probability 
distributions of a quantum walk with initial state |ψ�0 = |0,R�/
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√
2 ), and coin depending on �(t) = 1

4
sin (ωt)+ 1

3
sin (2ωt)+ 1

2
sin (3ωt)+ sin (4ωt) over 300 steps. 

The graph on the left shows the result of the numerical simulation, and the graph on the right shows the result of 
the analytic solution with w = 0.4.
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where C±
n = cos θ±n  and S±n = sin θ±n  are denoted with θn = θ+n + θ−n and θn−1 = θ+n − θ−n . Since trigonometric 

functions are approximated as S−n ≃ 0 , C−
n ≃ 1 , S+n ≃ sin θn , and C+

n ≃ cos θn under small θ±n  , the difference 
equation, Eq. (6), in the main content is expressed as

By introducing a continuum field A(x, t) instead of the discrete field Am,n , Eq. (30) can also be expressed in the 
Taylor expansion series as

where cos θ(t) is a continuum function that replaces cos θn . Keeping only the first few, lowest order terms, this 
reduces to

Since Eq. (32) describes a wave that propagates in only one direction (according to linear wave theory), an 
auxiliary field A±

m,n (in discrete systems) that travels in both directions was originally required to preserve the 
symmetry of the system. After introducing the dimensionless variables ξ and τ , this results in

To obtain an analytical solution for the partial differential equation in Eq. (33), we adopt the usual method of 
solving partial differential equations using the Fourier method and assume A±(ξ , τ) with functions Gm(ξ) and 
A±
m(τ ) in the variable-separated form,

with a normalization factor N. By using the Fourier transformation from the wavenumber k space,

the partial differential equation, Eq. (33), reduces to the ordinary differential equation

Equation (37) can be immediately solved as

where

To find A±(k, 0) in Eq. (38), we perform inverse Fourier transformations on Eq. (36) by setting τ = 0 , which 
yields

where

with A±
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Eq. (40) reduces to

where the prefactor of the Gaussian integral N
√
4w2π  is omitted in the following because it is merely a scaling 

factor. Substituting Eq. (43) into Eq. (38), A±(k, τ) is rewritten as

Therefore, A±(ξ , τ) in Eq. (36) can be expressed by

where

Z±(ξ ′, τ) can be represented using existing analytical functions as follows

where ξ ′ ≡ ξ −m.
Note that the relation Z−(ξ ′, τ) = Z+(−ξ ′, τ) holds between Z+(ξ ′, τ) and Z−(ξ ′, τ) . By using the Airy 

function Ai(x),

Z+(ξ ′, τ) is expressed as

where

Finally, let us consider the initial coefficients A±
m,0 in Eq. (45). According to the relation Am,n ≡ A+

m,n + (−1)mA−
m,n 

proposed by Knight et al., the following relations

lead to the simple relation

Using this relation, we obtain

(43)A±(k, 0) = e−k2w2 ∑

m

A±
m,0e

−imk ,

(44)A±(k, τ) = e∓ig(k,τ)e−k2w2 ∑

m

A±
m,0e

−imk .

(45)
A±(ξ , τ) =

∫ ∞

−∞
e−ikξA±(ξ , τ)dξ

=
∑

m

A±
m,0Z

±(ξ −m, τ)

(46)Z±(ξ −m, τ) =
∫ ∞

−∞
eik(ξ−m)∓ig(k,τ)−k2w2

dk.

(47)
Z±(ξ ′, τ) =

∫ ∞

−∞
eikξ

′∓ig(k,τ)−k2w2
dk

=
∫ ∞

−∞
eik(ξ

′∓s(τ ))−k2w2±i k
3

6 s(τ )dk,

(48)Ai(x) =
∫ ∞

−∞
eikx+

i
3 k

3
dk.

(49)Z±(ξ , τ) =
∣

∣

∣

∣

2

s(τ )

∣

∣

∣

∣

1
3

eχAi(ζ ),

(50)ζ =
∣

∣

∣

∣

2

s(τ )

∣

∣

∣

∣

1
3
(

±ξ − s(τ )+ 2w4

s(τ )

)

,

(51)χ = 2w2

s(τ )

(

±ξ − s(τ )+ 4w4

3s(τ )

)

,

(52)s(τ ) = ∓
∫ τ

0
cos θ(τ ′)dτ ′.

Am,0 = A+
m,0 + A−

m,0,

Am,1 = A+
m,1 − A−

m,1 ≃ A+
m,0 + A−

m,0,

(53)A±
m,0 =

1

2
(Am,0 ± Am,1).

(54)A±(ξ , τ) = 1

2

∑

m

(Am,0 ± Am,1)Z
±(ξ −m, τ).
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Suppose that the walker starts at m = 0 , then the initial condition

leads to

As a result, Eq. (8) reduces to

Thus, we have obtained an analytic solution to quantum walks with a time-dependent coin that is essentially the 
same as the solution of Bañuls et al. except for the difference in the coin operators.

Based on the above elementary results, let us now derive the analytical solution for the quantum walks with 
the generalized time-dependent coins in a unitary form using ρ(t) = cos2(�(t))) in the same manner as before. 
We start from the recurrence formulas Eq. (25) replacing θn with �n(=

∑j
l=1 ql sin (nlωT)) . Since trigonometric 

functions are approximated as S−n ≃ 0 , C−
n ≃ 1 , S+n ≃ sin�n , and C+

n ≃ cos�n under small �±
n  , the difference 

equation is expressed as

Then we obtain the wave equation in the continuum limit,

Since the velocity of the wave corresponds to ∓ cos�(τ) in the above equation, the walker’s trajectory is described 
by the integral of the velocity over a defined interval as follows,

Before proceeding with the integration, let us prove the following relations by using mathematical induction,

where Jkl (ql) is the Bessel function of the first kind of order kl of ql . First, at j = 1 , the equations are

{

Am,n  = 0, (m, n) = (0, 0), (±1, 1)
Am,n = 0, otherwise

(55)A±
−1,0 =

1

2
(A−1,0 ± A−1,1) =

1

2
A−1,1,

(56)A±
0,0 =

1

2
(A0,0 ± A0,1) =

1

2
A0,0,

(57)A±
1,0 =

1

2
(A1,0 ± A1,1) = ±1

2
A1,1,

(58)A±
m,0 = 0 (n �= −1, 0, 1).

(59)

A±(ξ , τ) =
1

∑

m=−1

A±
m,0Z

±(ξ −m, τ)

= 1

2

1
∑

m=−1

(Am,0 ± Am,1)Z
±(ξ −m, τ).

(60)Am,n+1 − Am,n−1 = cos�n(Am−1,n − Am+1,n).

(61)
∂

∂τ
A±(ξ , τ) = ∓ cos�(τ)

(

∂

∂ξ
+ 1

3!
∂3

∂ξ3

)

A±(ξ , τ).

(62)

xc =
� τ

0
cos�(τ ′)dτ ′

=
� τ

0
cos





j
�

l=1

ql sin (lωτ
′)



dτ ′.

(63)cos





j
�

l=1

ql sin (lωt)



 =
�

k1,k2,···,kj
Jk1(q1)Jk2(q2) · · · Jkj (qj) cos{ωt(k1 + 2k2 + ·· · +jkj)},

(64)sin





j
�

l=1

ql sin (lωt)



 =
�

k1,k2,···,kj
Jk1(q1)Jk2(q2) · · · Jkj (qj) sin{ωt(k1 + 2k2 + ·· · +jkj)},

(65)cos
(

q1 sin (ωt)
)

= R
(

exp[iq1 sin (ωt)]
)

=
∑

k1

Jk1(q1) cos(k1ωt),

(66)sin
(

q1 sin (ωt)
)

= I
(

exp[iq1 sin (ωt)]
)

=
∑

k1

Jk1(q1) sin(k1ωt).
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Thus, Eqs. (63) and (64) are established with certainty. Assuming that Eqs. (63) and (64) are correct at j = p , 
we show that the relations also hold at j = p+ 1 . At j = p+ 1 we obtain the relations for Eq. (63) as follows,

demonstrating that Eq. (63) is true. Therefore, we confirm that Eq. (63) is established for any natural number p. 
In the same way, it can be shown that Eq. (64) is also correct. The trajectory Eq. (62) is rewritten as

with K = k1 + 2k2 + ·· · +jkj . By using the relation

the walker’s trajectory of quantum walks with generalized time-dependent coin is expressed as

where

This is one of the central results of this paper. Thus, we can control, in general manner, the walker’s trajectory in 
quantum walks even with time-dependent coins.

Data availability
The data that support the findings of this study are available from the corresponding author upon request.

(67)

cos







p+1
�

l=1

ql sin (lωt)







= cos

� p
�

l=1

ql sin (lωt)

�

cos
�

qp+1 sin ((p+ 1)ωt)
�

− sin

� p
�

l=1

ql sin (lωt)

�

sin
�

qp+1 sin ((p+ 1)ωt)
�

=
�

k1,···,kp
Jk1(q1) · · · Jkp (cp) cos{ωt(k1 + ·· · +pkp)}

�

kp+1

Jkp+1 (qp+1) cos (ωt(p+ 1)kp+1)

−
�

k1,···,kp
Jk1(q1) · · · Jkp (cp) sin{ωt(k1 + ·· · +pkp)}

�

kp+1

Jkp+1 (qp+1) sin (ωt(p+ 1)kp+1)

=
�

k1,···,kp+1

Jk1(q1) · · · Jkp+1 (qp+1)
�

cos{ωt(k1 + ·· · +pkp)} cos (ωt(p+ 1)kp+1)

− sin{ωt(k1 + ·· · +pkp)} sin (ωt(p+ 1)kp+1)
�

=
�

k1,···,kp+1

Jk1(q1) · · · Jkp+1 (qp+1) cos{ωt(k1 + ·· · +pkp + (p+ 1)kp+1)},

(68)

xc =
∫ τ

0

∑

k1,k2,···,kj
Jk1(q1)Jk2(q2) · · · Jkj (qj) cos{ωτ ′(k1 + 2k2 + ·· · +jkj)}dτ ′

=
∫ τ

0

∑

k1,···,kj
Jk1(q1) · · · Jkj (qj) cos(Kωτ ′)dτ ′

=
∑

k1,···,kj(K �=0)

Jk1(q1) · · · Jkj (qj)
[

1

Kω
sin(Kωτ ′)

]τ

0

+
∑

k1,···,kj(K=0)

Jk1(q1) · · · Jkj (qj)τ

=
∑

k1,···,kj(K �=0)

Jk1(q1) · · · Jkj (qj)
Kω

sin(Kωτ)+
∑

k1,···,kj(K=0)

Jk1(q1) · · · Jkj (qj), τ

(69)
j

�

i=1





∞
�

ki=−∞
Jki (ci)



 =
∞
�

K=−∞

�

k2

·· ·
�

kj

JK−2k2−···−jkj (q1)Jk2(q2) · · · Jkj (qj),

(70)xc = Q0 +
∞
∑

K=−∞(K �=0)

QK sin (Kωτ),

(71)Q0 =
∑

k2

∑

k3

·· ·
∑

kj

(

J−2k2−3k3···−jkj (q1)Jk2(q2) · · · Jkj (qj)τ
)

,

(72)QK =
∞
∑

K=−∞(K �=0)

∑

k2

·· ·
∑

kj

JK−2k2−···−jkj (q1)Jk2(q2) · · · Jkj (qj)
Kω

.
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